An Annotated Inventory of Tanzanian Medicinal Plants Traditionally Used for the Treatment of Respiratory Bacterial Infections
Abstract
:1. Introduction
2. Results
2.1. Ethnobotanical Information of Medicinal Plants against Infective Respiratory Tract Diseases
2.2. Ethnopharmacology of Extracts from Bioactive Plant Species against Infective Bacteria of Respiratory Tract
2.3. Bioactivity of Chemical Compounds Isolated from Antibacterial Bioactive Plant Species
3. Discussion and Recommendation
4. Methodology Utilized in Collection of Information
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MoHCDGEC. National Traditional and Alternative Medicine Strategic Plan I 2016/17–2021/22; Ministry of Health, Community Development, Gender, Elderly and Children: Dodoma, Tanzania, 2016; p. 45. [Google Scholar]
- Posthouwer, C.; Veldman, S.; Abihudi, S.; Otieno, J.N.; van Andel, T.R.; de Boer, H.J. Quantitative market survey of non-woody plants sold at Kariakoo Market in Dar es Salaam, Tanzania. J. Ethnopharmacol. 2018, 222, 280–287. [Google Scholar] [CrossRef] [PubMed]
- URT. The National Action Plan on Antimicrobial Resistance 2017–2022. Available online: https://medbox.org/document/tanzania-the-national-action-plan-on-amr-2017-2022#GO (accessed on 13 March 2022).
- URT. Country Profile of Environmental Burden of Disease; United Republic of Tanzania. Available online: https://www.who.int/quantifying_ehimpacts/national/countryprofile/unitedrepublicoftanzania.pdf (accessed on 15 March 2022).
- ERS. The Global Impact of Respiratory Disease. Available online: https://www.who.int/gard/publications/The_Global_Impact_of_Respiratory_Disease.pdf (accessed on 13 March 2022).
- WHO. Global Tuberculosis Report 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/274453/9789241565646-eng.pdf?sequence=1&isAllowed=y (accessed on 13 March 2022).
- Moremi, N.; Claus, H.; Mshana, S.E. Antimicrobial resistance pattern: A report of microbiological cultures at a tertiary hospital in Tanzania. BMC Infect. Dis. 2016, 16, 756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Guideline on the Management of Latent Tuberculosis Infection. Available online: https://apps.who.int/iris/bitstream/handle/10665/136471/9789241548908_eng.pdf?sequence=1 (accessed on 13 March 2022).
- MoHSW. National Strategic Plan V for Tuberculosis and Leprosy Programme 2015–2020. Available online: https://ntlp.go.tz/site/assets/files/1074/national_strategic_plan_2015_2020.pdf (accessed on 13 March 2022).
- MoHCDGEC. National Tuberclosis and Leprosy Programme; Leprosy Prevelence. Available online: https://ntlp.go.tz/leprosy/leprosy-prevalence/ (accessed on 13 March 2022).
- URT. Manual for the Management of Tuberculosis and Leprosy. 2013. Available online: https://ntlp.go.tz/site/assets/files/1047/ntlp_manual_sixth_edition_2013.pdf (accessed on 15 March 2022).
- Pawlowski, A.; Jansson, M.; Sköld, M.; Rottenberg, M.E.; Källenius, G. Tuberculosis and HIV co-infection. PLoS Pathog. 2012, 8, e1002464. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Nutman, T.B. Helminth-tuberculosis co-infection: An immunologic perspective. Trends Immunol. 2016, 37, 597–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-X.; Zhou, X.-N. Co-infection of tuberculosis and parasitic diseases in humans: A systematic review. Parasites Vectors 2013, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Izhaki, I. Emodin—A secondary metabolite with multiple ecological functions in higher plants. New Phytol. 2002, 155, 205–217. [Google Scholar] [CrossRef] [Green Version]
- WHO. Antibacterial Agents in Clinical Development. Available online: https://apps.who.int/iris/bitstream/handle/10665/258965/WHO-EMP-IAU-2017.11-eng.pdf?sequence=1&isAllowed=y (accessed on 15 March 2022).
