Correlation of Glucosinolates and Volatile Constituents of Six Brassicaceae Seeds with Their Antioxidant Activities Based on Partial Least Squares Regression
Abstract
:1. Introduction
2. Results
2.1. Identification and Quantification of Glucosinolates Using HPLC
2.2. Essential Oils Yield and Composition
2.3. Evaluation of DPPH Radical Scavenging Activity
2.4. Multivariate Analysis
2.4.1. Principal Component Analysis (PCA)
2.4.2. Partial Least Squares Regression (PLS)
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals and Solvents
4.3. Extraction of GSLs and Desulfation
4.4. Identification and Quantification of Glucosinolates Using HPLC
4.5. Extraction of the Essential Oil and GC–MS Identification
4.6. Evaluation of DPPH Radical Scavenging Activity
4.7. Multivariate Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Šamec, D.; Salopek-Sondi, B. Chapter 3.11—Cruciferous (Brassicaceae) Vegetables. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 195–202. [Google Scholar]
- Raza, A.; Hafeez, M.; Zahra, N.; Shaukat, K.; Umbreen, S.; Tabassum, J.; Charagh, S.; Khan, R.; Hasanuzzaman, M. The Plant Family Brassicaceae: Introduction, Biology, And Importance. In The Plant Family Brassicaceae: Biology and Physiological Responses to Environmental Stresses; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 1–43. [Google Scholar]
- Fahey, J.W. Brassica: Characteristics and Properties. In Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 469–477. [Google Scholar]
- Bhandari, S.R.; Jo, J.S.; Lee, J.G. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops. Molecules 2015, 20, 15827–15841. [Google Scholar] [CrossRef] [PubMed]
- Thies, W. Isolation of Sinigrin and Glucotropaeolin from Cruciferous Seeds. Lipid/Fett 1988, 90, 311–314. [Google Scholar] [CrossRef]
- Hanley, A.; Heaney, R.; Fenwick, G. Improved isolation of glucobrassicin and other glucosinolates. J. Sci. Food Agric. 1983, 34, 869–873. [Google Scholar] [CrossRef]
- Barillari, J.; Gueyrard, D.; Rollin, P.; Iori, R. Barbarea verna as a source of 2-phenylethyl glucosinolate, precursor of cancer chemopreventive phenylethyl isothiocyanate. Fitoterapia 2001, 72, 760–764. [Google Scholar] [CrossRef]
- Aydoğan, C. Chapter 12—Liquid chromatography-high resolution mass spectrometry for the analysis of bioactive natural products. In Studies in Natural Products Chemistry; Atta-ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 66, pp. 331–353. [Google Scholar]
- Soundararajan, P.; Kim, J. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules 2018, 23, 2983. [Google Scholar] [CrossRef] [Green Version]
- Dhevi Vs, R.; Shankar, S.; Sathiavelu, M.; Segaran, G. Brassicaceae—A Classical Review on Its Pharmacological Activities. Int. J. Pharm. Sci. Rev. Res. 2019, 55, 107–113. [Google Scholar]
- Santos, P.; Filho, E.; Colnago, L. Detection and quantification of milk adulteration using time domain nuclear magnetic resonance (TD-NMR). Microchem. J. 2015, 124, 15. [Google Scholar] [CrossRef]
