Spicy and Aromatic Plants for Meat and Meat Analogues Applications
Abstract
:1. Introduction
2. Spicy, Aromatic Plants and Their Applications in Meat and Meat Analogues
3. Bioactive Compounds and Antibacterial and Antioxidant Activity of Spicy and Aromatic Plants in Meat
4. Essential Oils and Aroma Compounds of Spicy and Aromatic Plants
Origin | Chemotype | Odor Perception a | References | |
---|---|---|---|---|
Rosemary | ||||
Rosmarinus officinalis L. | Mexico | 14.1% α-Pinene, 11.5% camphene, 12.0% β-pinene, 7.9% α-phellandrene, 8.6% 1,8-cineole, 3.4% 2-bornanone, 8.7% camphor | Pine, camphor, turpentine, resin, turpentine, turpentine, mint, spice, sweet | [154] |
Australia, USA, South Africa, Kenya, Nepal, and Yemen | 13.5%–37.7% α-pinene, 16.1%–29.3% 1,8-cineole, 0.8%–16.9% verbenone, 2.1%–6.9% (−)-borneol, 0.7%–7.0% camphor, 1.6%–4.4% racemic limonene. | Pine, mint, sweet, camphor | [137] | |
Brazil | 26.0% Camphor, 22.1% 1,8-cineol, 12.4% myrcene, 11.5% α-pinene | Camphor, pine, turpentine, mint, sweet, balsamic, must, spice | [136] | |
Portugal | 1.2% α-humulene, 7.2% α-terpineol, 35.4% verbenone | Wood, oil, anise, mint | [135] | |
Portugal | 16.6–29.5% Myrcene, 8.3–14.5% 1,8-cineol, 14.3–23.1% camphor | Mint, sweet, camphor, balsamic, must, spice | [138] | |
Morocco | 37.4% α-pinene, 41–53% camphor, and 58–63% 1,8-cineol | Pine, turpentine, mint, sweet, camphor | [155] | |
Tunisia | 20–46% 1,8-cineol, 8.5–30.2% camphor, 6.5–13% α-pinene, 4–25% borneol | Pine, turpentine, mint, sweet, camphor | [134] | |
Algeria | 48.9% Camphor | [139] | ||
Egypt | 52.8% 1,8-cineol, 11.9% camphor, 10.2% α-pinene, 7.5% borneol | Mint, sweet, camphor | [156] | |
Lebanon | 19.1–25.1% 1,8-cineol, 18.8–38.5% α-pinene | Pine, turpentine, mint, sweet | [157] | |
Turkey | 44.02% p-Cymene, 20.5% linalool, 16.62% γ-terpinene, 2.64% 1,8-cineol | Solvent, gasoline, citrus, turpentine, mint, sweet, flower, lavender | [140] | |
Greece | 24.1% α-Pinene, 14.9% camphor, 9.3% 1,8-cineol, 8.9% camphene | Pine, turpentine, camphor, mint, sweet, camphor | [141] | |
Sardinia (Italy) | 23% α-Pinene, 16% borneol, 9.4% verbenone, 10.4% bornyl acetate | Pine, turpentine | [158] | |
Spain | 18.2% Eucalyptol, 35.5% (−)-Camphor, 13.4% (−)-Bornylacetate | Camphor | [150] | |
Spain, Morocco, and Tunisia | 5–21% camphor, 15-55% 1,8-cineole, 9–26% pinene, 1.5–5.0% borneol, 2.5–12.0% camphene, 1.5–5.0% limonene. | Pine, turpentine, camphor, mint, sweet | [40] | |
Mint | ||||
Mentha spicata | Portugal | 75.9% Carvone | Mint | [135] |
Mentha pullegium | Portugal | 35.1% Pulegone, 27.4% Piperitone | Aromatic, minty, green, herbaceous, bitter, mint, fresh | |
Mentha viridis | Morocco | 37.26% carvone, 11.82% 1,8-cineole, 08.72% Terpinen-4-ol(leaves) | Citrus; herbaceous; fruity; sweet; vanilla; minty; pepper; spicy; woody, turpentine, nutmeg, must | [159] |
Mentha x piperita L. | USA | 40.7% menthol, 23.4% menthone | Cool-minty, minty | [142] |
Thyme | ||||
Thymus serpyllum | Portugal | 56.0% carvacrol, 4.9% α-terpineol, 2.7% veridiflorol | Oil, anise, mint, sweet, green, herbal, fruity, tropical, minty | [135] |
Thymus vulgaris | Hungary | 37.1% thymol, 3.1% carvacrol | Herb, spicy | [144] |
Thymus serpyllum | 17% thymol, 2.3% carvacrol | Herb, spicy | ||
Thymus x citriodorus | 0.8% thymol, 6.1% carvacrol, 43% geraniol | Herb, spicy, rose, geranium | ||
Thymus x citriodorus “Archer’s Gold” | 0.7% thymol, 55.1% carvacrol | Herb, spicy | ||
Thymus mastichina | Spain | 75.4% m-thymol, 5.4% carvacrol | Herb, spicy | [150] |
Thymus vulgaris | Greece | 4.3% γ-terpinene, 23.5% p-cymene, 2.2% carvacrol 63.6% thymol | Gasoline, turpentine, solvent, citrus | [151] |
Coriander | ||||
Coriandrum sativum L. | North India (Haldwani) | 62.1% linalool, 7.3% (2e)-dodecenal, 4.1% n-dodecanal, 4.1% α-pinene (inflorescence eo) | Flower, lavender, green, fat, sweet, pine, turpentine | [160] |
Tunisia (Korba) | 86.1%, 91.1% and 24.6% linalool (fruit, seed, and pericarp) | Flower, lavender | [161] | |
Seoul, Korea | 23.11% cyclododecanol, 17.86% tetradecanal, 9.93% 2-dodecenal, 7.24% 1-decanol, 6.85% 13-tetradecenal, 6.54% 1-dodecanol, 5.16% dodecanal, 2.28% 1-undecanol, and 2.33% decanal (leaves) | Mandarin, fat, soap, orange peel, tallow | [162] | |
Austria | 60.5 % δ3-carene, 18.2% γ-terpinene, | Orange peel, gasoline, turpentine, lemon, resin | [150] | |
Salvia | ||||
Salvia officinalis | Mexico | 12.2% eucalyptol, 28.7% (−)-camphor, 12.6% (−)-bornylacetate | Citrus, herbaceous; fruity, sweet, vanilla, minty, pepper, spicy, woody, camphor | [150] |
Italy | 20.16% α-thujone, 14.04% 1,8-cineole, 10.09% β-pinene (flower) | Pine, resin, turpentine, mint, sweet | [163] | |
Basil | ||||
Ocimum basilicum | The Island of Comoro | 77.9% methylchavicol | Licorice, anise | [150] |
Ocimum basilicum cv. Keshkeni luvelu | Iran | linalool, 1,8-cineole, tau-muurolol, and α-cadinol (major compounds) | Flower, lavender, mint, sweet | [147] |
Parsley | ||||
Petroselinum sativum | USA | 45.1% 4-methoxy-6-(2-propenyl)-1.3-benzodioxole | Spice, warm, balsamic | [150] |
Petroselinum crispum Mill. | Brazil | apiole, myristicin (major compounds) | Spice, warm, balsamic | [148] |
Tarragon | ||||
Artemisia dracunculus | Spain | 92.4% methylchavicol | Licorice, anise, clove, spice, mint, turpentine | [150] |
Spain | 24.5% methyl eugenol, 19.3% β-phellandrene | Clove, spice, mint, turpentine | ||
Origanum | ||||
Thymbra capitata (L.) Cav. | 78.4% carvacrol, 10.9% m-thymol | Herb, spicy | [150] | |
Oroganum dictamus | Greece | 12.7% γ-terpinene, 9.9% p-cymene, 7.8% carvacrol, 63.3% thymol | Gasoline, turpentine, solvent, citrus | [151] |
Origanum vulgare L. | 46.84% thymol, 12.88% γ-terpinene | Gasoline, turpentine | [163] | |
Marjoram | ||||
Organum majorana | Greece | 2.8% 3-thujene, 3.8% β-myrcene, 7.8% 2-carene, 5.2% 2-ethyl-mxylene, 10.4% 3-carene, 7.8% terpinen-4-ol, 6.0% sabinene hydrate, 4.2% β-terpineol, 14% thymol. | Balsamic, must, spice, lemon, resin, wood, green, herb | [151] |