- Knauseder, F.; Brandl, E. Pleuromutilins fermentation, structure and biosynthesis. J. Antibiot. 1976, 29, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Obakiro, S.B.; Kiprop, A.; Kowino, I.; Kigondu, E.; Odero, M.P.; Omara, T.; Bunalema, L. Ethnobotany, ethnopharmacology, and phytochemistry of traditional medicinal plants used in the management of symptoms of tuberculosis in East Africa: A systematic review. Trop. Med. Health 2020, 48, 68. [Google Scholar] [CrossRef]
- Mailu, J.K.; Nguta, J.M.; Mbaria, J.M.; Okumu, M.O. Medicinal plants used in managing diseases of the respiratory system among the Luo community: An appraisal of Kisumu East Sub-County, Kenya. Chin. Med. 2020, 15, 95. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Salehi, B.; Stojanović-Radić, Z.Z.; Fokou, P.V.T.; Sharifi-Rad, M.; Mahady, G.B.; Sharifi-Rad, M.; Masjedi, M.-R.; Lawal, T.O.; Ayatollahi, S.A. Medicinal plants used in the treatment of tuberculosis-Ethnobotanical and ethnopharmacological approaches. Biotechnol. Adv. 2020, 44, 107629. [Google Scholar] [CrossRef]
- Rather, L.J.; Mohammad, F. Acacia nilotica (L.): A review of its traditional uses, phytochemistry, and pharmacology. Sustain. Chem. Pharm. 2015, 2, 12–30. [Google Scholar] [CrossRef]
- Mongalo, N. Peltophorum africanum Sond [Mosetlha]: A review of its ethnomedicinal uses, toxicology, phytochemistry and pharmacological activities. J. Med. Plant Res. 2013, 7, 3484–3491. [Google Scholar]
- Al-Snafi, A. Chemical constituents and pharmacological activities of Lantana camara—A review. Asian J. Pharm. Clin. Res. 2019, 12912, 10–20. [Google Scholar] [CrossRef]
- Mulaudzi, R.; Ndhlala, A.; Kulkarni, M.; Van Staden, J. Pharmacological properties and protein binding capacity of phenolic extracts of some Venda medicinal plants used against cough and fever. J. Ethnopharmacol. 2012, 143, 185–193. [Google Scholar] [CrossRef]
- Mulubwa, M.; Prakash, S. Antimicrobial activity and potency of Cassia abbreviata Oliv stem bark extracts. Int. J. Pharm. Pharm. 2015, 7, 426–428. [Google Scholar]
- Green, E.; Samie, A.; Obi, C.L.; Bessong, P.O.; Ndip, R.N. Inhibitory properties of selected South African medicinal plants against Mycobacterium tuberculosis. J. Ethnopharmacol. 2010, 130, 151–157. [Google Scholar] [CrossRef]
- Olugbuyiro, J.A. In vitro activity of Bryophyllum pinnatum and Detarium microcarpum plants against Mycobacterium tuberculosis and other bacteria. Nat. Prod. Res. Bull. 2012, 1, 1–7. [Google Scholar]
- Green, E.; Obi, L.C.; Samie, A.; Bessong, P.O.; Ndip, R.N. Characterization of n-Hexane sub-fraction of Bridelia micrantha (Berth) and its antimycobacterium activity. BMC Complement. Altern. Med. 2011, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Kirimuhuzya, C.; Waako, P.; Joloba, M.; Odyek, O. The anti-mycobacterial activity of Lantana camara a plant traditionally used to treat symptoms of tuberculosis in South-western Uganda. Afr. Health Sci. 2009, 9, 40–45. [Google Scholar]
- Ahmed, A.S.; McGaw, L.J.; Moodley, N.; Naidoo, V.; Eloff, J.N. Cytotoxic, antimicrobial, antioxidant, antilipoxygenase activities and phenolic composition of Ozoroa and Searsia species (Anacardiaceae) used in South African traditional medicine for treating diarrhoea. S. Afr. J. Bot. 2014, 95, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Madureira, A.M.; Ramalhete, C.; Mulhovo, S.; Duarte, A.; Ferreira, M.-J.U. Antibacterial activity of some African medicinal plants used traditionally against infectious diseases. Pharm. Biol. 2012, 50, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Mabona, U.; Viljoen, A.; Shikanga, E.; Marston, A.; Van Vuuren, S. Antimicrobial activity of southern African medicinal plants with dermatological relevance: From an ethnopharmacological screening approach, to combination studies and the isolation of a bioactive compound. J. Ethnopharmacol. 2013, 148, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Oluboyo, B.; Oluboyo, A.; Kalu, S. Inhibitory effects of Phyllanthus amarus extracts on the growth of some pathogenic microorganisms. Afr. J. Clin. Exp. Microbiol. 2016, 17, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Odak, J.A.; Manguro, L.O.A.; Wong, K.-C. New compounds with antimicrobial activities from Elaeodendron buchananii stem bark. J. Asian Nat. Prod. Res. 2018, 20, 510–524. [Google Scholar] [CrossRef] [PubMed]