- Heaney, R.; Fenwick, G. The analysis of glucosinolates in Brassica species using gas chromatography. Direct determination of the thiocyanate ion precursors, glucobrassicin and neoglucobrassicin. J. Sci. Food Agric. 1980, 31, 593–599. [Google Scholar] [CrossRef]
- Malik, M.; Riley, M.; Norsworthy, J.; Bridges, W. Variation of Glucosinolates in Wild Radish (Raphanus raphanistrum) Accessions. J. Agric. Food Chem. 2010, 58, 11626–11632. [Google Scholar] [CrossRef]
- McDanell, R.; McLean, A.E.M.; Hanley, A.B.; Heaney, R.K.; Fenwick, G.R. Chemical and biological properties of indole glucosinolates (glucobrassicins): A review. Food Chem. Toxicol. 1988, 26, 59–70. [Google Scholar] [CrossRef]
- Cover, C.M.; Hsieh, S.J.; Cram, E.J.; Hong, C.; Riby, J.E.; Bjeldanes, L.F.; Firestone, G.L. Indole-3-carbinol and tamoxifen cooperate to arrest the cell cycle of MCF-7 human breast cancer cells. Cancer Res. 1999, 59, 1244–1251. [Google Scholar] [PubMed]
- Singh, R.K.; Lange, T.S.; Kim, K.; Zou, Y.; Lieb, C.; Sholler, G.L.; Brard, L. Effect of indole ethyl isothiocyanates on proliferation, apoptosis, and MAPK signaling in neuroblastoma cell lines. Bioorg. Med. Chem. Lett. 2007, 17, 5846–5852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aires, A.; Mota, V.R.; Saavedra, M.J.; Rosa, E.A.; Bennett, R.N. The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J. Appl. Microbiol. 2009, 106, 2086–2095. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, A.; Dwivedi, A.; du Plessis, J. Sinigrin and Its Therapeutic Benefits. Molecules 2016, 21, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newton, E.; Bullock, J.; Hodgson, D. Glucosinolate variation in wild cabbage (Brassica oleracea) influences the structure of herbivore communities. Oecologia 2009, 160, 63–76. [Google Scholar] [CrossRef]
- Lucarini, E.; Pagnotta, E.; Micheli, L.; Parisio, C.; Testai, L.; Martelli, A.; Calderone, V.; Matteo, R.; Lazzeri, L.; Di Cesare Mannelli, L.; et al. Eruca sativa Meal against Diabetic Neuropathic Pain: An H2S-Mediated Effect of Glucoerucin. Molecules 2019, 24, 3006. [Google Scholar] [CrossRef] [Green Version]
- Bennett, R.N.; Carvalho, R.; Mellon, F.A.; Eagles, J.; Rosa, E.A. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. J Agric. Food Chem. 2007, 55, 67–74. [Google Scholar] [CrossRef]
- Barillari, J.; Canistro, D.; Paolini, M.; Ferroni, F.; Pedulli, G.F.; Iori, R.; Valgimigli, L. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J. Agric. Food Chem. 2005, 53, 2475–2482. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, M.; Bhandari, B.; Cheng, X.; Islam, M. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish. Ultrason. Sonochem. 2015, 27, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Iwahashi, T.; Tanaka, A.; Koutani, J.; Matsuo, T.; Okamoto, S.; Ohtsuki, K. 4-(Methylthio)-3-butenyl Isothiocyanate, a Principal Antimutagen in Daikon (Raphanus sativus; Japanese White Radish). J. Agric. Food Chem. 2001, 49, 5755–5760. [Google Scholar] [CrossRef]