Bay | ||||
Laurus nobilis | USA | 46% eucalyptol | Citrus, herbaceous, fruity, sweet, vanilla, minty, pepper, spicy, woody | [152] |
Dill | ||||
Anethum graveolens | 40% limonene, 44% caraway, 25% spearmint, 9% star anise. | Lemon, orange | [152] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christaki, E.; Giannenas, I.; Bonos, E.; Florou-Paneri, P. Innovative Uses of Aromatic Plants as Natural Supplements in Nutrition; Academic Press: New York, NY, USA, 2020; pp. 19–34. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Domínguez, R.; Agregán, R.; Gonçalves, A. Effect of fat replacement by olive oil on the physico-chemical properties, fatty acids, cholesterol and tocopherol content of pâté. Grasas Aceites 2016, 67, 133. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Tonin, F.G.; Pugine, S.M.P.; Lima, C.G.; Lorenzo, J.M.; de Melo, M.P. Evaluation of oxidative stability of lamb burger with Origanum vulgare extract. Food Chem. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Nikmaram, N.; Esteghlal, S.; Khaneghah, A.M.; Niakousari, M.; Barba, F.J.; Roohinejad, S.; Koubaa, M. Efficiency of Ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. Innov. Food Sci. Emerg. Technol. 2017, 41, 172–178. [Google Scholar] [CrossRef]
- Sun, C.; Ge, J.; He, J.; Gan, R.; Fang, Y. Processing, Quality, Safety, and Acceptance of Meat Analogue Products. Engineering 2020, 7, 674–678. [Google Scholar] [CrossRef]
- Boukid, F. Plant-based meat analogues: From niche to mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Riel, G.; Boulaaba, A.; Popp, J.; Klein, G. Effects of parsley extract powder as an alternative for the direct addition of sodium nitrite in the production of mortadella-type sausages—Impact on microbiological, physicochemical and sensory aspects. Meat Sci. 2017, 131, 166–175. [Google Scholar] [CrossRef]
- Hajji, M.; Falcimaigne-Gordin, A.; Ksouda, G.; Merlier, F.; Thomasset, B.; Nasri, M. A water-soluble polysaccharide from Anethum graveolens seeds: Structural characterization, antioxidant activity and potential use as meat preservative. Int. J. Biol. Macromol. 2021, 167, 516–527. [Google Scholar] [CrossRef]
- Kocić-Tanackov, S.; Dimić, G.; Đerić, N.; Mojović, L.; Tomović, V.; Šojić, B.; Đukić-Vuković, A.; Pejin, J. Growth control of molds isolated from smoked fermented sausages using basil and caraway essential oils, in vitro and in vivo. LWT 2020, 123, 109095. [Google Scholar] [CrossRef]
- Chaleshtori, R.; Rokni, N.; Rafieian-kopaei, M.; Drees, F.; Salehi, E. Antioxidant and Antibacterial Activity of Basil (Ocimum basilicum L.) Essential Oil in Beef Burger. J. Agric. Sci. Technol. 2015, 17, 817–826. [Google Scholar]
- Busatta, C.; Mossi, A.; Rodrigues, M.R.; Cansian, R.; Oliveira, J. Evaluation of Origanum vulgare essential oil as antimicrobial agent in sausage. Braz. J. Microbiol. 2007, 38, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Marques, J.; Funck, G.; Volcao, L.; Schneid Kroning, I.; Silva, W.; Fiorentini, A.; Ribeiro, G. Antimicrobial activity of essential oils of Origanum vulgare L. and Origanum majorana L. against Staphylococcus aureus isolated from poultry meat. Ind. Crop. Prod. 2015, 77, 444–450. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, Y.H.; Leng, X.J.; Huang, M.; Zhou, G.H. Effect of sage (Salvia officinalis) on the oxidative stability of Chinese-style sausage during refrigerated storage. Meat Sci. 2013, 95, 145–150. [Google Scholar] [CrossRef]
- Saricoban, C.; Özcan, M. Antioxidative activity of Rosemary (Rosmarinus officinalis L.) and Sage (Salvia fruticose L.) Essential oils in Chicken fat. J. Essent. Oil Bear. Plants 2004, 7, 91–95. [Google Scholar] [CrossRef]
- Šojić, B.; Ikonić, P.; Pavlić, B.; Zeković, Z.; Tomović, V.; Kocić-Tanackov, S.; Džinić, N.; Škaljac, S.; Ivić, M.; Jokanović, M.; et al. The effect of essential oil from sage (Salvia officinalis L.) herbal dust (food industry by-product) on the microbiological stability of fresh pork sausages. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 12055. [Google Scholar] [CrossRef] [Green Version]
- Marangoni, C.; de Moura, N.F. Antioxidant activity of essential oil from Coriandrum sativum L. in Italian salami. Food Sci. Technol. 2011, 31, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Michalczyk, M.; Macura, R.; Tesarowicz, I.; Banaś, J. Effect of adding essential oils of coriander (Coriandrum sativum L.) and hyssop (Hyssopus officinalis L.) on the shelf life of ground beef. Meat Sci. 2012, 90, 842–850. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Potential of Coriander (Coriandrum sativum) Oil as a Natural Antimicrobial Compound in Controlling Campylobacter jejuniin Raw Meat. Biosci. Biotechnol. Biochem. 2010, 74, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Shadrack, O.; Konyole, S.; Ngala, S. Effects of Rosemary Spice (Rosmarinus officinalis L.) and Nitrite Picking Salt Combination on Keeping and Organoleptic Quality of Beef Sausages. J. Basic Appl. Sci. Res. 2012, 2, 4008–4015. [Google Scholar]
- Nassu, R.T.; Gonçalves, L.A.; Pereira da Silva, M.A.; Beserra, F.J. Oxidative stability of fermented goat meat sausage with different levels of natural antioxidant. Meat Sci. 2003, 63, 43–49. [Google Scholar] [CrossRef]
- Kirkin, C.; Inbat, S.M.; Nikolov, D.; Yildirim, S. Effects of tarragon essential oil on some characteristics of frankfurter type sausages. AIMS Agric. Food 2019, 4, 244–250. [Google Scholar] [CrossRef]
- Mahmoud, S.; Masoud, W. The antibacterial activity of Laurus nobilis leaf extract and its potential use as a preservative for fresh lamb meat. Afr. J. Microbiol. Res. 2020, 14, 617–624. [Google Scholar] [CrossRef]
- Da Silveira, S.M.; Luciano, F.B.; Fronza, N.; Cunha, A.; Scheuermann, G.N.; Vieira, C.R.W. Chemical composition and antibacterial activity of Laurus nobilis essential oil towards foodborne pathogens and its application in fresh Tuscan sausage stored at 7 °C. LWT Food Sci. Technol. 2014, 59, 86–93. [Google Scholar] [CrossRef]
