Effect of Long-Term Fertilization on Aggregate Size Distribution and Nutrient Accumulation in Aeolian Sandy Soil
Abstract
:1. Introduction
2. Results
2.1. The Effect of Long-Term Fertilization on the Physical and Chemical Properties of Soil
2.2. The Effect of Long-Term Fertilization on the Distribution and Stability of Soil Aggregates
2.3. Relationship between Soil Organic Carbon, Inorganic Carbon, Total Nitrogen and Cation Exchange Capacity and Aggregate Stability
2.4. The Effect of Long-Term Fertilization on the Content of Nutrients in Soil Aggregates
2.5. The Effect of Long-Term Fertilization on Nutrient Reserves in Soil Aggregates
2.6. The Relationship between Fertilizer Input and Soil Nutrients Storage
3. Discussion
3.1. The Effect of Long-Term Fertilization on the Distribution and Stability of Aeolian Soil Aggregates
3.2. The Effect of Long-Term Fertilization on the Nutrient Content in Aeolian Sandy Soil Aggregates
3.3. The Effect of Long-Term Fertilization on Nutrient Reserves in Soil Aggregates
3.4. Practical Implications of This Study
4. Materials and Methods
4.1. Study Site
4.2. Experiment Design
4.3. Sample Collection and Aggregate Analysis
4.4. Measurement of Soil Physical and Chemical Properties
4.5. Statistics and Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luo, G.P.; Chen, X.; Zhou, K.F. Study on the temporal and spatial variation and the stability of the oasis in Sangong River Watershed, Xinjing, China. Science 2020, 32, 521Y538. [Google Scholar] [CrossRef]
- Huang, J.F.; Wang, R.H.; Zhang, H.Z. Analysis of patterns and ecological security trend of modern oasis landscapes in Xinjiang, China. Environ. Monit. Assess. 2007, 134, 411Y419. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, Y.; Ma, J.; Wang, Y.; Liu, Y. Microbial community variation and its relationship with soil carbon accumulation during long-term oasis formation. Appl. Soil Ecol. 2021, 168, 104126. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhao, W.Z.; Fu, L.; Zhao, C.; Jia, A.Y. Land use conversion influences soil respiration across a desert-oasis ecoregion in Northwest China, with consideration of cold season CO2 efflux and its significance. Catena 2020, 188, 104460. [Google Scholar] [CrossRef]
- Li, X.G.; Li, F.M.; Rengel, Z.; Singh, B.; Wang, Z.F. Cultivation effects on temporal changes of organic carbon and aggregate stability in desert soils of Hexi Corridor Region in China. Soil Tillage Res. 2007, 91, 22–29. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhang, K.; Liu, T.N.; Fan, G.P.; Wang, T. Changes in Soil Properties and Accumulation of Soil Carbon After Cultivation of Desert Sandy Land in a Marginal Oasis in Hexi Corridor Region, Northwest China. Sci. Agric. Sin. 2017, 50, 1646–1654. [Google Scholar] [CrossRef]
- Katerji, N.; Mastrorilli, M. The effect of soil texture on the water use efficiency of irrigated crops: Results of a multi-year experiment carried out in the Mediterranean region. Eur. J. Agron. 2009, 30, 95–100. [Google Scholar] [CrossRef]
- Arora, V.K.; Singh, C.B.; Sidhu, A.S.; Thind, S.S. Irrigation, tillage, and mulching effects on soybean yield and water productivity in relation to soil texture. Agric. Water Manag. 2011, 98, 563–568. [Google Scholar] [CrossRef]
- Yin, X.; Feng, Q.; Zheng, X.; Wu, X.; Li, Y. Assessing the impacts of irrigated agriculture on hydrological regimes in an oasis-desert system. J. Hydrol. 2021, 594, 125976. [Google Scholar] [CrossRef]
