Phylogenetic Marker Selection and Protein Sequence Analysis of the ORF5 Gene Product of Grapevine Virus A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Double Antibody Sandwich Enzyme Linked Immunosorbent Assay (DAS-ELISA)
2.3. RNA Extraction and Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
2.4. Sequencing and Phylogenetic Analysis
2.5. ORF 5 Sequence Analyses
2.6. Sequence Analyses
3. Results
3.1. Virus Detection
3.2. Phylogenetic Analyses of the ORF5 Sequence
3.3. Analysis of the Partial Protein Sequence of p10, the ORF5 Gene Product
3.4. Comparing the Topology of Full Genome Tree and Gene Trees
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martelli, G.P. Where grapevine virology is heading to. In Proceedings of the 19th Congress of International Council for the Study of Viruses and Virus-Like Diseases of the Grapevine, Santiago, Chile, 9–12 April 2018; pp. 10–15. [Google Scholar]
- Naidu, R.; Rowhani, A.; Fuchs, M.; Golino, D.; Martelli, G.P. Grapevine leafroll: A complex viral disease affecting a high-value fruit crop. Plant Dis. 2014, 98, 1172–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minafra, A. Rugose wood of grapevines. Extended Abstracts, 30–34. In Proceedings of the 13th Meeting of ICVG, Adelaide, Australia, 12–17 March 2000. [Google Scholar]
- Garau Prota, R.; Piredda, V.A.; Boscia, R.; Prota, D. On the possible relationship between Kober stem grooving and Grapevine virus A. Vitis 1994, 33, 161–163. [Google Scholar]
- Chevalier, S.; Grief, C.; Clauzel, J.; Walter, B.; Fritsch, C. Use of an immunocapture-polymerase chain reaction procedure for the detection of Grapevine Virus A in kober stem grooving-infected grapevines. J. Phytopathol. 1995, 143, 369–373. [Google Scholar] [CrossRef]
- Adams, M.J.; Candresse, T.; Hammond, J.; Kreuze, J.F.; Martelli, G.P.; Namba, M.N.; Pearson, S.; Ryu, K.H.; Saldarelli, P.; Yoshikawa, N. Betaflexiviridae; International Committee on Taxonomy of Viruses (ICTV); Elsevier: Waltham, MA, USA, 2017; Available online: http://ictv.global/report (accessed on 12 September 2020).
- Conti, M.; Milne, R.G.; Luisoni, E.; Boccardo, G. A Closterovirus from a stem-pitting diseased grapevine. Phytopathology 1980, 70, 394–399. [Google Scholar] [CrossRef]
- Minafra, A.; Saldarelli, P.; Grieco, P.; Martelli, G.P. Nucleotide sequence of the 3-terminal region of the RNA of two filamentous grapevine viruses. Arch. Virol. 1994, 37, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Galiakparov, N.; Tanne, E.; Sela, I.; Gafny, R. Functional analyses of the Grapevine virus A genome. Virology 2003, 306, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Moradi, R.; Koolivand, D.; Eini, O.; Hajizadeh, M. Phylogenetic analysis of two Iranian grapevine virus A isolates using coat protein gene sequence. Iran. J. Genet. Plant Breed. 2017, 6, 48–57. [Google Scholar]
- La Notte, P.; Buzkan, N.; Choueiri, E.; Minafra, A.; Martelli, G.P. Acquisition and transmission of grapevine virus A by the mealybug Pseudococcus longispinus. J. Plant Pathol. 1997, 78, 79–85. [Google Scholar]
- Yoshikawa, N. Capillovirus, Foveavirus, Trichovirus, Vitivirus, 3rd ed.; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Encyclopedia of Virology; Academic Press: Cambridge, MA, USA, 2008; pp. 419–427. [Google Scholar]
- Haviv, S.; Iddan, Y.; Goszczynski, D.E.; Mawassi, M. The ORF5 of Grapevine virus A is involved in symptoms expression in Nicotiana benthamiana plants. Ann. Appl. Biol. 2012, 160, 181–190. [Google Scholar] [CrossRef]
- Wang Luo, S.; Wei, X.; Zheng, W.; Dou, Y.; Cai, X. Calculation of evolutionary correlation between individual genes and full-length genome: A method useful for choosing phylogenetic markers for molecular epidemiology. PLoS ONE 2013, 8, e81106. [Google Scholar] [CrossRef] [Green Version]
- Goszczynski, D.; Jooste, A. The application of single–strand conformation polymorphism (SSCP) technique for analysis of molecular heterogeneity of Grapevine virus A. Vitis 2002, 41, 77–82. [Google Scholar]