- Beevi, S.; Mangamoori, L.; Subathra, M.; Edula, J. Hexane Extract of Raphanus sativus L. Roots Inhibits Cell Proliferation and Induces Apoptosis in Human Cancer Cells by Modulating Genes Related to Apoptotic Pathway. Plant Foods Hum. Nutr. 2010, 65, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Abdull Razis, A.; De Nicola, G.R.; Pagnotta, E.; Iori, R.; Ioannides, C. 4-Methylsulfanyl-3-butenyl isothiocyanate derived from glucoraphasatin is a potent inducer of rat hepatic phase II enzymes and a potential chemopreventive agent. Arch. Toxicol. 2012, 86, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Karangwa, E.; Yu, J.; Xia, S.; Feng, B.; Zhang, X.; Jia, C. Characterizing Red Radish Pigment Off-Odor and Aroma-Active Compounds by Sensory Evaluation, Gas Chromatography-Mass Spectrometry/Olfactometry and Partial Least Square Regression. Food Bioprocess Technol. 2017, 10, 1337–1353. [Google Scholar] [CrossRef]
- Ibrahim, H.; Abdel-Mogib, M. Chemical constituents of Radish, Raphanus sativus Linn. (Brassicaceae) Leaves Extracts And Their Insecticidal Activity Against Mealybug, Solenopsis Tinsley (Hemiptera: Pseudococcidae). Int. J. Curr. Adv. Res. 2020, 8, 20179–20184. [Google Scholar]
- Kim, M.; Lee, M.; Lee, K. Determination of compositional quality and volatile flavor characteristics of radish-based Kimchi suitable for Chinese consumers and its correlation to consumer acceptability. Food Sci. Biotechnol. 2018, 27, 1265–1273. [Google Scholar] [CrossRef]
- Afifi, A.F.; Abdulla, M.E. Effect of the insecticide thiolane on the spore-germinating potentialities of Artemisia vulgaris phyllosperic fungi. Egypt. J. Bot. 1979, 29, 121. [Google Scholar]
- Arora, R.; Kumar, R.; Mahajan, J.; Vig, A.; Singh, B.; Singh, B.; Arora, S. 3-Butenyl isothiocyanate: A hydrolytic product of glucosinolate as a potential cytotoxic agent against human cancer cell lines. J. Food Sci. Technol. 2016, 53, 3437–3445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youn-Kyung, K.; Gun-Hee, K. Determination of 3-Butenyl Isothiocyanate in Different Parts and Cultivars of Chinese Cabbages. Food Sci. Biotechnol. 2005, 14, 466–469. [Google Scholar]
- Ishihara, S.; Inaoka, T.; Nakamura, T.; Kimura, K.; Sekiyama, Y.; Tomita, S. Nuclear magnetic resonance- and gas chromatography/mass spectrometry-based metabolomic characterization of water-soluble and volatile compound profiles in cabbage vinegar. J. Biosci. Bioeng. 2018, 126, 53–62. [Google Scholar] [CrossRef]
- Valette, L.; Fernandez, X.; Poulain, S.; Loiseau, A.M.; Lizzani-Cuvelier, L.; Levieil, R.; Restier, L. Chemical composition of the volatile extracts from Brassica oleracea L. var. botrytis ‘Romanesco’ cauliflower seeds. Food Chem. 2003, 80, 353–358. [Google Scholar]
- Bell, L.; Kitsopanou, E.; Oloyede, O.O.; Lignou, S. Important Odorants of Four Brassicaceae Species, and Discrepancies between Glucosinolate Profiles and Observed Hydrolysis Products. Foods 2021, 10, 1055. [Google Scholar] [CrossRef] [PubMed]