- Jayari, A.; El Abed, N.; Jouini, A.; Abdul-Wahab, O.M.S.; Maaroufi, A.; Ahmed, S.B.H. Antibacterial activity of Thymus capitatus and Thymus algeriensis essential oils against four food-borne pathogens inoculated in minced beef meat. J. Food Saf. 2017, 38, 12409. [Google Scholar] [CrossRef]
- Moarefian, M.; Barzegar, M.; Sattari, M.; Naghdi Badi, H. Production of functional cooked sausage by Mentha piperita essential oil as a natural antioxidant and antimicrobial material. J. Med. Plants 2012, 11, 46–57. [Google Scholar]
- Kunnumakkara, A.B.; Rana, V.; Parama, D.; Banik, K.; Girisa, S.; Henamayee, S.; Thakur, K.K.; Dutta, U.; Garodia, P.; Gupta, S.C.; et al. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci. 2021, 284, 119201. [Google Scholar] [CrossRef]
- Filipčev, B. Chapter 16—The effects of aromatic plants and their extracts in food products. In Feed Additives; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: New York, NY, USA, 2020; pp. 279–294. [Google Scholar] [CrossRef]
- Kumar, V.; Marković, T.; Emerald, M.; Dey, A. Herbs: Composition and Dietary Importance; Academic Press: Oxford, UK, 2015; pp. 332–337. [Google Scholar] [CrossRef]
- Agyare, C.; Appiah, T.; Boakye, Y.; Apenteng, J. Petroselinum Crispum: A Review. In Medicinal Spices and Vegetables from Africa; Academic Press: New York, NY, USA, 2017; pp. 527–547. [Google Scholar] [CrossRef]
- Farzaei, M.H.; Abbasabadi, Z.; Ardekani, M.R.S.; Rahimi, R.; Farzaei, F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 2013, 33, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Agus, A.; Denizot, J.; Thévenot, J.; Martinez-Medina, M.; Massier, S.; Sauvanet, P.; Bernalier-Donadille, A.; Denis, S.; Hofman, P.; Bonnet, R.; et al. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Sci. Rep. 2016, 6, 19032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Praagh, J.B.; Luo, J.N.; Zaborina, O.; Alverdy, J.C. Involvement of the Commensal Organism Bacillus subtilis in the Pathogenesis of Anastomotic Leak. Surg. Infect. 2020, 21, 865–870. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, F.; Wang, X.; Yao, H.-Y. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res. Int. 2006, 39, 833–839. [Google Scholar] [CrossRef]
- Wong, P.Y.Y.; Kitts, D.D. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 2006, 97, 505–515. [Google Scholar] [CrossRef]
- Vosoughi, N.; Gomarian, M.; Pirbalouti, A.G.; Khaghani, S.; Malekpoor, F. Essential oil composition and total phenolic, flavonoid contents, and antioxidant activity of sage (Salvia officinalis L.) extract under chitosan application and irrigation frequencies. Ind. Crop. Prod. 2018, 117, 366–374. [Google Scholar] [CrossRef]
- Borrás-Linares, I.; Stojanović, Z.; Quirantes-Piné, R.; Arráez-Román, D.; Švarc-Gajić, J.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Rosmarinus Officinalis Leaves as a Natural Source of Bioactive Compounds. Int. J. Mol. Sci. 2014, 15, 20585–20606. [Google Scholar] [CrossRef]
- Begum, A.; Sandhya, S.; Ali, S.S.; Vinod, K.R.; Reddy, S.; Banji, D. An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae). Acta Sci. Pol. Technol. Aliment. 2014, 12, 61–73. [Google Scholar]
- De Macedo, L.M.; Santos, É.D.; Militão, L.; Tundisi, L.L.; Ataide, J.A.; Souto, E.B.; Mazzola, P.G. Rosemary (Rosmarinus officinalis L.; syn Salvia rosmarinus Spenn.) and Its Topical Applications: A Review. Plants 2020, 9, 651. [Google Scholar] [CrossRef]
- De Oliveira, J.R.; Camargo, S.E.A.; de Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 2019, 26, 5. [Google Scholar] [CrossRef]
- Cattaneo, L.; Cicconi, R.; Mignogna, G.; Giorgi, A.; Mattei, M.; Graziani, G.; Ferracane, R.; Grosso, A.; Aducci, P.; Schininà, M.E.; et al. Anti-Proliferative Effect of Rosmarinus officinalis L. Extract on Human Melanoma A375 Cells. PLoS ONE 2015, 10, 0132439. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Hernández, E.; Lira-Moreno, C.Y.; Guerrero-Legarreta, I.; Wild-Padua, G.; Di Pierro, P.; García-Almendárez, B.E.; Regalado-González, C. Effect of Nanoemulsified and Microencapsulated Mexican Oregano (Lippia graveolens Kunth) Essential Oil Coatings on Quality of Fresh Pork Meat. J. Food Sci. 2017, 82, 1423–1432. [Google Scholar] [CrossRef]
- Krkić, N.; Šojić, B.; Lazić, V.; Petrović, L.; Mandić, A.; Sedej, I.; Tomović, V. Lipid oxidative changes in chitosan-oregano coated traditional dry fermented sausage Petrovská klobása. Meat Sci. 2013, 93, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Doolaege, E.H.; Vossen, E.; Raes, K.; De Meulenaer, B.; Verhé, R.; Paelinck, H.; De Smet, S. Effect of rosemary extract dose on lipid oxidation, colour stability and antioxidant concentrations, in reduced nitrite liver pâtés. Meat Sci. 2012, 90, 925–931. [Google Scholar] [CrossRef]
- Sebranek, J.; Sewalt, V.; Robbins, K.L.; Houser, T.A. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Sci. 2005, 69, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.M.H.; Mansour, H.A. Incorporating essential oils of marjoram and rosemary in the formulation of beef patties manufactured with mechanically deboned poultry meat to improve the lipid stability and sensory attributes. LWT Food Sci. Technol. 2012, 45, 79–87. [Google Scholar] [CrossRef]
- Oswell, N.J.; Thippareddi, H.; Pegg, R.B. Practical use of natural antioxidants in meat products in the U.S.: A review. Meat Sci. 2018, 145, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Babovic, N.; Djilas, S.; Jadranin, M.; Vajs, V.; Ivanovic, J.; Petrovic, S.; Zizovic, I. Supercritical carbon dioxide extraction of antioxidant fractions from selected Lamiaceae herbs and their antioxidant capacity. Innov. Food Sci. Emerg. Technol. 2010, 11, 98–107. [Google Scholar] [CrossRef]
- Berdahl, D.R.; McKeague, J. Rosemary and sage extracts as antioxidants for food preservation. In Handbook of Antioxidants for Food Preservation; Elsevier: Oxford, UK, 2015; pp. 177–217. [Google Scholar]