- Fang, J.; Su, Y.Z. Effects of soils and irrigation volume on maize yield, irrigation water productivity, and nitrogen uptake. Sci. Rep. 2019, 9, 7740–7750. [Google Scholar] [CrossRef]
- Till, S.; Horst, H.G.; Helmut, R. Assessment of Chinese paddy-soil structure using X-ray computed tomography. Geoderma 2008, 145, 303–314. [Google Scholar] [CrossRef]
- Gupta, V.V.S.R.; Germida, J.J. Soil aggregation: Influence on microbial biomass and implications for biological processes. Soil Biol. Biochem. 2015, 80, 3–9. [Google Scholar] [CrossRef]
- Bali, R.; Pineault, J.; Chagnon, P.L.; Hijri, M. Fresh compost tea application does not change rhizosphere soil bacterial community structure and has no effects on soybean growth or yield. Plants 2021, 10, 1638. [Google Scholar] [CrossRef] [PubMed]
- Tagar, A.A.; Adamowski, J.; Memon, M.S.; Minh, C.D.; Mashori, A.S.; Soomro, A.S.; Bhayo, W.A. Soil fragmentation and aggregate stability as affected by conventional tillage implements and relations with fractal dimensions. Soil Tillage Res. 2020, 197, 404494. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Shepherd, T.G.; Saggar, S.; Newman, R.H.; Ross, C.W.; Dando, J.L. Tillage-induced changes to soil structure and organic carbon fractions in New Zealand soils. Aust. J. Soil Res. 2001, 39, 465–489. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K.; Elliott, E.T.; Combrink, C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate- associated carbon. Soil Sci. Soc. Am. J. 2000, 64, 681–689. [Google Scholar] [CrossRef]
- Díaz-Zorita, M.; Perfect, E.; Grove, J.H. Disruptive methods for assessing soil structure. Soil Tillage Res. 2002, 64, 3–22. [Google Scholar] [CrossRef]
- An, S.; Zheng, F.; Zhang, F.; Pelt, S.V.; Makeschin, F. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. Catena 2008, 75, 248–256. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2015, 124, 3–22. [Google Scholar] [CrossRef]
- Chivenge, P.; Vanlauwe, B.; Gentile, R.; Six, J. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biol. Biochem. 2011, 43, 657–666. [Google Scholar] [CrossRef]
- Sodhi, G.P.; Beri, V.; Benbi, D.K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system. Soil Tillage Res. 2009, 103, 412–418. [Google Scholar] [CrossRef]
- Puget, P.; Chenu, C.; Balesdent, J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci. 2010, 51, 595–605. [Google Scholar] [CrossRef]
- Maltas, A.; Kebli, H.; Oberholzer, H.R.; Oberholzer, H.R.; Weisskopf, P.; Sinaj, S. The effects of organic and mineral fertilizers on carbon sequestration, soil properties, and crop yields from a long-term field experiment under a Swiss conventional farming system. Land Degrad. Dev. 2018, 29, 926–938. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Ye, S. Response of soil fertility characteristics in water-stable aggregates to tea cultivation age in hilly region of southern Guangxi, China. Catena 2020, 191, 104578. [Google Scholar] [CrossRef]
- Islam, M.R. Integrated Nutrient Management Enhances Productivity and Nitrogen Use Efficiency of Crops in Acidic and Charland Soils. Plants 2021, 10, 2547. [Google Scholar] [CrossRef]
- Egodawatta, W.C.P.; Sangakkara, U.R.; Stamp, P. Impact of green manure and mineral fertilizer inputs on soil organic matter and crop productivity in a sloping landscape of Sri Lanka. Field Crops Res. 2012, 129, 21–27. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhattacharyya, R.; Meena, M.C.; Dwivedi, B.S.; Singh, G.; Agnihotri, R.; Sharam, C. Long-term fertilization effects on soil organic carbon sequestration in an inceptisol. Soil Tillage Res. 2018, 177, 134–144. [Google Scholar] [CrossRef]