- Mbosso, E.J.T.; Ngouela, S.; Nguedia, J.C.A.; Beng, V.P.; Rohmer, M.; Tsamo, E. In vitro antimicrobial activity of extracts and compounds of some selected medicinal plants from Cameroon. J. Ethnopharmacol. 2010, 128, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Al-Fatimi, M.; Wurster, M.; Schröder, G.; Lindequist, U. Antioxidant, antimicrobial and cytotoxic activities of selected medicinal plants from Yemen. J. Ethnopharmacol. 2007, 111, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, A.; Nanda, A.; Ahmad, S.; Narasimhan, B. In vitro antimicrobial activity of methanolic leaf extract of Psidium guajava L. J. Pharm. Bioallied. Sci. 2011, 3, 226. [Google Scholar] [CrossRef] [PubMed]
- Bedoni Semwal, R.; Kumar Semwal, D.; Prasad Mishra, S.; Semwal, R. Chemical composition and antibacterial potential of essential oils from Artemisia capillaris, Artemisia nilagirica, Citrus limon, Cymbopogon flexuosus, Hedychium spicatum and Ocimum tenuiflorum. Nat. Prod. J. 2015, 5, 199–205. [Google Scholar]
- WHO. Technical Manual for Drug Susceptibility Testing of Medicines Used in the Treatment of Tuberculosis. Available online: https://apps.who.int/iris/bitstream/handle/10665/275469/9789241514842-eng.pdf?sequence=1&isAllowed=y (accessed on 15 March 2022).
- WHO. Policy Guidance on Drug Susceptibility Testing (DST) of Second Line Anti-Tuberculosis Drugs. Available online: https://apps.who.int/iris/bitstream/handle/10665/70500/WHO_HTM_TB_2008.392_eng.pdf?sequence=1&isAllowed=y (accessed on 15 March 2022).
- Li, X.; Liu, Z.; Chen, Y.; Wang, L.-J.; Zheng, Y.-N.; Sun, G.-Z.; Ruan, C.-C. Rubiacordone A: A new anthraquinone glycoside from the roots of Rubia cordifolia. Molecules 2009, 14, 566–572. [Google Scholar] [CrossRef]
- Tatsimo, J.S.N.; Toume, K.; Nagata, T.; Havyarimana, L.; Fujii, T.; Komatsu, K. Monoglycerol ester, galloylglucoside and phenolic derivatives from Gymnosporia senegalensis leaves. Biochem. Syst. Ecol. 2019, 83, 33–38. [Google Scholar] [CrossRef]
- Stoilova, I.; Gargova, S.; Stoyanova, A.; Ho, I. Antimicrobial and antioxidant activity of the polyphenol mangiferin. Herba Pol. 2005, 51, 1–2. [Google Scholar]
- Singh, S.K.; Tiwari, R.M.; Sinha, S.K.; Danta, C.C.; Prasad, S.K. Antimicrobial evaluation of mangiferin and its synthesized analogues. Asian Pac. J. Trop. Biomed. 2012, 2, S884–S887. [Google Scholar] [CrossRef]
- Wube, A.A.; Bucar, F.; Gibbons, S.; Asres, K. Sesquiterpenes from Warburgia ugandensis and their antimycobacterial activity. Phytochemistry 2005, 66, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Lajubutu, B.; Pinney, R.; Roberts, M.; Odelola, H.; Oso, B. Antibacterial activity of diosquinone and plumbagin from the root of Diospyros mespiliformis (Hostch)(Ebenaceae). Phytother. Res. 1995, 9, 346–350. [Google Scholar] [CrossRef]
- Erasto, P.; Majinda, R. Bioactive proanthocyanidins from the root bark of Cassia abbreviata. Int. J. Biol. Chem. 2011, 5, 2170–2179. [Google Scholar] [CrossRef] [Green Version]
- Dzoyem, J.P.; Melong, R.; Tsamo, A.T.; Tchinda, A.T.; Kapche, D.G.; Ngadjui, B.T.; McGaw, L.J.; Eloff, J.N. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae). BMC Res. Notes 2017, 10, 118. [Google Scholar] [CrossRef] [Green Version]
- Tor-Anyiin, T.; Igoli, J.; Anyam, J.; Anyam, J. Isolation and antimicrobial activity of sarracenin from root bark of Strychnos spinosa. J. Chem. Soc. Nigeria 2015, 40. Available online: https://www.researchgate.net/publication/279789419_ISOLATION_AND_ANTIMICROBIAL_ACTIVITY_OF_SARRACENIN_FROM_ROOT_BARK_OF_STRYCHNOS_SPINOSA (accessed on 7 March 2022).