- Azarenko, O.; Jordan, M.A.; Wilson, L. Erucin, the major isothiocyanate in arugula (Eruca sativa), inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics. PLoS ONE 2014, 9, e100599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, G.; Sharma, V. Eruca sativa (L.): Botanical Description, Crop Improvement, and Medicinal Properties. J. Herbs Spices Med. Plants 2014, 20, 171–182. [Google Scholar] [CrossRef]
- Recio, R.; Vengut-Climent, E.; Borrego, L.G.; Khiar, N.; Fernández, I. Chapter 6—Biologically Active Isothiocyanates: Protecting Plants and Healing Humans. In Studies in Natural Products Chemistry; Atta-ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 53, pp. 167–242. [Google Scholar]
- Yan-Dong, S.; Huang-Wang, S.; Wen, F.; Xiang-Hui, W.; Zai-Feng, S.; Lu-Yong, W.; Guang-Ying, C.; Qiang, L. Synthesis and Evaluation of Novel Erucin Analogues as Potential Antitumor Compounds. Lett. Org. Chem. 2018, 15, 206–213. [Google Scholar]
- Hanlon, N.; Coldham, N.; Sauer, M.; Ioannides, C. Modulation of rat pulmonary carcinogen-metabolising enzyme systems by the isothiocyanates erucin and sulforaphane. Chem. Biol. Interact. 2009, 177, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Lamy, E.; Oey, D.; Eißmann, F.; Herz, C.; Münstedt, K.; Tinneberg, H.R.; Mersch-Sundermann, V. Erucin and benzyl isothiocyanate suppress growth of late stage primary human ovarian carcinoma cells and telomerase activity in vitro. Phytother. Res. 2013, 27, 1036–1041. [Google Scholar] [CrossRef]
- Lamy, E.; Schröder, J.; Paulus, S.; Brenk, P.; Stahl, T.; Mersch-Sundermann, V. Antigenotoxic properties of Eruca sativa (rocket plant), erucin and erysolin in human hepatoma (HepG2) cells towards benzo(a)pyrene and their mode of action. Food Chem. Toxicol. 2008, 46, 2415–2421. [Google Scholar] [CrossRef]
- Melchini, A.; Traka, M. Biological profile of erucin: A new promising anticancer agent from cruciferous vegetables. Toxins 2010, 2, 593–612. [Google Scholar] [CrossRef] [Green Version]
- Barba, F.; Nikmaram, N.; Roohinejad, S.; Khelfa, A.; Zhu, Z.; Koubaa, M. Bioavailability of Glucosinolates and Their Breakdown Products: Impact of Processing. Front. Nutr. 2016, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Esteve, M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front. Nutr. 2020, 7, 111. [Google Scholar] [CrossRef]
- Higdon, J.V.; Delage, B.; Williams, D.E.; Dashwood, R.H. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007, 55, 224–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosser, K.; van Dam, N. A Straightforward Method for Glucosinolate Extraction and Analysis with High-pressure Liquid Chromatography (HPLC). J. Vis. Exp. 2017, 121, 55425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 1, p. 456. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Gad, H.A.; Mamadalieva, N.Z.; Böhmdorfer, S.; Rosenau, T.; Zengin, G.; Mamadalieva, R.Z.; Al Musayeib, N.M.; Ashour, M.L. GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants 2021, 10, 124. [Google Scholar] [CrossRef]