- Bi, L.; Yao, S.; Zhang, B. Impacts of long-term chemical and organic fertilization on soil puddlability in subtropical china. Soil Tillage Res. 2015, 152, 94–103. [Google Scholar] [CrossRef]
- Huang, S.; Peng, X.X.; Huang, Q.R.; Zhang, W.J.B. Soil aggregation and organic carbon fractions affected by long-term fertilization in a red soil of subtropical China. Geoderma 2010, 154, 364–369. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.K.; Saha, S.; Mani, P.K.; Mandal, B. Effect of organic inputs on aggregate associated organic carbon concentration under long-term rice–wheat cropping system. Geoderma 2010, 154, 379–386. [Google Scholar] [CrossRef]
- Eze, S.; Palmer, S.M.; Chapman, P.J. Soil organic carbon in grasslands: Effects of inorganic fertilizers, liming and grazing in different climate settings. J. Environ. Manag. 2018, 223, 74. [Google Scholar] [CrossRef] [PubMed]
- Gelaw, A.M.; Singh, B.R.; Lal, R. Organic carbon and nitrogen associated with soil aggregates and particle sizes under different land uses in Tigray, Northern Ethiopia. Land Degrad. Dev. 2015, 26, 690–700. [Google Scholar] [CrossRef]
- Su, Y.Z.; Yang, R.; Liu, W.J. Effects of Agricultural Management Practices on Soil Organic Carbon and Its Fractions in Newly Cultivated Sandy Soil in Northwest China. Sci. Agric. Sin. 2012, 45, 2867–2876. [Google Scholar]
- Yang, R.; Su, Y.Z.; Wang, T.; Yang, Q. Effect of chemical and organic fertilization on soil carbon and nitrogen accumulation in a newly cultivated farmland. J. Integr. Agric. 2016, 15, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Shang, L.; Wan, L.; Zhou, X.; Li, S.; Li, X. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in leymus chinensis steppe in inner mongolia, china. PLoS ONE 2020, 15, e0240559. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, B.Z.; Zhang, J.B.; Shen, L.L.; Wang, M.L.; Qin, S.W. Effect of long-term fertilization on microbial biomass and activity in Fluvo-Aquic soil during maize growth period. Acta Pedol. Sin. 2010, 47, 122–130. [Google Scholar]
- Kong, F.L.; Zhang, M.Y.; Fan, S.C.; Zhang, H.L.; Chen, F. Effect of tillage practices on soil microbial biomass carbon in the field with long-term non-tillage. Chin. J. Eco-Agric. 2011, 19, 240–245. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, J.; Fan, J.; Yang, X.; Yi, Y.; Han, X. Does animal manure application improve soil aggregation? insights from nine long-term fertilization experiments. Sci. Total Environ. 2019, 660, 1029–1037. [Google Scholar] [CrossRef]
- Ferro, N.D.; Berti, A.; Francioso, O.; Ferrari, E.; Matthews, G.P.; Morari, F. Investigating the effects of wettability and pore size distribution on aggregate stability: The role of soil organic matter and the humic fraction. Eur. J. Soil Sci. 2012, 63, 152–164. [Google Scholar] [CrossRef]
- Voltolini, M.; Ta, N.; Shi, W.; Brodie, E.L.; Ajo-frankin, J.B. Quantitative characterization of soil micro-aggregates: New opportunities from sub-micron resolution synchrotron X-ray microtomography. Geoderma 2017, 305, 382–393. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Elliott, E.T.; Paustian, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 1999, 63, 1350–1358. [Google Scholar] [CrossRef] [Green Version]
- Caravaca, F.; Lax, A.; Albaladejo, J. Aggregate stability and carbon characteristics of particle-size fractions in cultivated and forested soils of semiarid Spain. Soil Tillage Res. 2004, 78, 83–90. [Google Scholar] [CrossRef]