- Miraj, S.; Kiani, S. A review study of therapeutic effects of Salvia officinalis L. Pharm. Lett. 2016, 8, 299–303. [Google Scholar]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Pedro, D.F.N.; Ramos, A.A.; Lima, C.F.; Baltazar, F.; Pereira-Wilson, C. Colon Cancer Chemoprevention by Sage Tea Drinking: Decreased DNA Damage and Cell Proliferation. Phytother. Res. 2016, 30, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Miroddi, M.; Navarra, M.; Quattropani, M.C.; Calapai, F.; Gangemi, S.; Calapai, G. Systematic Review of Clinical Trials Assessing Pharmacological Properties ofSalviaSpecies on Memory, Cognitive Impairment and Alzheimer’s Disease. CNS Neurosci. Ther. 2014, 20, 485–495. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Tomic, G.; Nikolić, I.; Nerantzaki, A.A.; Sayyad, N.; Stosic-Grujicic, S.; Stojanović, I.; Gerothanassis, I.P.; Tzakos, A.G. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013, 136, 120–129. [Google Scholar] [CrossRef]
- Kaur, N.; Chahal, K.K.; Kumar, A.; Singh, R.; Bhardwaj, U. Antioxidant activity of Anethum graveolens L. essential oil constituents and their chemical analogues. J. Food Biochem. 2019, 43, 12782. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Karimi, G.R.; Ameri, M. Effects of Anethum graveolens L. seed extracts on experimental gastric irritation models in mice. BMC Pharmacol. 2002, 2, 21. [Google Scholar] [CrossRef]
- Shekhawat, G.; Jana, S. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn. Rev. 2010, 4, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N.; Yao, L.; Kim, M.; Sasako, H.; Aoyagi, M.; Shono, J.; Tsuge, N.; Goto, T.; Kawada, T. Dill seed extract improves abnormalities in lipid metabolism through peroxisome proliferator-activated receptor-α (PPAR-α) activation in diabetic obese mice. Mol. Nutr. Food Res. 2013, 57, 1295–1299. [Google Scholar] [CrossRef]
- Al-Sheddi, E.S.; Al-Zaid, N.A.; Al-Oqail, M.M.; Al-Massarani, S.M.; El-Gamal, A.A.; Farshori, N.N. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm. J. 2019, 27, 1053–1060. [Google Scholar] [CrossRef]
- Orhan, I.E.; Senol, F.S.; Ozturk, N.; Celik, S.A.; Pulur, A.; Kan, Y. Phytochemical contents and enzyme inhibitory and antioxidant properties of Anethum graveolens L. (dill) samples cultivated under organic and conventional agricultural conditions. Food Chem. Toxicol. 2013, 59, 96–103. [Google Scholar] [CrossRef]
- Lombrea, A.; Antal, D.; Ardelean, F.; Avram, S.; Pavel, I.Z.; Vlaia, L.; Mut, A.-M.; Diaconeasa, Z.; Dehelean, C.A.; Soica, C.; et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. Int. J. Mol. Sci. 2020, 21, 9653. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Craker, L.E.; Salami, A.; Nazeri, V.; Sang, H.; Maggi, F. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono- and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol. Biochem. 2017, 111, 119–128. [Google Scholar] [CrossRef]
- Han, F.; Ma, G.-Q.; Yang, M.; Yan, L.; Xiong, W.; Shu, J.-C.; Zhao, Z.-D.; Xu, H.-L. Chemical composition and antioxidant activities of essential oils from different parts of the oregano. J. Zhejiang Univ. Sci. B 2017, 18, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Vujicic, M.; Nikolic, I.; Kontogianni, V.G.; Saksida, T.; Charisiadis, P.; Vasic, B.; Stosic-Grujicic, S.; Gerothanassis, I.P.; Tzakos, A.G.; Stojanović, I. Ethyl Acetate Extract of Origanum vulgare L. ssp. hirtum Prevents Streptozotocin-Induced Diabetes in C57BL/6 Mice. J. Food Sci. 2016, 81, 1846–1853. [Google Scholar] [CrossRef] [PubMed]
- Veenstra, J.P.; Johnson, J.J. Oregano (Origanium Vulgare) Extract for Food Preservation and Improving Gastrointestinal Health. Int. J. Nutr. 2019, 3, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balusamy, S.R.; Perumalsamy, H.; Huq, M.A.; Balasubramanian, B. Anti-proliferative activity of Origanum vulgare inhibited lipogenesis and induced mitochondrial mediated apoptosis in human stomach cancer cell lines. Biomed. Pharmacother. 2018, 108, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yin, Z.; Zhao, Q. Red and processed meat consumption and gastric cancer risk: A systematic review and meta-analysis. Oncotarget 2017, 8, 30563–30575. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, N.G.; Croda, J.; Silva, K.E.; Motta, M.L.L.; Maciel, W.G.; Limiere, L.C.; Simionatto, S. Origanum vulgare L. essential oil inhibits the growth of carbapenem-resistant gram-negative bacteria. Rev. Soc. Bras. Med. Trop. 2019, 52, 20180502. [Google Scholar] [CrossRef] [Green Version]
- Amaral, S.C.; Pruski, B.B.; de Freitas, S.B.; Allend, S.O.; Ferreira, M.R.A.; Moreira, C., Jr.; Pereira, D.I.B.; Junior, A.S.V.; Hartwig, D.D. Origanum vulgare essential oil: Antibacterial activities and synergistic effect with polymyxin B against multidrug-resistant Acinetobacter baumannii. Mol. Biol. Rep. 2020, 47, 9615–9625. [Google Scholar] [CrossRef]
- Dandachi, I.; Chabou, S.; Daoud, Z.; Rolain, J.-M. Prevalence and Emergence of Extended-Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram Negative Bacteria of Animal Origin in the Mediterranean Basin. Front. Microbiol. 2018, 9, 2299. [Google Scholar] [CrossRef]
- Lupo, A.; Vogt, D.; Seiffert, S.N.; Endimiani, A.; Perreten, V. Antibiotic Resistance and Phylogenetic Characterization of Acinetobacter baumannii Strains Isolated from Commercial Raw Meat in Switzerland. J. Food Prot. 2014, 77, 1976–1981. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Fasseas, M.K.; Mountzouris, K.C.; Tarantilis, P.A.; Polissiou, M.; Zervas, G. Antioxidant activity in meat treated with oregano and sage essential oils. Food Chem. 2008, 106, 1188–1194. [Google Scholar] [CrossRef]
- Šimat, V.; Čagalj, M.; Skroza, D.; Gardini, F.; Tabanelli, G.; Montanari, C.; Hassoun, A.; Ozogul, F. Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products. Adv. Food Nutr. Res. 2021, 97, 55–118. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Ashkani, S.; Baghdadi, A.; Pazoki, A.; Jaafar, H.Z.E.; Rahmat, A. Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation. Molecules 2016, 21, 1203. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, M.T.; Gholami, H.; Kavoosi, G.; Rowshan, V.; Tafsiry, A. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of T agetes minuta and O cimum basilicum essential oils. Food Sci. Nutr. 2014, 2, 146–155. [Google Scholar] [CrossRef]
