Dynamic Seed Emission, Dispersion, and Deposition from Horseweed (Conyza canadensis (L.) Cronquist)
Abstract
:1. Introduction
2. Results
2.1. Seed Production and Emission Dynamics
2.2. Concentration with Height and Distance
2.3. Deposition with Distance
2.4. Influence of Meteorological Factors
2.4.1. Source Production
2.4.2. Seed Transport
3. Discussion
3.1. Source Strength
3.2. High Altitude and Long-Distance Transport
3.3. Influence of Meteorological Factors
3.3.1. Source Strength
3.3.2. Seed Transport
4. Materials and Methods
4.1. Experimental Field Setup
4.2. Seed Concentration
4.3. Seed Deposition
4.4. Meteorological Parameters
4.5. Source Strength
4.6. Correlation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heap, I. The international Survey of Herbicide Resistant Weeds. Available online: https://weedscience.com/Home.aspx (accessed on 8 March 2022).
- Ye, R.; Huang, H.; Alexander, J.; Liu, W.; Millwood, R.J.; Wang, J.; Stewart, C.N. Field studies on dynamic pollen production, deposition, and dispersion of glyphosate-resistant horseweed (Conyza canadensis). Weed Sci. 2016, 64, 101–111. [Google Scholar] [CrossRef]
- Erigeron Canadensis. Available online: https://plants.ces.ncsu.edu/plants/erigeron-canadensis/ (accessed on 8 April 2022).
- Mulligan, G.A.; Findlay, J.N. Reproductive systems and colonization in Canadian weeds. Can. J. Bot. 1970, 48, 859–860. [Google Scholar] [CrossRef]
- Smisek, A. Resistance to Paraquat in Erigeron Canadensis LMS Thesis; University of Western Ontario: London, ON, Canada, 1995. [Google Scholar]
- Bhowmik, P.C.; Bekech, M.M. Horseweed (Conyza canadensis) seed production, emergence, and distribution in no-tillage and conventional-tillage corn (Zea mays). Agron. Trends Agric. Sci. 1993, 1, 67–71. [Google Scholar]
- Regehr, D.; Bazzaz, F. The population dynamics of Erigeron canadensis, a successional winter annual. J. Ecol. 1979, 67, 923–933. [Google Scholar] [CrossRef]
- Loux, M.; Stachler, J.; Johnsson, B.; Nice, G.; Davis, V.; Nordby, D. Biology and Management of Horseweed. Available online: https://www.extension.purdue.edu/extmedia/GWC/GWC-9-W.pdf (accessed on 8 March 2022).
- Tilley, D. Ecology and Management of Canadian Horseweed (Conyza canadensis). Available online: https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/idpmctn11471.pdf (accessed on 8 March 2022).
- Andersen, M.C. Diaspore morphology and seed dispersal in several wind-dispersed Asteraceae. Am. J. Bot. 1993, 80, 487–492. [Google Scholar] [CrossRef]
- Dauer, J.T.; Mortensen, D.A.; Humston, R. Controlled experiments to predict horseweed (Conyza canadensis) dispersal distances. Weed Sci. 2006, 54, 484–489. [Google Scholar] [CrossRef]
- Dauer, J.T.; Mortensen, D.A.; Luschei, E.C.; Isard, S.A.; Shields, E.; Van-Gessel, M.J. Conyza canadensis seed ascent in the lower atmosphere. Agric. For. Meteorol. 2009, 149, 526–534. [Google Scholar] [CrossRef]
- Shields, E.J.; Dauer, J.T.; VanGessel, M.J.; Neumann, G. Horseweed (Conyza canadensis) seed collected in the planetary boundary layer. Weed Sci. 2006, 54, 1063–1067. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X. Improved method for nondestructive measurement of dynamic pollen source strength from transgenic crops using sonic anemometer. Int. J. Agric. Biol. Eng. 2009, 2, 33–39. [Google Scholar] [CrossRef]
- Davis, V.M.; Kruger, G.R.; Stachler, J.M.; Loux, M.M.; Johnson, W.G. Growth and seed production of horseweed (Conyza canadensis) populations resistant to glyphosate, ALS-inhibiting, and multiple (glyphosate+ ALS-inhibiting) herbicides. Weed Sci. 2009, 57, 494–504. [Google Scholar] [CrossRef]
- Steckel, L. Horseweed. Available online: https://extension.tennessee.edu/publications/Documents/W106.pdf (accessed on 8 March 2022).