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Guo, Y.; Kato, S.; Fei, S.; Zhang, Y.; Zeng, S. Composition of loess aggregate and its relationship with CaCO3 on the loess plateau. Acta Pedol. Sin. 2004, 41, 362–368. [Google Scholar] [CrossRef]
- Su, Y.Z.; Yang, R.; Liu, W.J.; Wang, X.F. Evolution of Soil Structure and Fertility After Conversion of Native Sandy Desert Soil to Irrigated Cropland in Arid Region, China. Soil Sci. 2010, 175, 246–254. [Google Scholar] [CrossRef]
- Niu, Z.; Su, Y.Z.; An, F.J.; Liu, T.N. Changes in soil carbon and nitrogen content, associated with aggregate fractions, after conversion of sandy desert to irrigation farmland, northwest china. Soil Use Manag. 2021, 38, 396–410. [Google Scholar] [CrossRef]
- Oades, J.M.; Waters, A.G. Aggregate hierarchy in soils. Aust. J. Soil Res. 1991, 29, 815–828. [Google Scholar] [CrossRef]
- Ye, L.; Tan, W.; Fang, L.; Ji, L. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: II. Spatial prediction. Soil Tillage Res. 2019, 179, 71–81. [Google Scholar] [CrossRef]
- Bungau, B.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sossé, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the impact of anthropogenic aspects and climatic factors on long term soil monitoring and management. Environ. Sci. Pollut. Res. 2021, 202, 30528–30550. [Google Scholar] [CrossRef]
- Samuel, A.D.; Bungau, S.G.; Tit, D.M.; Frunzulica, C.E.M.; Badea, G.E. Effects of long-term application of organic and mineral fertilizers on soil enzymes. Rev. Chim. Buchar. Orig. Ed. 2018, 69, 2608–2612. [Google Scholar] [CrossRef]
- Samuel, A.D.; Tit, D.M.; Melinte, C.E.; Iovan, C.; Bungau, S. Enzymological and physicochemical evaluation of the effects of soil management practices. Rev. Chim. Buchar. Orig. Ed. 2017, 68, 2243–2247. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhang, X.K.; Mahamood, M.; Zhang, S.Q.; Huang, S.M.; Liang, W.J. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates. Sci. Rep. 2016, 6, 31118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugato, E.; Simonetti, G.; Morari, F.; Nardi, S.; Berti, A.; Giardini, L. Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment. Geoderma 2010, 157, 80–85. [Google Scholar] [CrossRef]
- Zhang, H.J.; Ding, W.X.; Luo, J.F.; Bolan, N.; Yu, H.Y. The dynamics of glucose-derived 13 c incorporation into aggregates of a sandy loam soil following two-decade compost or inorganic fertilizer amendments. Soil Tillage Res. 2015, 148, 14–19. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Zhang, S.; Xing, Y.; Wang, R.; Liang, W. Organic amendment effects on aggregate-associated organic c, microbial biomass c and glomalin in agricultural soils. Catena 2014, 123, 188–194. [Google Scholar] [CrossRef]
- Mustafa, A.; Xu, M.; Atizaz, S.; Abrar, M.M.; Núez-Delgado, A. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef]
- Jiang, C.L.; He, Y.Q.; Liu, X.L. Effect of long-term application of organic manure on structure and stability of aggregate in upland red soil. Acta Pedol. Sin. 2010, 47, 715–722. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Prakash, V.; Kundu, S.; Srivastva, A.K.; Gupta, H.S.; Mitra, S. Long-term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalayas. Nutr. Cycl. Agroecosyst. 2010, 86, 1–16. [Google Scholar] [CrossRef]