- Nazir, M.; Tungmunnithum, D.; Bose, S.; Drouet, S.; Garros, L.; Giglioli-Guivarc’h, N.; Abbasi, B.H.; Hano, C. Differential Production of Phenylpropanoid Metabolites in Callus Cultures of Ocimum basilicum L. with Distinct In Vitro Antioxidant Activities and In Vivo Protective Effects against UV stress. J. Agric. Food Chem. 2019, 67, 1847–1859. [Google Scholar] [CrossRef]
- Chaudhary, S.; Semwal, A.; Kumar, H.; Verma, H.C.; Kumar, A. In-vivo study for anti-hyperglycemic potential of aqueous extract of Basil seeds (Ocimum basilicum Linn) and its influence on biochemical parameters, serum electrolytes and haematological indices. Biomed. Pharmacother. 2016, 84, 2008–2013. [Google Scholar] [CrossRef]
- Al-Subhi, L.; Wa, M.I. Two Cultivars of Ocimum basilicum Leaves Extracts Attenuate Streptozotocin-mediated Oxidative Stress in Diabetic Rats. Pak. J. Biol. Sci. 2020, 23, 1010–1017. [Google Scholar] [CrossRef]
- Almalki, D.A. Renoprotective Effect of Ocimum Basilicum (Basil) Against Diabetes-induced Renal Affection in Albino Rats. Mater. Socio-Med. 2019, 31, 236–240. [Google Scholar] [CrossRef]
- Teofilović, B.; Grujić-Letić, N.; Goločorbin-Kon, S.; Stojanović, S.; Vastag, G.; Gadžurić, S. Experimental and chemometric study of antioxidant capacity of basil (Ocimum basilicum) extracts. Ind. Crop. Prod. 2017, 100, 176–182. [Google Scholar] [CrossRef]
- Chaves, R.D.S.B.; Martins, R.L.; Rodrigues, A.B.L.; de Menezes Rabelo, É.; Farias, A.L.F.; Brandão, L.B.; Santos, L.L.; Galardo, A.K.R.; de Almeida, S.S.M.d. Evaluation of larvicidal potential against larvae of Aedes aegypti (Linnaeus, 1762) and of the antimicrobial activity of essential oil obtained from the leaves of Origanum majorana L. PLoS ONE 2020, 15, 0235740. [Google Scholar] [CrossRef]
- Bina, F.; Rahimi, R. Sweet Marjoram: A Review of Ethnopharmacology, Phytochemistry, and Biological Activities. J. Evid. Based. Complement. Altern. Med. 2017, 22, 175–185. [Google Scholar] [CrossRef]
- Badran, A.; Baydoun, E.; Samaha, A.; Pintus, G.; Mesmar, J.; Iratni, R.; Issa, K.; Eid, A.H. Marjoram Relaxes Rat Thoracic Aorta Via a PI3-K/eNOS/cGMP Pathway. Biomolecules 2019, 9, 227. [Google Scholar] [CrossRef] [Green Version]
- Duletic, S.; Alimpić Aradski, A.; Kolarevic, S.; Vuković-Gačić, B.; Oaldje, M.; Živković, J.; Šavikin, K.; Marin, P. Antineurodegenerative, antioxidant and antibacterial activities and phenolic components of Origanum majorana L. (Lamiaceae) extracts. J. Appl. Bot. Food Qual. 2018, 91, 126–134. [Google Scholar] [CrossRef]
- Bouyahya, A.; Chamkhi, I.; Benali, T.; Guaouguaou, F.-E.; Balahbib, A.; El Omari, N.; Taha, D.; Belmehdi, O.; Ghokhan, Z.; El Menyiy, N. Traditional use, phytochemistry, toxicology, and pharmacology of Origanum majorana L. J. Ethnopharmacol. 2020, 265, 113318. [Google Scholar] [CrossRef]
- Thanh, V.M.; Bui, L.M.; Bach, L.G.; Nguyen, N.T.; Le Thi, H.; Thi, T.T.H. Origanum majorana L. Essential Oil-Associated Polymeric Nano Dendrimer for Antifungal Activity against Phytophthora infestans. Materials 2019, 12, 1446. [Google Scholar] [CrossRef] [Green Version]
- Gomes, F.; Dias, M.I.; Lima, Â.; Barros, L.; Rodrigues, M.E.; Ferreira, I.C.F.R.; Henriques, M. Satureja montana L. and Origanum majorana L. Decoctions: Antimicrobial Activity, Mode of Action and Phenolic Characterization. Antibiotics 2020, 9, 294. [Google Scholar] [CrossRef]
- Schmidt, E.; Bail, S.; Buchbauer, G.; Stoilova, I.; Krastanov, A.; Stoyanova, A.; Jirovetz, L. Chemical Composition, Olfactory Evaluation and Antioxidant Effects of the Essential oil of Origanum Majorana L. from Albania. Nat. Prod. Commun. 2008, 3, 1051–1056. [Google Scholar] [CrossRef] [Green Version]
- Beigi, M.; Torki-Harchegani, M.; Pirbalouti, A.G. Quantity and chemical composition of essential oil of peppermint (Mentha × piperita L.) leaves under different drying methods. Int. J. Food Prop. 2018, 21, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
- Mahendran, G.; Rahman, L.U. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha × piperita L.)—A review. Phytother. Res. 2020, 34, 2088–2139. [Google Scholar] [CrossRef]
- Kennedy, D.; Okello, E.; Chazot, P.; Howes, M.-J.; Ohiomokhare, S.; Jackson, P.; Haskell-Ramsay, C.; Khan, J.; Forster, J.; Wightman, E. Volatile Terpenes and Brain Function: Investigation of the Cognitive and Mood Effects of Mentha × piperita L. Essential Oil with In Vitro Properties Relevant to Central Nervous System Function. Nutrients 2018, 10, 1029. [Google Scholar] [CrossRef] [Green Version]
- Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chem. 2007, 100, 451–458. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Chander, R.; Sharma, A. Chitosan and mint mixture: A new preservative for meat and meat products. Food Chem. 2008, 107, 845–852. [Google Scholar] [CrossRef]
- Biswas, A.K.; Chatli, M.K.; Sahoo, J. Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage. Food Chem. 2012, 133, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Zawiślak, G.; Dzida, K. Composition of essential oils and content of macronutrients in herbage of tarragon (Artemisia dracunculus L.) grown in south-eastern Poland. J. Elem. 2012, 17, 721–729. [Google Scholar] [CrossRef]
- Duric, K.; Kovac-Besovic, E.E.; Niksic, H.; Muratović, S.; Sofic, E. Anticoagulant activity of some Artemisia dracunculus leaf extracts. Bosn. J. Basic Med. Sci. 2015, 15, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Vandanmagsar, B.; Haynie, K.R.; Wicks, S.E.; Bermudez, E.M.; Mendoza, T.M.; Ribnicky, D.; Cefalu, W.T.; Mynatt, R.L. Artemisia dracunculus L. extract ameliorates insulin sensitivity by attenuating inflammatory signalling in human skeletal muscle culture. Diabetes Obes. Metab. 2014, 16, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. J. Food Meas. Charact. 2017, 11, 847–863. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.; Kaushal, P.; Kaur, M.; Sharma, H.K. Coriander (Coriandrum sativum L.): Processing, nutritional and functional aspects. Afr. J. Plant Sci. 2014, 8, 25–33. [Google Scholar] [CrossRef]