- Oke-Altuntas, F.; Kapche, G.D.; Nantchouang Ouete, J.L.; Demirtas, I.; Koc, M.B.; Ngadjui, B.T. Bioactivity evaluation of cudraxanthone I, neocyclomorusin and (9βh)-3β-acetoxylanosta-7, 24-diene isolated from Milicia excelsa Welw. CC Berg (Moraceae). Med. Chem. Res. 2016, 25, 2250–2257. [Google Scholar] [CrossRef]
- Arima, H.; Danno, G.-i. Isolation of antimicrobial compounds from guava (Psidium guajava L.) and their structural elucidation. Biosci. Biotechnol. 2002, 66, 1727–1730. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, K.; Budesinsky, M.; Kohout, L.; Van Staden, J. Antibacterial activity of maytenonic acid isolated from the root-bark of Maytenus senegalensis. S. Afr. J. Bot 2006, 72, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Tatsimo, S.J.N.; Tamokou, J.d.D.; Havyarimana, L.; Csupor, D.; Forgo, P.; Hohmann, J.; Kuiate, J.-R.; Tane, P. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res. Notes 2012, 5, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathabe, M.C.; Hussein, A.A.; Nikolova, R.V.; Basson, A.E.; Meyer, J.M.; Lall, N. Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. J. Ethnopharmacol. 2008, 116, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Pistelli, L.; Bertoli, A.; Zucconelli, S.; Morelli, I.; Panizzi, L.; Menichini, F. Antimicrobial activity of crude extracts and pure compounds of Hypericum hircinum. Fitoterapia 2000, 71, S138–S140. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011, 10, S4. [Google Scholar] [CrossRef] [Green Version]
- Eloff, J.N. Avoiding pitfalls in determining antimicrobial activity of plant extracts and publishing the results. BMC Complement. Altern. Med. 2019, 19, 106. [Google Scholar] [CrossRef] [Green Version]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- VanEtten, H.D.; Mansfield, J.W.; Bailey, J.A.; Farmer, E.E. Two classes of plant antibiotics: Phytoalexins versus “phytoanticipins”. Plant Cell 1994, 6, 1191. [Google Scholar] [CrossRef]
- Osbourn, A.E. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 1996, 8, 1821. [Google Scholar] [CrossRef]
- Alamgeer; Younis, W.; Asif, H.; Sharif, A.; Riaz, H.; Bukhari, I.A.; Assiri, A.M. Traditional medicinal plants used for respiratory disorders in Pakistan: A review of the ethno-medicinal and pharmacological evidence. Chin. Med. 2018, 13, 48. [Google Scholar] [CrossRef] [Green Version]
Bacteria | Plant Extract with Activity | Reference |
---|---|---|
Klebsiella pneumoniae | Gymnosporia senegalensis (Lam.) Loes (root petroleum ether extract, dichloromethane extract, and ethanol extract with MIC = 1.56 µg/mL each; water extract with MIC = 3.13 µg/mL) | [24] |
Spirostachys africana Sond. (bark petroleum ether, dichloromethane, and ethanol extracts with MIC = 1.56 µg/mL each) | [24] | |
Cassia abbreviata Oliv. (stem bark trichloromethane extract with MIC = 46.88 µg/mL) | [25] | |
Syzygium cordatum Hochst. ex Krauss (leaf petroleum ether extract with MIC = 6.25 µg/mL, dichloromethane and water extracts with MIC = 0.39 µg/mL each, ethanol extract with MIC = 1.56 µg/mL) | [24] | |
Mycobacterium tuberculosis | Warburgia salutaris (Bertol.f.) Chiov. (leaf acetone extract against MTB (H37Ra) with MIC = 25 ± 2 µg/mL and MTB 2 with MIC = 25 ± 5 µg/mL) | [26] |
Bryophyllum pinnatum (Lam.) Kurz. (leaf n-hexane fraction and dichloromethane fractions of methanol extract with MIC = 25 µg/mL both, ethyl acetate fraction of methanol extract and water extract with MIC = 40 µg/mL both) | [27] | |
Bridelia micrantha (Hochst.) Baill. (bark acetone extract against MTB (H37Ra) with MIC = 25 ± 0 µg/mL and against MTB 2 with MIC = 25 ± 1 µg/mL) | [28] | |