- Zhang, H.M.; Wang, B.R.; Xu, M.G.; Fan, T.L. Crop yield and soil responses to long-term fertilization on a red soil in southern China. Pedosphere 2009, 19, 199–207. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chi, C. Macroaggregate Characteristics in Cultivated Soils after 25 Annual Manure Applications. Soil Sci. Soc. Am. J. 2002, 66, 1637–1647. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Jalota, S.; Singh, Y. Manuring and residue management effects on physical properties of a soil under the rice—Wheat system in Punjab, India. Soil Tillage Res. 2007, 94, 229–238. [Google Scholar] [CrossRef]
- Ying, C.; Zhang, X.; He, H.; Xie, T.; Yan, Y.; Zhu, P.; Ren, J.; Wang, L. Carbon and nitrogen pools in different aggregates of a Chinese Mollisol as influenced by long-term fertilization. J. Soil Sediments 2010, 10, 1018–1026. [Google Scholar] [CrossRef]
- Yao, Z.; Xu, Q.; Chen, Y.; Liu, N.; Gao, Y. Leguminous green manure enhances the soil organic nitrogen pool of cropland via disproportionate increase of nitrogen in particulate organic matter fractions. Catena 2020, 207, 105574. [Google Scholar] [CrossRef]
- Li, S.; Gu, X.; Zhuang, J.; An, T.; Pei, J.; Xie, H.; Li, H.; Fu, S.; Wang, J. Distribution and storage of crop residue carbon in aggregates and its contribution to organic carbon of soil with low fertility. Soil Tillage Res. 2016, 155, 199–206. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, M.G.; Wang, J.P.; Zhang, W.J.; Yang, X.Y.; Huang, S.M.; Liu, H. Fertilization enhancing carbon sequestration as carbonate in arid cropland: Assessments of long-term experiments in northern China. Plant Soil 2014, 380, 89–100. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.J.; Li, X.L.; Xu, M.; Li, D. Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta, China. Sci. Rep. 2016, 6, 36105. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.L.; Hons, F.M. Soil aggregation and carbon and nitrogen storage under soybean cropping sequence. Soil Sci. Soc. Am. J. 2004, 68, 507–513. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Rohde, C.R. Long-term tillage and nitrogen fertilization effects on organic nitrogen and carbon in a semiarid soil. Soil Sci. Soc. Am. J. 1988, 52, 1114–1117. [Google Scholar] [CrossRef]
- Ostrowska, A.; Porebska, G. Assessment of the C/N ratio as an indicator of the decomposability of organic matter in forest soils. Ecol. Ind. 2015, 49, 104–109. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, Y.; Bedell, J.H.; Xie, D.; Wright, A.L. Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil under variable tillage. Soil Use Manag. 2015, 27, 28–35. [Google Scholar] [CrossRef]
- Goladi, J.T.; Agbenin, J.O. The cation exchange properties and microbial carbon, nitrogen and phosphorus in savanna alfisol under continuous cultivation. J. Sci. Food Agric. 2015, 75, 412–441. [Google Scholar] [CrossRef]
- Liu, Z.L.; Yu, W.T.; Zhou, H. Effects of long-term fertilization on aggregate size distribution and nutrient content. Soil 2011, 43, 720–728. [Google Scholar]
- Adesodun, J.K.; Adeyemi, E.F.; Oyegoke, C.O. Distribution of nutrient elements within water-stable aggregates of two tropical agro-ecological soils under different land uses. Soil Tillage Res. 2007, 92, 190–197. [Google Scholar] [CrossRef]
- Emadi, M.; Baghernejad, M.; Memarian, H.R. Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy 2009, 26, 452–457. [Google Scholar] [CrossRef]
- Berthrong, S.T.; Jobbágyb, E.G.; Jackson, R.B. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol. Appl. 2009, 19, 323–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, E.T. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils. Soil Sci. Soc. Am. J. 1986, 50, 627. [Google Scholar] [CrossRef]