- Selvakumar, P.; Sinha, S.; Pandita, V. Abundance and diurnal rhythm of honeybees visiting hybrid seed production plots of cauliflower (Brassica oleracea var. botrytis L.). J. Apic. Res. 2006, 45, 7–15. [Google Scholar] [CrossRef]
- Steiner, J.; Opoku-Boateng, K. Natural season-long and diurnal temperature effects on lettuce seed production and quality. J. Am. Soc. Hortic. Sci. 1991, 116, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Young, H.J. Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am. J. Bot. 2002, 89, 433–440. [Google Scholar] [CrossRef]
- Levin, S.A.; Muller-Landau, H.C.; Nathan, R.; Chave, J. The ecology and evolution of seed dispersal: A theoretical perspective. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 575–604. [Google Scholar] [CrossRef]
- Nathan, R.; Katul, G.G.; Horn, H.S.; Thomas, S.M.; Oren, R.; Avissar, R.; Pacala, S.W.; Levin, S.A. Mechanisms of long-distance dispersal of seeds by wind. Nature 2002, 418, 409–413. [Google Scholar] [CrossRef]
- Thomson, F.J.; Moles, A.T.; Auld, T.D.; Kingsford, R.T. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 2011, 99, 1299–1307. [Google Scholar] [CrossRef]
- Cain, M.L.; Milligan, B.G.; Strand, A.E. Long-distance seed dispersal in plant populations. Am. J. Bot. 2000, 87, 1217–1227. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R.; Hess, G. Description of the HYSPLIT4 modeling system. NOAA Tech. Memo. ERL ARL 1997, 12, 197–199. [Google Scholar] [CrossRef] [Green Version]
- Skarpaas, O.; Auhl, R.; Shea, K. Environmental variability and the initiation of dispersal: Turbulence strongly increases seed release. Proc. R. Soc. B 2006, 273, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Soons, M.B.; Bullock, J.M. Non-random seed abscission, long-distance wind dispersal and plant migration rates. J. Ecol. 2008, 96, 581–590. [Google Scholar] [CrossRef]
- Pazos, G.E.; Greene, D.F.; Katul, G.; Bertiller, M.B.; Soons, M.B. Seed dispersal by wind: Towards a conceptual framework of seed abscission and its contribution to long-distance dispersal. J. Ecol. 2013, 101, 889–904. [Google Scholar] [CrossRef]
- Savage, D.; Borger, C.P.; Renton, M. Orientation and speed of wind gusts causing abscission of wind-dispersed seeds influences dispersal distance. Funct. Ecol. 2014, 28, 973–981. [Google Scholar] [CrossRef]
- Greene, D.F. The role of abscission in long-distance seed dispersal by the wind. Ecology 2005, 86, 3105–3110. [Google Scholar] [CrossRef]
- Raynor, G.S.; Ogden, E.C.; Hayes, J.V. Dispersion and deposition of corn pollen from experimental sources 1. Agron. J. 1972, 64, 420–427. [Google Scholar] [CrossRef]
- Jarosz, N.; Loubet, B.; Durand, B.; Foueillassar, X.; Huber, L. Variations in maize pollen emission and deposition in relation to microclimate. Environ. Sci. Technol. 2005, 39, 4377–4384. [Google Scholar] [CrossRef] [Green Version]
- Dauer, J.T.; Mortensen, D.A.; Vangessel, M.J. Temporal and spatial dynamics of long-distance Conyza canadensis seed dispersal. J. Appl. Ecol. 2007, 44, 105–114. [Google Scholar] [CrossRef]
- Wang, J.; Yang, X. Development and validation of atmospheric gene flow model for assessing environmental risks from transgenic corn crops. Int. J. Agric. Biol. Eng. 2010, 3, 18–30. [Google Scholar] [CrossRef]