Lantana camara L. (leaf methanol extract against MTB (H37Rv) with MIC = 20 µg/mL and MTB (TMC-331) and wild strain with MIC= 15 µg/mL both) | [29] | |
Pseudomonas aeruginosa | Ozoroa mucronata (Bernh.) R. Fern & A. Fern. (leaf dichloromethane fraction of crude (acetone (70%)-n-hexane) extract dichloromethane fraction with MIC = 39 µg/mL) | [30] |
Cassia abbreviata Oliv. (stem bark cold water extract with MIC = 46.88 µg/mL) | [25] | |
Trichilia emetica Vahl (leaf dichloromethane/methanol (1:1) extract with MIC = 30 µg/mL and seed dichloromethane extract with MIC = 31 µg/mL) | [31,32] | |
Phyllanthus amarus Schumach. & Thonn. (leaf water extract against P. aeruginosa with MIC = 30 µg/mL and P. aeruginosa NCTC10662 with MIC = 30 µg/mL, and ethanol extract against P. aerugionsa with MIC = 30 µg/mL and P. aeruginosa NCTC10662 with MIC = 35 µg/mL) | [33] | |
Citrus limon (L.) Osbeck (essential oil with MIC = 12.5 µg/mL) | [25] | |
Staphylococcus aureus | Ozoroa mucronata (Bernh.) R. Fern & A. Fern. (leaf crude (acetone (70%)-n-hexane) extract dichloromethane fraction with MIC = 19 µg/mL) | [30] |
Elaeodendron buchananii (Loes.) Loes. (stem bark ethyl acetate extract with MIC = 15.62 µg/mL) | [34] | |
Gymnosporia senegalensis (Lam.) Loes (root petroleum ether extract with MIC = 6.25 µg/mL, dichloromethane and ethanol extracts with MIC = 0.78 µg/mL each) | [24] | |
Solanecio mannii (Hook.f.) C. Jeffrey (leaf cyclohexane extract with MIC = 6.3 µg/mL) | [35] | |
Spirostachys africana Sond. (bark petroleum ether extract with MIC = 0.39 µg/mL, dichloromethane extract with MIC = 3.13 µg/mL, ethanol extract with MIC = 0.01 µg/mL, and water extract with MIC = 0.78 µg/mL) | [24] | |
Cassia abbreviata Oliv. (stem bark methanol extract with MIC = 15 µg/mL) | [31] | |
Tamarindus indica L. (flower methanol extract with MIC = 25 µg/mL) | [36] | |
Psidium guajava L. (leaf methanol extract with MIC = 25 µg/mL) | [37] | |
Syzygium cordatum Hochst. ex Krauss (leaf petroleum ether extract with MIC = 6.25 µg/mL, dichloromethane extract with MIC = 0.20 µg/mL, ethanol extract with MIC = 0.01 µg/mL, and water extract with MIC = 0.78 µg/mL) | [24] | |
Phyllanthus amarus Schumach. & Thonn. (leaf water extract with MIC = 20 µg/mL against S.aureus NCTC6571 and ethanol extract with MIC = 20 µg/mL against both S. aureus and S. aureus NCTC6571) | [33] | |
Citrus limon (L.) Osbeck (essential oil with MIC = 12.5 µg/mL) | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Innocent, E.; Marealle, A.I.; Imming, P.; Moeller, L. An Annotated Inventory of Tanzanian Medicinal Plants Traditionally Used for the Treatment of Respiratory Bacterial Infections. Plants 2022, 11, 931. https://doi.org/10.3390/plants11070931
Innocent E, Marealle AI, Imming P, Moeller L. An Annotated Inventory of Tanzanian Medicinal Plants Traditionally Used for the Treatment of Respiratory Bacterial Infections. Plants. 2022; 11(7):931. https://doi.org/10.3390/plants11070931
Chicago/Turabian StyleInnocent, Ester, Alphonce Ignace Marealle, Peter Imming, and Lucie Moeller. 2022. "An Annotated Inventory of Tanzanian Medicinal Plants Traditionally Used for the Treatment of Respiratory Bacterial Infections" Plants 11, no. 7: 931. https://doi.org/10.3390/plants11070931
APA StyleInnocent, E., Marealle, A. I., Imming, P., & Moeller, L. (2022). An Annotated Inventory of Tanzanian Medicinal Plants Traditionally Used for the Treatment of Respiratory Bacterial Infections. Plants, 11(7), 931. https://doi.org/10.3390/plants11070931