- Sauer, T.J.; Daniel, T.C.; Nichols, D.J.; West, C.P.; Moore, P.A.; Wheeler, G.L. Runoff water quality from poultry litter-treated pasture and forest sites. J. Environ. Qual. 2000, 29, 515–521. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Cowie, A.L.; Fang, Y.; Collins, D.; Badgery, W.; Dalal, R.C. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil Tillage Res. 2018, 178, 209–223. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 11th ed.; USDA-NRCS, U.S. Government Publishing Office: Washington, DC, USA, 2010.
- Cooperative Research Group on Chinese Soil Taxonomy. Chinese Soil Taxonomy, 3rd ed.; Science Press: Hefei, China, 2001. [Google Scholar]
- Yang, R.; Su, Y.Z.; Yang, Q. Crop yields and soil nutrients in response to long-term fertilization in a desert oasis. Agron. J. 2015, 107, 83–92. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and micro-aggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Lu, R. Analysis of Soil Agrochemistry; Chinese Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Gee, W.G.; Bauder, J.W.; Klute, A. Particle-size analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, Soil since Society of America; WIS Inc.: Madison, WI, USA, 1986; p. 383Y412. [Google Scholar]
- Nelson, D.W. Total carbon, organic carbon, and organic matter. Methods Soil Anal. 1996, 9, 961–1010. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Thomas, G.W. Exchangeable cations. In Part 2. Chemical Methods; Page, A.L., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Erktan, A.; Cécillon, L.; Graf, F.; Roumet, C.; Legout, C.; Rey, F. Increase in soil aggregate stability along a mediterranean successional gradient in severely eroded gully bed ecosystems: Combined effects of soil, root traits and plant community characteristics. Plant Soil 2016, 398, 121–137. [Google Scholar] [CrossRef]
- Eynard, A.; Schumacher, T.E.; Lindstrom, M.J.; Malo, D.D. Effects of agricultural management systems on soil organic carbon in aggregates of Ustolls and Usterts. Soil Tillage Res. 2005, 81, 253–263. [Google Scholar] [CrossRef]
Treatments | Chemical Fertilizer | |||||||
---|---|---|---|---|---|---|---|---|
2005 | NPK1 | NPK1 | NPK3 | M3 | NPK1-M1 | NPK1-M2 | NPK1-M3 | |
BD | 1.48 a | 1.43 ± 0.03 bc | 1.44 ± 0.02 b | 1.43 ± 0.03 bc | 1.40 ± 0.03 bc | 1.38 ± 0.02 c | 1.38 ± 0.02 c | 1.39 ± 0.03 bc |
Sand (%) | 65.8 a | 57.15 ± 1.38 b | 56.34 ± 1.78 bc | 55.62 ± 2.35 bcd | 53.23 ± 1.19 cd | 52.32 ± 1.02 d | 53.01 ± 2.04 cd | 54.81 ± 1.29 c |
Silt (%) | 20.1 b | 27.72 ± 1.34 a | 28.17 ± 1.36 a | 28.13 ± 0.67 a | 28.45 ± 1.74 a | 29.36 ± 0.59 a | 28.63 ± 1.67 a | 27.92 ± 1.37 a |
Clay (%) | 14.1 d | 15.13 ± 0.60 c | 15.49 ± 0.78 c | 16.25 ± 1.56 bc | 18.32 ± 0.54 ab | 18.4 ± 0.53 a | 18.36 ± 1.36 ab | 17.27 ± 0.72 ab |
pH | 8.9 a | 8.62 ± 0.05 bc | 8.67 ± 0.04 b | 8.45 ± 0.03 d | 8.60 ± 0.06 bc | 8.46 ± 0.03 d | 8.53 ± 0.06 cd | 8.53 ± 0.09 cd |
EC (μs·cm−1) | 237 ± 6.7 d | 226 ± 9.5 d | 241 ± 8.5 d | 343 ± 14.1 a | 285 ± 11.0 c | 306 ± 7.8 b | 346 ± 9.7 a | |
SOC (g·kg−2) | 4.48 e | 4.54 ± 0.19 e | 4.46 ± 0.25 e | 5.17 ± 0.32 d | 12.74 ± 0.66 a | 8.29 ± 0.57 c | 9.98 ± 0.76 b | 11.61 ± 0.64 a |
SIC (g·kg−2) | 8.66 ± 0.30 d | 8.53 ± 0.71 d | 8.92 ± 0.56 cd | 11.97 ± 0.52 a | 9.66 ± 0.32 c | 10.44 ± 0.30 b | 12.47 ± 1.01 a | |
TN (g·kg−2) | 0.66 | 0.75 ± 0.08 d | 0.68 ± 0.05 d | 0.77 ± 0.02 d | 1.76 ± 0.10 a | 1.18 ± 0.15 c | 1.31 ± 0.02 c | 1.5 ± 0.03 b |
Pave (mg·kg−2) | 50.56 ± 4.61 g | 109.54 ± 9.23 e | 167.61 ± 3.96 d | 80.55 ± 6.75 f | 184.91 ± 4.69 c | 208.75 ± 5.18 b | 254.41 ± 10.40 a | |