Ret Time | R-Group | Common Name | GSL Content (μmol/g DW) * | Class | Linear Equation | Det. Coeff. r2 | LOD mg/L | Range mg/L | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rr | Rs | Boc | Bob | Br | Es | |||||||||
1 | 3.65 | methyl | Glucocapparin | ND | ND | ND | ND | ND | ND | Aliphatic | y = 43.343x − 1.254 | 0.9998 | 0.27 | 0.23–60.31 |
2 | 4.62 | 3-(Methylsulfinyl)propyl | Glucoiberin | ND | ND | 8.25 ± 0.74 | 5.13 ± 0.11 | 4.12 ± 0.21 | ND | Aliphatic | y = 80.427x + 0.234 | 0.9997 | 0.25 | 0.85–10.92 |
3 | 5.45 | 2-Hydroxybut-3-enyl | Progoitrin | ND | ND | 15.21 ± 0.45 | 3.34 ± 0.15 | 6.77 ± 0.42 | 12.35 ± 0.89 | Aliphatic | y = 30.468x + 1.257 | 0.9999 | 0.55 | 0.74–94.83 |
4 | 6.23 | 3-(Methylsulfonyl)propyl | Glucoheirolin | ND | ND | ND | ND | ND | ND | Aliphatic | y = 38.502x − 0.236 | 0.9996 | 0.05 | 1.19–38.21 |
5 | 7.24 | Prop-2-enyl | Sinigrin | ND | ND | 18.02 ± 1.02 | 22.02 ± 0.98 | 8.12 ± 0.65 | 14.22 ± 0.55 | Aliphatic | y = 90.766x − 0.475 | 0.9992 | 0.21 | 0.89–54.95 |
6 | 7.72 | 4-(Methylsulfinyl)butyl | Glucoraphanin | 7.05 ± 0.53 | 14.96 ± 0.89 | 12.32 ± 0.52 | 16.14 ± 0.23 | ND | 1.23 ± 0.08 | Aliphatic | y = 18.618x − 1.235 | 0.9992 | 0.23 | 0.89–28.68 |
7 | 8.79 | 4-(Methylsulfinyl)but-3-enyl | Glucoraphenin | 15.11 ± 0.84 | 8.32 ± 0.44 | ND | ND | ND | ND | Aliphatic | y = 20.730x − 0.254 | 0.9997 | 0.19 | 2.20–35.31 |
8 | 9.21 | 5-(Methylsulfinyl)pentyl | Glucoalyssin | ND | ND | ND | ND | ND | 2.95 ± 0.07 | Aliphatic | y = 81.427x + 0.514 | 0.9995 | 0.18 | 1.11–35.61 |
9 | 10.19 | 4-Hydroxy benzyl | Sinalbin | 3.02 ± 0.06 | 10.21 ± 0.27 | ND | ND | ND | ND | Aromatic | y = 67.591x + 1.235 | 0.9998 | 0.19 | 2.30–36.21 |
10 | 10.82 | 6-(Methylsulfinyl)hexyl | Glucohesperin | ND | ND | ND | ND | ND | ND | Aliphatic | y = 29.598x − 0.369 | 0.9994 | 0.22 | 0.99–23.65 |
11 | 11.65 | but-3-enyl | Gluconapin | 4.15 ± 0.23 | 5.23 ± 0.33 | 11.11 ± 0.09 | 15.02 ± 0.47 | 13.21 ± 0.77 | 3.44 ± 0.58 | Aliphatic | y = 52.109x − 5.158 | 0.9996 | 0.21 | 0.36–52.15 |
12 | 12.53 | 4-hydroxy-Indol-3-ylmethyl | 4-hydroxyglucobrassicin | 8.59 ± 0.84 | 16.52 ± 1.02 | 6.32 ± 0.18 | 7.72 ± 0.21 | 0.79 ± 0.07 | ND | Indolyl | y = 53.070x − 0.235 | 0.9994 | 0.24 | 0.36–31.26 |
13 | 13.98 | 2-Hydroxypent-4-enyl | Gluconapoleiferin | 6.32 ± 0.74 | 3.65 ± 0.05 | ND | 17.98 ± 1.05 | 7.11 ± 0.68 | 8.54 ± 0.28 | Aliphatic | y = 132.13x − 1.258 | 0.9993 | 0.55 | 0.12–12.67 |
14 | 14.85 | 3-(Methylthio)propyl | Glucoiberverin | ND | ND | 9.31 ± 0.54 | ND | 6.95 ± 0.65 | ND | Aliphatic | y = 7.5889x − 6.955 | 0.9994 | 0.36 | 1.23–0.65 |
15 | 15.75 | Benzyl | Glucotropaeolin | ND | ND | ND | ND | ND | ND | Aromatic | y = 43.343x − 2.095 | 0.9997 | 0.11 | 0.89–12.33 |
16 | 16.35 | 4-(Methylthio)-3-butenyl | Glucoraphasatin | 15.21 ± 0.98 | 15.58 ± 0.54 | ND | ND | ND | ND | Aliphatic | y = 31.579x + 0.365 | 0.9996 | 0.25 | 1.99–25.89 |
17 | 17.26 | 4-Mercaptobutyl | Glucosativin | ND | ND | ND | ND | ND | 13.55 ± 0.58 | Aliphatic | y = 29.598x − 0.215 | 0.9997 | 0.12 | 1.23–35.63 |