- Goszczynski, D.; Jooste, A. Identification of divergent variants of Grapevine virus A. Euro J. Plant Pathol. 2003, 109, 397–403. [Google Scholar] [CrossRef]
- Goszczynski, D.; Jooste, A. Identification of grapevines infected with divergent variants of Grapevine virus A using variant-specific RT-PCR. J. Virol. Methods 2003, 112, 157–164. [Google Scholar] [CrossRef]
- Anfoka, G.; Shahrour, W.; Nakhla, M. Detection and molecular characterization of Grapevine virus A in Jordan. Phytopathol. Mediterr. 2004, 43, 387–394. [Google Scholar]
- Alabi, O.J.; Al Rwahnih, M.; Mekuria, T.A.; Naidu, R.A. Genetic diversity of Grapevine Virus A in Washington and California vineyards. Phytopathology 2014, 104, 548–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murolo, S.; Romanazzi, G.; Rowhani, A.; Minafra, A.; La Notte, P.; Branzanti, M.B.; Savino, V. Genetic variability and population structure of Grapevine virus A coat protein gene from naturally infected Italian vines. Euro J. Plant Pathol. 2008, 120, 137–145. [Google Scholar] [CrossRef]
- Wang, J.; Xi, D.; Liu, J.; Chen, K.; Li, H.; Liu, X.; Yuan, S.; Ercisli, S.; Lin, H. Genetic variability of Grapevine virus A from Vitis vinifera L. × Vitis labrusca L. in Sichuan, China. Turk. J. Biol. 2012, 36, 542–551. [Google Scholar]
- Goszczynski, D.; Habili, N. Grapevine virus A variants of group II associated with Shiraz disease in South Africa are present in plants affected by Australian Shiraz disease, and have also been detected in the USA. Plant Pathol. 2012, 61, 205–214. [Google Scholar] [CrossRef]
- Predajna, L.; Glasa, M. Partial sequence analysis of geographically close grapevine virus A isolates reveals their high regional variability and an intra-isolate heterogeneity. J. Phytopathol. 2016, 164, 427–431. [Google Scholar] [CrossRef]
- Habili, N.; Asfsharifar, A.; Symons, R.H. First detection of an Ampelovirus, a Maculavirus and two vitiviruses in Iranian table grapes. In Proceedings of the Extended Abstracts 14th Meeting ICVG, Locorotondo, Italy, 12–17 September 2003; pp. 162–163. [Google Scholar]
- Rakhshandehroo, F.; Pourrahim, R.; Zamani Zadeh, H.; Rezaee, S.; Mohammadi, M. Incidence and distribution of viruses infecting Iranian vineyards. J. Phytopathol. 2005, 153, 480–484. [Google Scholar] [CrossRef]
- Roumi, V.; Afsharifar, A.; Izadpanah, K. Identification, distribution and prevalence of grapevine leafroll associated viruses and Grapevine virus A in Iran and their rate of incidence in grapevine cultivars. Iran. J. Plant Pathol. 2006, 42, Pe223–Pe240, en57–en60. [Google Scholar]
- Afsharifar, A.R.; Kamali, M.; Harighi, B.; Kamangar, S.B.; Roumi, V.; Izadpanah, K. A preliminary survey of grapevine viruses in Kurdistan province (West of Iran). In Proceedings of the Extended Abstracts 16th Meeting of ICVG, Dijon, France, 31 August–4 September 2009; pp. 114–115. [Google Scholar]
- Clark, M.; Adams, A. Characteristics of microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 1977, 34, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Foissac, X.; Savalle-Dumas, P.; Dulucq, M.J.; Gentit, M.J.; Candresse, T. Polyvalent detection of fruit tree Tricho, Capillo and Faveaviruses by nested RT-PCR using degenerated and inosine containing primers (PDO RT-PCR). Acta Hort. 2000, 550, 37–43. [Google Scholar]
- Mackenzie, D.J. A standard protocol for the detection of viruses and viroids using a reverse transcription-polymerase chain reaction technique. In Document CPHBT-RT-PCR1.00; The Canadian Food Inspection Agency: Ottawa, ON, Canada, 1997. [Google Scholar]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Gen. Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddison, W.; Maddison, D. Mesquite: A Modular System for Evolutionary Analysis, 2015. Version 3.10. Available online: http://mesquiteproject.org (accessed on 5 July 2016).
- Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE, a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Robinson, D.F.; Foulds, L.R. Comparison of phylogenetic trees. Math. Biosci. 1981, 53, 131–147. [Google Scholar] [CrossRef]
- Wiens, J.J. Missing data and the design of phylogenetic analyses. J. Biomed. Inf. 2005, 39, 34–42. [Google Scholar] [CrossRef]
- Posada, D. Using MODELTEST and PAUP* to select a model of nucleotide substitution. Curr. Protoc. Bioinform. 2003, 1, 5–6. [Google Scholar] [CrossRef]
- Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J. Mol. Evol. 1994, 39, 306–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, M. Grapevine viruses: A multitude of diverse species with simple but overall poorly adopted management solutions in the vineyard. J. Plant Pathol. 2020, 102, 643–653. [Google Scholar] [CrossRef]
- Risovannaya, V.; Volodin, V.; Volkov, Y.; Stranishevskaya, E.; Goryslavets, S. Mixed infecting of grapevine with viruses in the commercial vineyards of the Crimean Peninsula. BIO Web Conf. 2020, 25, 06005. [Google Scholar] [CrossRef]
- Poojari, S.; Moreau, D.L.; Kahl, D.; Ritchie, M.; Ali, S.; Úrbez-Torres, J.R. Disease incidence and genetic variability of economically important grapevine viruses in Nova Scotia. Can. J. Plant Pathol. 2020, 42, 584–594. [Google Scholar] [CrossRef]
- Crnogorac, A.; Panno, S.; Mandić, A.; Gašpar, M.; Giovanni Caruso, A.G.; Noris, E.; Davino, S.; Matić, S. Survey of five major grapevine viruses infecting Blatina and Žilavka cultivars in Bosnia and Herzegovina. PLoS ONE 2021, 16, e0245959. [Google Scholar] [CrossRef]
- Gu, X.; Fu, X.Y.; Li, W.H. Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol. Biol. Evol. 1995, 12, 546–557. [Google Scholar]
- Tomimur, K.; Gibbs, A.J.; Jenner, C.E.; Walsh, J.A.; Ohshima, K. The phylogeny of Turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Mol. Ecol. 2003, 12, 2099–2111. [Google Scholar] [CrossRef]
- Baradar, A.; Hosseini, A.; Ratti, C.; Hosseini, S. Phylogenetic analysis of a Bean yellow mosaic virus isolate from Iran and selecting the phylogenetic marker by comparing the individual genes and complete genome trees of BYMV isolates. Physiol. Mol. Plant Pathol. 2021, 114, 101632. [Google Scholar] [CrossRef]
East Azarbaijan Province | West Azarbaijan Province | Total | |
---|---|---|---|
Cultivar | Infected/Tested (% Infection) | Infected/Tested (% Infection) | Infected/Tested (% Infection) |
Keshmeshiye bidaneh | 27/170 (15.9) | 9/45 (20.0) | 36/215 (16.7) |
Angore-siyah | 8/72 (11.1) | 1/18 (5.6) | 9/90 (10.0) |
Fakhri | 5/44 (11.4) | 1/17 (5.9) | 6/61 (9.8) |
Garmian | 3/23 13.0) | 1/2 (50) | 4/25 (16.0) |
Qizil Uzum | 1/8 (12.5) | 0/4 (0) | 1/9 (11.1) |
Total | 44/317 (13.9) | 12/86 (14.4) | 56/403 (14.0) |
Best Model (Based on Bic) | Total Sites | Informative Sites | Singleton Sites | Constant Sites | |
---|---|---|---|---|---|
Full genome tree | GTR + F+I + G4 | 7313 | 3408 | 1194 | 2711 |
ORF1 tree | GTR + F+I + G4 | 5126 | 2499 | 793 | 1834 |
ORF2 tree | TIM3 + F + G4 | 533 | 318 | 116 | 99 |
ORF3 tree | TIM2 + F + G4 | 837 | 374 | 137 | 326 |
ORF4 tree | K2P + G4 | 596 | 203 | 87 | 306 |
ORF5 tree | K2P + I + G4 | 273 | 58 | 54 | 161 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastgou, M.; Roumi, V.; Noris, E.; Matić, S.; Ercisli, S. Phylogenetic Marker Selection and Protein Sequence Analysis of the ORF5 Gene Product of Grapevine Virus A. Plants 2022, 11, 1118. https://doi.org/10.3390/plants11091118
Rastgou M, Roumi V, Noris E, Matić S, Ercisli S. Phylogenetic Marker Selection and Protein Sequence Analysis of the ORF5 Gene Product of Grapevine Virus A. Plants. 2022; 11(9):1118. https://doi.org/10.3390/plants11091118
Chicago/Turabian StyleRastgou, Mina, Vahid Roumi, Emanuela Noris, Slavica Matić, and Sezai Ercisli. 2022. "Phylogenetic Marker Selection and Protein Sequence Analysis of the ORF5 Gene Product of Grapevine Virus A" Plants 11, no. 9: 1118. https://doi.org/10.3390/plants11091118
APA StyleRastgou, M., Roumi, V., Noris, E., Matić, S., & Ercisli, S. (2022). Phylogenetic Marker Selection and Protein Sequence Analysis of the ORF5 Gene Product of Grapevine Virus A. Plants, 11(9), 1118. https://doi.org/10.3390/plants11091118