Kave (mg·kg−2) | 106.41 ± 7.30 f | 121.51 ± 6.96 e | 145.96 ± 9.75 d | 233.06 ± 8.43 c | 226.88 ± 14.47 c | 253.54 ± 9.38 b | 280.12 ± 5.92 a | |
ECtot (cmol·kg−2) | 7.02 ± 0.30 c | 7.29 ± 0.39 c | 6.86 ± 0.29 c | 13.43 ± 0.20 a | 10.49 ± 0.62 b | 11.36 ± 0.71 b | 12.86 ± 0.55 a |
Treatment | Macroaggregate (>2000 µm) | Macroaggregate (2000–250 µm) | Microaggregate (250–53 µm) | Silt + Clay Fraction (<53 µm) | The Recovery Ratio (%) | MWD |
---|---|---|---|---|---|---|
NPK1 | 6.95 ± 0.65 d | 14.16 ± 0.78 c | 6.69 ± 0.51 bc | 23.56 ± 1.40 a | 51.36 | 0.24 ± 0.01 d |
NPK1 | 6.69 ± 0.41 d | 14.27 ± 0.34 c | 5.94 ± 0.37 c | 24.47 ± 1.32 a | 50.37 | 0.23 ± 0.01 d |
NPK3 | 7.39 ± 0.53 d | 13.71 ± 0.32 c | 7.00 ± 0.57 b | 24.52 ± 1.25 a | 52.62 | 0.24 ± 0.01 d |
M3 | 17.53 ± 1.07 a | 22.33 ± 0.91 ab | 8.74 ± 0.79 a | 17.30 ± 0.59 c | 65.90 | 0.44 ± 0.02 ab |
NPK1-M1 | 12.42 ± 0.67 c | 20.68 ± 1.16 b | 9.66 ± 0.80 a | 19.85 ± 0.86 b | 62.61 | 0.37 ± 0.02 c |
NPK1-M2 | 15.61 ± 0.25 b | 21.51 ± 0.49 b | 9.02 ± 0.67 a | 17.66 ± 1.07 c | 63.80 | 0.41 ± 0.01 b |
NPK1-M3 | 17.11 ± 0.61 a | 23.33 ± 1.28 a | 9.28 ± 0.2 a | 16.11 ± 1.32 c | 65.83 | 0.45 ± 0.02 a |
Item | Aggregate Size | |||
---|---|---|---|---|
>2000 µm | 2000–250 µm | 250–53 µm | Silt + Clay | |
Total SOC (g·kg−2) | 0.977 ** | 0.930 ** | 0.768 ** | −0.921 ** |
Total SIC (g·kg−2) | 0.905 ** | 0.844 ** | 0.664 * | −0.842 *** |
Total N (g·kg−2) | 0.955 ** | 0.898 ** | 0.751 ** | −0.885 ** |
Total EBC (cmol·kg−2) | 0.982 ** | 0.946 ** | 0.790 ** | −0.929 ** |
Item | Bulk Soil | Aggregate Size | ||||
---|---|---|---|---|---|---|
>2000 µm | 2000–250 µm | 250–53 µm | Silt + Clay | |||
SOC (g·m−2) | ||||||
Inorganic fertilizer input | 0.303 | −0.880 ** | −0.003 | 0.328 | 0.328 | |
Combined organic-inorganic fertilizer input | 0.932 ** | 0.969 ** | 0.834 ** | 0.879 ** | −0.044 | |
SIC (g·m−2) | ||||||
Inorganic fertilizer input | 0.353 | 0.043 | −0.256 | 0.617 | 0.354 | |
Combined organic-inorganic fertilizer input | 0.896 ** | 0.898 ** | 0.614 | −0.057 | −0.183 | |
TN (g·m−2) | ||||||
Inorganic fertilizer input | 0.207 | 0.39 | 0.121 | 0.722 * | 0.755 * | |
Combined organic-inorganic fertilizer input | 0.881 ** | 0.682 * | 0.267 | −0.2 | 0.049 | |
Pave (g·m−2) | ||||||
Inorganic fertilizer input | 0.987 ** | 0.9770 ** | 0.941 ** | 0.942 ** | 0.965 ** | |
Combined organic-inorganic fertilizer input | 0.969 ** | 0.996 ** | 0.981 ** | 0.898 ** | 0.106 | |
Kave (g·m−2) | ||||||
Inorganic fertilizer input | 0.943 ** | 0.804 ** | 0.965 ** | 0.939 ** | 0.958 ** | |
combined organic-inorganic fertilizer input | 0.935 ** | 0.967 ** | 0.880 ** | 0.908 ** | −0.482 | |
ECtot (g·m−2) | ||||||
Inorganic fertilizer input | −0.251 | 0.383 | 0.116 | 0.391 | 0.549 | |
combined organic-inorganic fertilizer input | 0.886 ** | 0.951 ** | 0.882 ** | 0.658 | 0.072 |
Author | Publication Date | Soil Type | Fertilizer Type | Planting Age | Aggregate Stability | Aggregate Carbon and Nitrogen Content | References |
---|---|---|---|---|---|---|---|
Islam | 2021 | Sandy loam (Typic Haplustept) | M CM | 2 | (M) Increase (CM) Increase | (M) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. (CM) The total nitrogen content of organic carbon in aggregates of each particle size increased. | [27] |
Ghosh | 2018 | Inceptisol (Typic Haplustept) | NPK NPKM | 44 | (NPK) Increase (NPK-M) Increase | (NPK) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. (NPK-M) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. | [29] |