18 | 17.83 | Pent-4-enyl | Glucobrassicanapin | 4.21 ± 0.07 | 7.89 ± 0.12 | ND | 9.06 ± 0.22 | 14.12 ± 0.42 | 15.14 ± 0.87 | Aliphatic | y = 7.528x − 5.255 | 0.9997 | 0.11 | 0.06–11.65 |
19 | 19.01 | 4-(Methylsulfanyl)butyl | Glucoerucin | 12.54 ± 0.87 | 1.23 ± 0.03 | 13.12 ± 0.45 | 7.33 ± 0.32 | 16.32 ± 0.11 | 17.84 ± 1.02 | Aliphatic | y = 34.257x − 0.266 | 0.9996 | 0.23 | 0.37–52.23 |
20 | 21.11 | Indol-3-ylmethyl | Glucobrassicin | 15.23 ± 0.86 | 28.96 ± 1.11 | ND | 26.12 ± 1.23 | 1.03 ± 0.05 | 10.18 ± 0.65 | Indolyl | y = 53.040x − 1.525 | 0.9994 | 0.22 | 0.99–22.12 |
21 | 21.81 | 4-Methoxyindol-3-ylmethyl | 4-methoxyglucobrassicin | 10.14 ± 0.45 | 12.99 ± 0.85 | ND | ND | 5.25 ± 0.65 | 4.62 ± 0.44 | Indolyl | y = 132.254x − 6.989 | 0.9997 | 0.42 | 2.21–26.95 |
22 | 23.01 | Phenethyl | Gluconasturtiin | ND | ND | ND | ND | 4.12 ± 0.25 | 10.45 ± 0.47 | Aromatic | y = 7.5847x − 2.066 | 0.9997 | 0.33 | 1.25–33.25 |
23 | 23.63 | N-Methoxyindol-3-ylmethyl | Neoglucobrassicin | 13.36 ± 0.74 | 10.12 ± 0.25 | ND | ND | 30.98 ± 1.05 | 1.12 ± 0.05 | Indolyl | y = 43.259x + 0.237 | 0.9996 | 0.25 | 0.89–52.23 |
Total GSL content (μmol/g DW) | 114.93 | 135.66 | 93.66 | 129.86 | 118.89 | 115.63 | ||||||||
Total Aliphatic GSL (μmol/g DW) | 64.59 | 56.86 | 87.34 | 96.02 | 76.72 | 89.26 | ||||||||
Total Aromatic GSL (μmol/g DW) | 3.02 | 10.21 | 0.00 | 0.00 | 4.12 | 10.45 | ||||||||
Total Indolyl GSL (μmol/g DW) | 47.32 | 68.59 | 6.32 | 33.84 | 38.05 | 15.92 | ||||||||
No of detected compounds | 12 | 12 | 8 | 10 | 13 | 13 |
Yield (%v/w) * | Color | |
---|---|---|
Rr | 9.68 ± 0.25 | pale yellow |
Rs | 6.43 ± 0.36 | pale yellow |
Boc | 7.02 ± 0.87 | dark yellow |
Bob | 5.55 ± 0.15 | dark yellow |
Br | 8.11 ± 0.25 | colorless |
Es | 3.25 ± 0.36 | yellowish |
No. | Rt * | Compound | Calculated KI ** | Reported KI | Relative Abundance % *** | |||||
---|---|---|---|---|---|---|---|---|---|---|
Rr | Rs | Boc | Bob | Br | Es | |||||
Sulfur and Nitrogenous Compounds | ||||||||||
1 | 5.200 | 2-methylbut-3-enenitrile | 689 | 689 | 2.07 ± 0.82 | nd | nd | nd | 24.03 ± 0.98 | nd |
2 | 7.897 | isothiocyanatoethane | 887 | 885 | nd | nd | nd | 0.66 ± 0.11 | nd | nd |
3 | 8.024 | 3-isothiocyanatoprop-1-ene | 846 | 847 | nd | 0.90 ± 0.05 | 2.84 ± 0.32 | 9.86 ± 0.67 | 0.84 ± 0.02 | nd |
4 | 11.173 | 4-isothiocyanatobut-1-ene | 982 | 988 | nd | nd | 2.71 ± 0.12 | nd | 69.55 ± 1.02 | 0.47 ± 0.06 |
5 | 11.795 | 4-isothiocyanato-1-methylsulfanylbut-1-ene | 1438 | 1441 | 94.77 ± 1.25 | nd | nd | 5.14 ± 0.25 | nd | nd |
6 | 17.681 | thiolane | 1413 | 1415 | nd | 15.15 ± 0.22 | 7.14 ± 0.65 | 2.33 ± 0.04 | 0.60 ± 0.05 | 0.30 ± 0.02 |
7 | 17.951 | 1-(6-methylpyridin-3-yl)ethanone | 1157 | 1162 | nd | 4.20 ± 0.05 | nd | nd | nd | nd |
8 | 18.569 | 5-(methylsulfanyl)pentanenitrile | 1149 | 1154 | nd | nd | nd | nd | nd | 1.06 ± 0.32 |
9 | 21.463 | 1-methylpyrrolidin-2-one | 1010 | 1012 | nd | nd | 4.51 ± 0.25 | 7.72 ± 0.88 | nd | nd |
10 | 25.505 | 1-isothiocyanato-4-methylsulfanylbutane (erucin) | 1168 | 1172 | nd | nd | nd | nd | nd | 97.02 ± 1.51 |