- Al-Mofleh, I.A.; Alhaider, A.A.; Mossa, J.S.; Al-Sohaibani, M.O.; Rafatullah, S.; Qureshi, S. Protection of gastric mucosal damage by Coriandrum sativum L. pretreatment in Wistar albino rats. Environ. Toxicol. Pharmacol. 2006, 22, 64–69. [Google Scholar] [CrossRef]
- Freires, I.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; de Alencar, S.M.; Figueira, G.M.; Rodrigues, J.A.D.O.; Duarte, M.C.T.; Rosalen, P.L. Coriandrum sativum L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on Candida spp., and Molecular Targets Affected in Human Whole-Genome Expression. PLoS ONE 2014, 9, 99086. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, K.E.; de Oliveira, F.R.; Barbosa, B.R.C.; Paraense, R.S.O.; Bannwart, C.M.; Pinheiro, B.G.; Botelho, A.D.S.; Muto, N.A.; Amarante, C.B.D.; Hamoy, M.; et al. Aqueous Coriandrum sativum L. extract promotes neuroprotection against motor changes and oxidative damage in rat progeny after maternal exposure to methylmercury. Food Chem. Toxicol. 2019, 133, 110755. [Google Scholar] [CrossRef]
- Mani, V.; Parle, M.; Ramasamy, K.; Majeed, A.B.A. Reversal of memory deficits by Coriandrum sativum leaves in mice. J. Sci. Food Agric. 2011, 91, 186–192. [Google Scholar] [CrossRef]
- Aissaoui, A.; Zizi, S.; Israili, Z.H.; Lyoussi, B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J. Ethnopharmacol. 2011, 137, 652–661. [Google Scholar] [CrossRef]
- Šojić, B.; Pavlić, B.; Ikonić, P.; Tomović, V.; Ikonić, B.; Zeković, Z.; Kocić-Tanackov, S.; Jokanović, M.; Škaljac, S.; Ivić, M. Coriander essential oil as natural food additive improves quality and safety of cooked pork sausages with different nitrite levels. Meat Sci. 2019, 157, 107879. [Google Scholar] [CrossRef]
- Pavlić, B.; Vidović, S.; Vladić, J.; Radosavljević, R.; Zeković, Z. Isolation of coriander (Coriandrum sativum L.) essential oil by green extractions versus traditional techniques. J. Supercrit. Fluids 2015, 99, 23–28. [Google Scholar] [CrossRef]
- Řebíčková, K.; Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Comparison of Chemical Composition and Biological Properties of Essential Oils Obtained by Hydrodistillation and Steam Distillation of Laurus nobilis L. Mater. Veg. 2020, 75, 495–504. [Google Scholar] [CrossRef]
- Peixoto, L.R.; Rosalen, P.L.; Ferreira, G.L.S.; Freires, I.A.; de Carvalho, F.G.; Castellano, L.R.; de Castro, R.D. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch. Oral Biol. 2017, 73, 179–185. [Google Scholar] [CrossRef]
- Speroni, E.; Cervellati, R.; Dall’Acqua, S.; Guerra, M.C.; Greco, E.; Govoni, P.; Innocenti, G. Gastroprotective Effect and Antioxidant Properties of DifferentLaurus nobilisL. Leaf Extracts. J. Med. Food 2011, 14, 499–504. [Google Scholar] [CrossRef]
- Ramos, C.; Teixeira, B.; Batista, I.; Matos, O.; Serrano, M.D.C.; Neng, N.; Nogueira, J.; Nunes, M.L.; Marques, A. Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat. Prod. Res. 2012, 26, 518–529. [Google Scholar] [CrossRef]
- Djenane, D.; Yangüela, J.; Gómez, D.; Roncalés, P. Perspectives on the use of essential oils as antimicrobials against campylobacter jejuni cect 7572 in retail chicken meats packaged in microaerobic atmosphere. J. Food Saf. 2012, 32, 37–47. [Google Scholar] [CrossRef]
- Nieto, G. A Review on Applications and Uses of Thymus in the Food Industry. Plants 2020, 9, 961. [Google Scholar] [CrossRef]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of Thymol and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory Response. Evid. Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef] [Green Version]
- Roby, M.H.H.; Sarhan, M.A.; Selim, K.A.-H.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crop. Prod. 2013, 43, 827–831. [Google Scholar] [CrossRef]
- Oliviero, M.; Romilde, I.; Beatrice, M.M.; Matteo, V.; Giovanna, N.; Consuelo, A.; Claudio, C.; Giorgio, S.; Filippo, M.; Massimo, N. Evaluations of thyme extract effects in human normal bronchial and tracheal epithelial cell lines and in human lung cancer cell line. Chem. Interact. 2016, 256, 125–133. [Google Scholar] [CrossRef]
- Asadbegi, M.; Yaghmaei, P.; Salehi, I.; Komaki, A.; Ebrahim-Habibi, A. Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet- fed rats. Metab. Brain Dis. 2017, 32, 827–839. [Google Scholar] [CrossRef]
- Serrano, A.; González-Sarrías, A.; Tomás-Barberán, F.A.; Avellaneda, A.; Gironés-Vilaplana, A.; Nieto, G.; Ros-Berruezo, G. Anti-Inflammatory and Antioxidant Effects of Regular Consumption of Cooked Ham Enriched with Dietary Phenolics in Diet-Induced Obese Mice. Antioxidants 2020, 9, 639. [Google Scholar] [CrossRef]
- Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Van Griensven, L.J.L.D. Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
- Aureli, P.; Costantini, A.; Zolea, S. Antimicrobial Activity of Some Plant Essential Oils against Listeria monocytogenes. J. Food Prot. 1992, 55, 344–348. [Google Scholar] [CrossRef]
- Fratianni, F.; De Martino, L.; Melone, A.; De Feo, V.; Coppola, R.; Nazzaro, F. Preservation of Chicken Breast Meat Treated with Thyme and Balm Essential Oils. J. Food Sci. 2010, 75, M528–M535. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antioxidant and Antimicrobial Activities of Thyme and Clove Essential Oils and Application in Minced Beef. J. Food Process. Preserv. 2015, 39, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Liu, D.-C.; Tsau, R.-T.; Lin, Y.-C.; Jan, S.-S.; Tan, F.-J. Effect of various levels of rosemary or Chinese mahogany on the quality of fresh chicken sausage during refrigerated storage. Food Chem. 2009, 117, 106–113. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, 1231–1249. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Guo, X. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Wellness 2016, 5, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Zaouali, Y.; Messaoud, C.; Ben Salah, A.; Boussaïd, M. Oil composition variability among populations in relationship with their ecological areas in Tunisian Rosmarinus officinalis L. Flavour Fragr. J. 2005, 20, 512–520. [Google Scholar] [CrossRef]