- Huang, H.; Ye, R.; Qi, M.; Li, X.; Miller, D.R.; Stewart, C.N.; DuBois, D.W.; Wang, J. Wind-mediated horseweed (Conyza canadensis) gene flow: Pollen emission, dispersion, and deposition. Ecol. Evol. 2015, 5, 2646–2658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aylor, D.E.; Ferrandino, F.J. Dispersion of spores released from an elevated line source within a wheat canopy. Bound. Layer Meteorol. 1989, 46, 251–273. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin, Germany, 1988; Volume 13, pp. 383–385. [Google Scholar]
- Wilson, J.; Shum, W. A re-examination of the integrated horizontal flux method for estimating volatilisation from circular plots. Agric. For. Meteorol. 1992, 57, 281–295. [Google Scholar] [CrossRef]
Measurement | Method | Illinois Year 2013 Z (m) | Tennessee Year 2014 Z (m) |
---|---|---|---|
Seed concentration vertical profiles | Slides armed in rotating Rotorod columns | Z = 0.35, 1, 1.7, 2.8 location: the field center | Z = 0.5, 1.3, 2.225, 3.15, 5 location: the field center |
Z = 1, 1.5, 3 location: the field edge | Z = 0.5, 1.3, 3.15, 5 location: 4 m, 16 m from the field edge, 2 columns | ||
Z = 0–100 location: beneath balloon2 columns | Z = 0.5 Distance = 0, 0.5, 1, 2, 4, 8, 32 m from the field edge location: downwind direction | ||
Z = 1 location: the field center (continuous record Rotorod) | Z = 1.3 location: the field center (continuous record Rotorod) | ||
Seed deposition | Slides placed on the holders | Z = 0.5 Distance = 0, 5, 10, 20, 63.9 m from the center concentration column location: in the field | Z = 0.5 Distance = 3, 6 m from the center of the circular field location: in the field |
Z = 0.5 Distance = 7, 35, 90, 260, 450, 970 m from the field edge location: downwind direction | Z = 0.5 Distance = 0, 0.5, 1, 2, 4, 8, 16, 32 m from the field edge location: downwind direction |
Parameter | Symbol | Unit | Height (m) | Source | Standard Deviation |
---|---|---|---|---|---|
Wind direction | Θ (3.3) | degree | 3.3 | sonic anemometer | 228 ± 71 |
Mean wind speed | (3.3) | m/s | 3.3 | sonic anemometer | 1.84 ± 0.69 |
Friction velocity | u* (3.3) | m/s | 3.3 | sonic anemometer | 0.36 ± 0.12 |
Stability | ξ (3.3) | unitless | 3.3 | sonic anemometer | −2.03 ± 3.75 |
Air temperature | T | °C | 3.3 | sonic anemometer | 25.42 ± 4.88 |
Relative humidity | RH | % | 2.0 | weather station | 54.21 ± 14.70 |
Solar radiation | SR | Kw/m2 | 2.0 | weather station | 0.43 ± 0.21 |
Rainfall | Rainfall | mm/hour | 2.0 | weather station | 0.21 ± 2.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhao, Q.; Huang, H.; Ye, R.; Stewart, C.N.; Wang, J. Dynamic Seed Emission, Dispersion, and Deposition from Horseweed (Conyza canadensis (L.) Cronquist). Plants 2022, 11, 1102. https://doi.org/10.3390/plants11091102
Liu J, Zhao Q, Huang H, Ye R, Stewart CN, Wang J. Dynamic Seed Emission, Dispersion, and Deposition from Horseweed (Conyza canadensis (L.) Cronquist). Plants. 2022; 11(9):1102. https://doi.org/10.3390/plants11091102
Chicago/Turabian StyleLiu, Jun, Qidi Zhao, Haiyan Huang, Rongjian Ye, Charles Neal Stewart, and Junming Wang. 2022. "Dynamic Seed Emission, Dispersion, and Deposition from Horseweed (Conyza canadensis (L.) Cronquist)" Plants 11, no. 9: 1102. https://doi.org/10.3390/plants11091102
APA StyleLiu, J., Zhao, Q., Huang, H., Ye, R., Stewart, C. N., & Wang, J. (2022). Dynamic Seed Emission, Dispersion, and Deposition from Horseweed (Conyza canadensis (L.) Cronquist). Plants, 11(9), 1102. https://doi.org/10.3390/plants11091102