11 | 25.600 | 4-methylsulfanylbutanenitrile | 1050 | 1051 | nd | nd | 40.35 ± 1.15 | 50.52 ± 1.02 | nd | 0.40 ± 0.08 |
12 | 25.610 | 2-isothiocyanatoethylbenzene | 1461 | 1465 | nd | nd | 11.28 ± 0.54 | 11.38 ± 0.42 | nd | nd |
96.84 | 20.25 | 68.83 | 87.61 | 95.02 | 99.25 | |||||
Alkanes | ||||||||||
13 | 4.616 | 3,5-dimethyloctane | 926 | 926 | nd | nd | nd | nd | 0.13 ± 0.02 | nd |
14 | 4.619 | 2-methylheptane | 765 | 767 | nd | nd | nd | nd | nd | 0.07 ± 0.01 |
15 | 4.728 | 2,5-dimethylhexane | 733 | 733 | nd | 2.73 ± 0.84 | nd | 0.56 ± 0.5 | nd | nd |
16 | 5.350 | Octane | 800 | 800 | nd | 8.83 ± 0.52 | 2.61 ± 0.78 | 0.95 ± 0.05 | nd | 0.09 ± 0.02 |
17 | 8.260 | Nonane | 900 | 900 | nd | 1.12 ± 0.10 | nd | nd | nd | nd |
18 | 11.388 | Decane | 997 | 999 | nd | 8.18 ± 0.57 | nd | 1.41 ± 0.12 | nd | 0.18 ± 0.01 |
19 | 11.399 | 4-methyldodecane | 1258 | 1260 | nd | nd | 4.38 ± 0.21 | nd | nd | nd |
20 | 12.122 | 4-methyldecane | 1060 | 1062 | nd | 1.71 ± 0.32 | 0.85 ± 0.06 | nd | nd | nd |
21 | 13.455 | Tetradecane | 1400 | 1400 | nd | 1.96 ± 0.14 | 0.97 ± 0.08 | 0.32 ± 0.02 | nd | nd |
22 | 14.601 | Undecane | 1100 | 1100 | nd | nd | nd | nd | 2.66 ± 0.15 | 0.32 ± 0.04 |
23 | 14.621 | Dodecane | 1200 | 1200 | 2.30 ± 0.25 | 14.18 ± 0.77 | 7.09 ± 0.54 | 2.38 ± 0.08 | nd | nd |
24 | 15.019 | 2-methyldecane | 1155 | 1160 | nd | nd | 0.86 ± 0.14 | nd | nd | nd |
25 | 16.572 | 2-methylundecane | 1162 | 1166 | nd | 2.61 ± 0.12 | 0.93 ± 0.06 | nd | nd | nd |
26 | 18.079 | 2,6-dimethylundecane | 1222 | 1216 | nd | 2.67 ± 0.64 | 0.84 ± 0.08 | nd | nd | nd |
27 | 19.517 | 2-methyldodecane | 1268 | 1265 | nd | 2.00 ± 0.144 | nd | nd | nd | nd |
28 | 20.575 | Tridecane | 1300 | 1300 | nd | 2.80 ± 0.87 | 1.23 ± 0.02 | 0.38 ± 0.01 | nd | nd |
2.30 | 48.79 | 19.76 | 6.00 | 2.79 | 0.66 | |||||
Cyclic hydrocarbons | ||||||||||
29 | 5.033 | 1,3-dimethyl- cis-cyclohexane | 779 | 778 | nd | 2.71 ± 0.11 | nd | 0.55 ± 0.01 | nd | nd |
30 | 5.075 | 1,4-dimethyl- cis-cyclohexane | 774 | 777 | nd | 0.67 ± 0.05 | nd | nd | nd | nd |
31 | 6.400 | ethylcyclohexane | 831 | 831 | nd | nd | nd | nd | nd | nd |
32 | 12.463 | butylcyclohexane | 1028 | 1030 | nd | 2.13 ± 0.04 | 1.05 ± 0.08 | nd | nd | nd |
33 | 13.244 | cyclododecanol | 1571 | 1575 | nd | 2.90 ± 0.11 | 1.49 ± 0.26 | nd | nd | nd |
34 | 13.247 | 11,11-dimethyl-bicyclo[8.2.0]dodecane | 1472 | 1476 | nd | nd | nd | 0.48 ± 0.04 | nd | nd |
35 | 14.998 | 2-methyldecahydro naphthalene | 1159 | 1161 | nd | 1.55 ± 0.05 | nd | nd | nd | nd |
0.00 | 9.96 | 2.54 | 1.03 | 0.00 | 0.00 | |||||
Other classes | ||||||||||
36 | 4.770 | 3-methylbutyl 2-methylpropanoate | 996 | 998 | nd | 0.51 ± 0.03 | nd | nd | nd | nd |
37 | 5.846 | tetrachloroethene | 809 | 814 | nd | 7.07 ± 0.74 | nd | nd | nd | nd |
38 | 7.676 | hepta-1,5-diene | 689 | 691 | nd | 5.58 ± 0.36 | nd | nd | 1.04 ± 0.12 | nd |
39 | 10.175 | nonanal | 1105 | 1108 | nd | 6.04 ± 0.42 | 3.71 ± 0.03 | nd | nd | nd |