- Mata, A.T.; Proença, C.; Ferreira, A.R.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Araújo, M.E.M. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem. 2007, 103, 778–786. [Google Scholar] [CrossRef]
- Porte, A.; Godoy, R.L.D.O.; Lopes, D.; Koketsu, M.; Gonçalves, S.L.; Torquilho, H.S. Essential Oil of Rosmarinus officinalis L. (Rosemary) from Rio de Janeiro, Brazil. J. Essent. Oil Res. 2000, 12, 577–580. [Google Scholar] [CrossRef]
- Satyal, P.; Jones, T.H.; Lopez, E.M.; McFeeters, R.L.; Ali, N.A.A.; Mansi, I.; Al-Kaf, A.G.; Setzer, W.N. Chemotypic Characterization and Biological Activity of Rosmarinus officinalis. Foods 2017, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Serrano, E.; Palma, J.; Tinoco, T.; Venâncio, F.; Martins, A. Evaluation of the Essential Oils of Rosemary (Rosmarinus officinalis L.) from Different Zones of “Alentejo” (Portugal). J. Essent. Oil Res. 2002, 14, 87–92. [Google Scholar] [CrossRef]
- Zermane, A.; Meniai, A.-H.; Barth, D. Supercritical CO2 Extraction of Essential Oil from Algerian Rosemary (Rosmarinus officinalis L.). Chem. Eng. Technol. 2010, 33, 489–498. [Google Scholar] [CrossRef]
- Özcan, M.M.; Chalchat, J.-C. Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int. J. Food Sci. Nutr. 2008, 59, 691–698. [Google Scholar] [CrossRef]
- Pitarokili, D.; Tzakou, O.; Loukis, A. Composition of the Essential Oil of Spontaneous Rosmarinus officinalisfrom Greece and Antifungal Activity Against Phytopathogenic Fungi. J. Essent. Oil Res. 2008, 20, 457–459. [Google Scholar] [CrossRef]
- Schmidt, E.; Bail, S.; Buchbauer, G.; Stoilova, I.; Atanasova, T.; Stoyanova, A.; Krastanov, A.; Jirovetz, L. Chemical Composition, Olfactory Evaluation and Antioxidant Effects of Essential Oil from Mentha x piperita. Nat. Prod. Commun. 2009, 4, 1107–1112. [Google Scholar] [CrossRef] [Green Version]
- Khorasaninejad, S. The Effect of Salinity Stress on Growth Parameters, Essential oil Yield and Constituent of Peppermint (Mentha piperita L.). World Appl. Sci. J. 2010, 11, 1403–1407. [Google Scholar]
- Horváth, G.; Szabó, L.G.; Lemberkovics, E.; Botz, L.; Kocsis, B. Characterization and TLC-bioautographic detection of essential oils from some Thymustaxa. Determination of the activity of the oils and their components against plant pathogenic bacteria. JPC—J. Planar Chromatogr. Mod. TLC 2004, 17, 300–304. [Google Scholar] [CrossRef]
- Wei, J.-N.; Liu, Z.-H.; Zhao, Y.-P.; Zhao, L.-L.; Xue, T.-K.; Lan, Q.-K. Phytochemical and bioactive profile of Coriandrum sativum L. Food Chem. 2019, 286, 260–267. [Google Scholar] [CrossRef]
- Kohara, K.; Sakamoto, Y.; Hasegawa, H.; Kozuka, H.; Sakamoto, K.; Hayata, Y. Fluctuations in Volatile Compounds in Leaves, Stems, and Fruits of Growing Coriander (Coriandrum sativum L.) Plants. J. Jpn. Soc. Hortic. Sci. 2006, 75, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Farsaraei, S.; Moghaddam, M.; Pirbalouti, A.G. Changes in growth and essential oil composition of sweet basil in response of salinity stress and superabsorbents application. Sci. Hortic. 2020, 271, 109465. [Google Scholar] [CrossRef]
- Filho, L.C.C.; Martinazzo, A.P.; Teodoro, C.E.D.S.; Vivès, L. Microbiological quality and essential oil of parsley (Petroselinum crispum) submitted to the hygienizing and drying process. Ind. Crop. Prod. 2018, 114, 180–184. [Google Scholar] [CrossRef]
- Sobieszczańska, N.; Myszka, K.; Szwengiel, A.; Majcher, M.; Grygier, A.; Wolko, Ł. Tarragon essential oil as a source of bioactive compounds with anti-quorum sensing and anti-proteolytic activity against Pseudomonas spp. isolated from fish—in vitro, in silico and in situ approaches. Int. J. Food Microbiol. 2020, 331, 108732. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crop. Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS Analysis of Essential Oils from Some Greek Aromatic Plants and Their Fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef]
- Bartoňková, I.; Dvořák, Z. Essential oils of culinary herbs and spices display agonist and antagonist activities at human aryl hydrocarbon receptor AhR. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2018, 111, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Martínez, A.L.; González-Trujano, M.E.; Pellicer, F.; López-Muñoz, F.J.; Navarrete, A. Antinociceptive Effect and GC/MS Analysis of Rosmarinus officinalis L. Essential Oil from its Aerial Parts. Planta Med. 2009, 75, 508–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elamrani, A.; Zrira, S.; Benjilali, B.; Berrada, M. A Study of Moroccan Rosemary Oils. J. Essent. Oil Res. 2000, 12, 487–495. [Google Scholar] [CrossRef]
- El-Massry, K.; Farouk, A.; Abou-Zeid, M. Free Radical Scavenging Activity and Lipoxygenase Inhibition of Rosemary (Rosmarinus officinalis L.) Volatile Oil. J. Essent. Oil Bear. Plants 2008, 11, 536–543. [Google Scholar] [CrossRef]
- Diab, Y.; Auezova, L.; Chebib, H.; Chalchat, J.-C.; Figueredo, G. Chemical Composition of Lebanese Rosemary (Rosmarinus officinalis L.) Essential Oil as a Function of the Geographical Region and the Harvest Time. J. Essent. Oil Res. 2002, 14, 449–452. [Google Scholar] [CrossRef]
- Angioni, A.; Barra, A.; Cereti, E.; Barile, D.; Coïsson, J.D.; Arlorio, M.; Dessi, S.; Coroneo, V.; Cabras, P. Chemical Composition, Plant Genetic Differences, Antimicrobial and Antifungal Activity Investigation of the Essential Oil of Rosmarinus officinalis L. J. Agric. Food Chem. 2004, 52, 3530–3535. [Google Scholar] [CrossRef]