Zhang | 2016 | Calcaric Cambisol (FAO classification) | NPK NPKM NPKS | 23 | (NPK) Increase (NPK-M) Increase (NPK-S) Increase | (NPK) There was no significant difference in the total nitrogen content of organic carbon in macro-aggregates, while the content of carbon and nitrogen in micro-aggregates increased. (NPK-M) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. (NPK-S) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. | [52] |
Zhang | 2015 | Aquic inceptisol (Typic Haplustept) | NPK CM | 20 | (NPK) Increase (CM) Increase | (NPK) There was no significant difference in the total nitrogen content of organic carbon in macro-aggregates, while the content of carbon and nitrogen in micro-aggregates increased. (CM) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. | [54] |
Zhang | 2014 | Cambisol | SR M | 4 | (SR) Increase (M) Increase | (SR) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. (M) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. | [55] |
Jiang | 2010 | Red soil | SR M | 18 | (SR) Increase (M) Increase | (SR) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. (M) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. | [57] |
Bhattacharyya | 2010 | Sandy loam soil (Typic Haplustept) | NPK NPKM | 30 | (NPK) constant (NPK-M) Increase | (NPK) There is no significant difference in the total nitrogen content of organic carbon in the aggregates of each particle size. (NPK-M) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. | [58] |
Lugato | 2010 | Sandy soils combine with clay soils | NPK M | 48 | (NPK) Increase (M) Increase | (NPK) There is no significant difference in the total nitrogen content of organic carbon in the aggregates of each particle size. (NPK-M) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. | [53] |
Ours | 2020 | Aeolian sandy soil (Typic Haplustept) | NPK NPKM | 15 | (NPK) constant (NPK-M) Increase | (NPK) There is no significant difference in the total nitrogen content of organic carbon in the aggregates of each particle size. (NPK-M) The content of organic carbon and total nitrogen in the aggregates of each particle size increased. |
Fertilizer Tipes | Fertilizer Input of Each Season (kg/ha) | |||
---|---|---|---|---|
Manure | N | P2O5 | K2O | |
NPK1 | 0 | 150 | 90 | 90 |
NPK2 | 0 | 225 | 135 | 135 |
NPK3 | 0 | 300 | 225 | 225 |
M3 | 24,000 | 0 | 0 | 0 |
M1NPK1 | 12,000 | 150 | 90 | 90 |
M2NPK1 | 18,000 | 150 | 90 | 90 |
M3NPK1 | 24,000 | 150 | 90 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Z.; An, F.; Su, Y.; Liu, T.; Yang, R.; Du, Z.; Chen, S. Effect of Long-Term Fertilization on Aggregate Size Distribution and Nutrient Accumulation in Aeolian Sandy Soil. Plants 2022, 11, 909. https://doi.org/10.3390/plants11070909
Niu Z, An F, Su Y, Liu T, Yang R, Du Z, Chen S. Effect of Long-Term Fertilization on Aggregate Size Distribution and Nutrient Accumulation in Aeolian Sandy Soil. Plants. 2022; 11(7):909. https://doi.org/10.3390/plants11070909
Chicago/Turabian StyleNiu, Ziru, Fangjiao An, Yongzhong Su, Tingna Liu, Rong Yang, Zeyu Du, and Shiyang Chen. 2022. "Effect of Long-Term Fertilization on Aggregate Size Distribution and Nutrient Accumulation in Aeolian Sandy Soil" Plants 11, no. 7: 909. https://doi.org/10.3390/plants11070909
APA StyleNiu, Z., An, F., Su, Y., Liu, T., Yang, R., Du, Z., & Chen, S. (2022). Effect of Long-Term Fertilization on Aggregate Size Distribution and Nutrient Accumulation in Aeolian Sandy Soil. Plants, 11(7), 909. https://doi.org/10.3390/plants11070909