40 | 13.567 | 3-hydroxy-2,2-dimethylpropanal | 864 | 865 | nd | nd | nd | 0.45 ± 0.02 | nd | nd |
0.00 | 19.20 | 3.71 | 0.45 | 1.04 | 0.00 | |||||
Total number of identified compounds | 3 | 23 | 18 | 16 | 7 | 9 | ||||
Total % | 99.14 | 98.20 | 94.84 | 95.09 | 98.85 | 99.91 |
Sample | DPPH Radical Scavenging Activity (IC50 µg/mL) | |
---|---|---|
GSLs | Essential Oils | |
Rr | 90.21 ± 1.59 | 114.28 ± 1.15 |
Rs | 81.31 ± 1.00 | 119.86 ± 1.95 |
Boc | 50.79 ± 1.98 | 67.56 ± 2.43 |
Bob | 32.64 ± 1.87 | 70.25 ± 0.31 |
Br | 59.81 ± 1.63 | 86.09 ± 2.60 |
Es | 25.18 ± 1.55 | 18.01 ± 0.72 |
Ascorbic acid | 5.38 ± 0.56 |
Antioxidant Activity | Data Type | PLS | |||
---|---|---|---|---|---|
Slope | Offset | RMSE | R2 | ||
DPPH (Volatile compounds) | Cal. | 0.9851 | 1.1770 | 4.1312 | 0.9851 |
Val. | 0.9686 | 1.8793 | 5.1221 | 0.9796 | |
DPPH (Glucosinolates) | Cal. | 0.9950 | 0.2920 | 1.6371 | 0.9950 |
Val. | 0.9899 | 0.5609 | 2.4295 | 0.9902 |
DPPH (Volatile Compounds) | DPPH (Glucosinolates) | |||
---|---|---|---|---|
Y Reference | Y Predicted | Y Reference | Y Predicted | |
Rr1 | 113.08 | 116.51 | 90.19 | 86.96 |
Rr2 | 114.39 | 116.40 | 88.63 | 90.44 |
Rr3 | 115.37 | 116.29 | 91.80 | 87.48 |
Rs1 | 119.16 | 117.59 | 81.92 | 82.00 |
Rs2 | 122.06 | 117.56 | 81.85 | 82.93 |
Rs3 | 118.35 | 117.54 | 80.16 | 81.08 |
Boc1 | 67.76 | 72.52 | 50.73 | 50.81 |
Boc2 | 65.04 | 73.25 | 48.85 | 50.43 |
Boc3 | 68.89 | 73.98 | 52.80 | 51.19 |
Bob1 | 70.14 | 63.41 | 31.91 | 32.93 |
Bob2 | 70.01 | 62.76 | 31.25 | 31.39 |
Bob3 | 70.60 | 64.07 | 34.77 | 34.48 |
Br1 | 88.49 | 86.27 | 59.89 | 60.71 |
Br2 | 86.45 | 86.05 | 61.39 | 60.18 |
Brs | 83.33 | 86.48 | 58.14 | 61.24 |
Es1 | 18.29 | 19.13 | 25.28 | 24.43 |
Es2 | 17.19 | 17.77 | 23.58 | 22.39 |
Es3 | 18.55 | 20.49 | 26.67 | 27.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, N.; Gad, H.A.; Al Musayeib, N.M.; Bishr, M.; Ashour, M.L. Correlation of Glucosinolates and Volatile Constituents of Six Brassicaceae Seeds with Their Antioxidant Activities Based on Partial Least Squares Regression. Plants 2022, 11, 1116. https://doi.org/10.3390/plants11091116
Khalil N, Gad HA, Al Musayeib NM, Bishr M, Ashour ML. Correlation of Glucosinolates and Volatile Constituents of Six Brassicaceae Seeds with Their Antioxidant Activities Based on Partial Least Squares Regression. Plants. 2022; 11(9):1116. https://doi.org/10.3390/plants11091116
Chicago/Turabian StyleKhalil, Noha, Haidy A. Gad, Nawal M. Al Musayeib, Mokhtar Bishr, and Mohamed L. Ashour. 2022. "Correlation of Glucosinolates and Volatile Constituents of Six Brassicaceae Seeds with Their Antioxidant Activities Based on Partial Least Squares Regression" Plants 11, no. 9: 1116. https://doi.org/10.3390/plants11091116
APA StyleKhalil, N., Gad, H. A., Al Musayeib, N. M., Bishr, M., & Ashour, M. L. (2022). Correlation of Glucosinolates and Volatile Constituents of Six Brassicaceae Seeds with Their Antioxidant Activities Based on Partial Least Squares Regression. Plants, 11(9), 1116. https://doi.org/10.3390/plants11091116