- Bouyahya, A.; Lagrouh, F.; El Omari, N.; Bourais, I.; El Jemli, M.; Marmouzi, I.; Salhi, N.; Faouzi, M.E.A.; Belmehdi, O.; Dakka, N.; et al. Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties. Biocatal. Agric. Biotechnol. 2020, 23, 101471. [Google Scholar] [CrossRef]
- Punetha, D.; Tewari, G.; Pande, C. Compositional variability in inflorescence essential oil of Coriandrum sativum from North India. J. Essent. Oil Res. 2017, 30, 113–119. [Google Scholar] [CrossRef]
- Sriti, J.; Talou, T.; Wannes, W.A.; Cerny, M.; Marzouk, B. Essential oil, fatty acid and sterol composition of Tunisian coriander fruit different parts. J. Sci. Food Agric. 2009, 89, 1659–1664. [Google Scholar] [CrossRef]
- Chung, I.-M.; Ahmad, A.; Kim, S.-J.; Naik, P.M.; Nagella, P. Composition of the essential oil constituents from leaves and stems of Korean Coriandrum sativum and their immunotoxicity activity on the Aedes aegypti L. Immunopharmacol. Immunotoxicol. 2011, 34, 152–156. [Google Scholar] [CrossRef]
- Marino, M.; Bersani, C.; Comi, G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol. 2001, 67, 187–195. [Google Scholar] [CrossRef]
Plant Name | Plant of Origin | Part of the Plant | Form Used | Quantity Used | Product Added | Effect | Reference |
---|---|---|---|---|---|---|---|
Parsley | Petroselinum crispum Hoffm. | Parsley stems | Extract powder | 4.29 g/kg | Mortadella-type sausage | Inhibition of L. Monocytogenes and microbial spoilage during storage time | [10] |
Dill | Anethum graveolens L. | Seeds | A water-soluble polysaccharide named AGP1 was isolated from seeds of Anethum graveolens | 0.3% (g/g) | Turkey sausages | Preservative AGP1 replaced ascorbic acid, reduced lipid peroxidation, preserved pH and color and improved bacterial stability during cold storage at 4 °C for 12 days | [11] |
Basil | Ocimum basilicum L. | Leaves | Essential oils | 9.0 μl/ml | Fermented sausages | Reduction in mold growth; antifungal protection | [12] |
0.062–0.25% | Beef burger | Antioxidant and antibacterial activity | [13] | ||||
Oregan | Origanum vulgare L. | Dried leaves from Chile leaves | Essential oils | 0.230–0.690 mg/ml | Sausage | Bacteriostatic effect; antimicrobial activity | [14] |
6.25–100 μl ml−1 | Poultry meat products | Bio-preservative; antimicrobial activity against Staphylococcus aureus | [15] | ||||
Sage | Salvia officinalis L. | Leaves | Ground sage leaves | 0.05–0.15% | Chinese style sausage | Improve the oxidative stability of Chinese-style sausage antioxidant activity | [16] |
Essential oils | 0.2 și 0.5% | Chicken fat | Effective in respect of hydrolytic rancidity | [17] | |||
Sage tea processing by product | Essential oil | 0.05 μl/g–0.1 μl/g | Fresh pork sausages | Significant antioxidative and antimicrobial activities | [18] | ||
Herbal dust | 0.05 μl/g–0.1 μl/g | Fresh pork sausages | Significant antioxidative and antimicrobial activities | [18] | |||
Coriander | Coriandrum sativum L. | Leaves | Essential oils | 0.01% | Italian salami | Reduction in lipid oxidation by increasing the shelf life of the product | [19] |
0.02% | Stored ground beef | Inhibiting the development of unwanted sensory changes and the growth of Enterobacteriaceae | [20] | ||||
0.075–0.150 μl/g | Cooked pork sausages | Improved oxidative stability | [21] | ||||
Rosemary | Rosmarinus officinalis L. | Leaves | Water extract | 0.4% rosemary spice and 0.6% nitrite pickling salts | Beef sausages | Microbial inhibition;Rosemary spice can substitute nitrite pickling salt | [22] |
Extract in powder | 0.025–0.05% | Fermented goat meat sausage | Oxidative stability (antioxidant activity) | [23] | |||
Essential oils | 0.2 și 0.5% | Chicken fat | Antioxidant activity; effective in respect of hydrolytic rancidity | [17] | |||
Marjoram | Origanum majorana L. | Leaves | Essential oils | 6.25-100 μl ml−1 | Poultry meat products | Bio-preservative; antimicrobial activity against Staphylococcus aureus | [15] |
Tarragon | Artemisia dracunculus L. | Leaves | Essential oils | 0.062–0.25% | Beef burger | Natural preservative, flavor enhancer in meat; antioxidant activity and antibacterial effects; anti-staphylococcus aureus activity | [13] |
0.1% (v/w) | Frankfurter type sausages | Improving sensory properties | [24] | ||||
Bay | Laurus nobilis L. | Leaves | Essential oils | 10% (v/v) | Fresh lamb meat | Natural preservative; antibacterial activity | [25] |
0.05 g–0.1 g/100 g | Fresh Tuscan sausage | Antibacterial activity; improve the safety and shelf life | [26] | ||||
Thyme | Thymbra capitata (L.) Cav | Leaves | Essential oils | 0.01–3% [v/w] | Minced beef meat | Antibacterial (from Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa) | [27] |
Mint | Mentha piperita L. | Leaves | Essential oils | 20, 40 and 60 ppm | Cooked sausage | Nitrite partial replacement with Mentha piperita essential oil proved oxidative, microbial, and sensory properties | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marc, R.A.; Mureșan, V.; Mureșan, A.E.; Mureșan, C.C.; Tanislav, A.E.; Pușcaș, A.; Marţiș, G.S.; Ungur, R.A. Spicy and Aromatic Plants for Meat and Meat Analogues Applications. Plants 2022, 11, 960. https://doi.org/10.3390/plants11070960
Marc RA, Mureșan V, Mureșan AE, Mureșan CC, Tanislav AE, Pușcaș A, Marţiș GS, Ungur RA. Spicy and Aromatic Plants for Meat and Meat Analogues Applications. Plants. 2022; 11(7):960. https://doi.org/10.3390/plants11070960
Chicago/Turabian StyleMarc (Vlaic), Romina Alina, Vlad Mureșan, Andruţa E. Mureșan, Crina Carmen Mureșan, Anda E. Tanislav, Andreea Pușcaș, Georgiana Smaranda Marţiș (Petruţ), and Rodica Ana Ungur. 2022. "Spicy and Aromatic Plants for Meat and Meat Analogues Applications" Plants 11, no. 7: 960. https://doi.org/10.3390/plants11070960
APA StyleMarc, R. A., Mureșan, V., Mureșan, A. E., Mureșan, C. C., Tanislav, A. E., Pușcaș, A., Marţiș, G. S., & Ungur, R. A. (2022). Spicy and Aromatic Plants for Meat and Meat Analogues Applications. Plants, 11(7), 960. https://doi.org/10.3390/plants11070960