An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability
Abstract
:1. Introduction
2. Classification of Soilless Systems
3. Soilless Cultivation
3.1. Suitable Plant Species for Soilless Cultivation Applications
3.2. Inert Substrates for Soilless Cultivation
3.2.1. General Aspects
3.2.2. Chemical Properties
3.2.3. Biological Properties
3.2.4. Environmental Perspective
3.2.5. Choice of Growing Medium
3.3. Plant Population Management in Hydroponics
3.3.1. Control of Pathogens
3.3.2. Physico-Chemical Parameters That Need to Be Controlled
3.3.3. Supply of Nutrients
3.4. Assessment, Current Situation and Future Perspectives for Hydroponics
3.4.1. Advantages of Hydroponics
3.4.2. Disadvantages of Hydroponics
3.4.3. Global Hydroponics Market and Commercial Production
3.5. Future Scope of Hydroponics
3.6. Preliminary Impact Assessment of Hydroponics
4. Aquaponics
4.1. General Aspects of Aquaponics
4.2. Advantages of Aquaponics
4.3. Disadvantages of Aquaponics
4.4. Aquaponic Parameters
4.5. Aquaponic Organisms
4.6. Potential for Phytoremediation
4.7. Preliminary Impact Assessment of Aquaponics
4.8. Germany’s Contribution to the Scientific and Economic Development of Aquaponics in the Frame of EU-Funded Projects
5. Vertical Farming
5.1. General Aspects of Vertical Farming
5.2. Advantages of Vertical Farming
5.3. Disadvantages of Vertical Farming
5.4. Preliminary Impact Assessment of Vertical Farming
6. Rough Comparison of Soilless Systems
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Technique | Description | Advantages | Disadvantages |
---|---|---|---|
Circulating methods (closed systems) | Nutrient solution pumped through plant root system, collecting and reusing excess solution. | ||
NFT [23,31,43,110] | Plants in channels with nutrient solution flowing past roots driven by a slight gradient. Often in substrate-filled net pots. | - low initial costs - reusability of nutrient solution - low probability of blockages | - control of nutrient concentrations and pH required - difficult for species with short roots - power/pump failures |
DFT [23,31,43,167] | Growing directly in nutrient solution. Often in substrate-filled net pots. | - efficient water and nutrient use - water-loving and fast-growing plants - can be organic | - take care regarding sufficient oxygenation - risk of diseases, etc. |
Ebb and flow system [23,31,168,169] | Plants placed directly in growing trays often filled with medium. Nutrient solution periodically floods planting chamber and returns to reservoir. | - water-loving plants - energy-efficient - easily scalable | - high demand for reservoir capacities and nutrient medium - risk of anoxia - power/pump failures |
Drip system [23,31,33,43,170] | Substrate in which roots are supplied with nutrient solution via drip emitter, often periodically. | - simple installation - efficient water and nutrient use and easy control | - drip lines/emitters susceptible to blockages - control of nutrient concentrations and pH required - power/pump failures |
Wick system [23,43,171] | Capillary action feeds plants via synthetic fibers such as nylon. Often with absorbent medium. | - suitable for indoor, small or single plants such as herbs and spices - passive; no electricity needed | - requires a lot of water |
Aeroponic [28,166,172] | Roots hang in air surrounded by sufficient oxygen and wetted with aerosol of nutrient solution distributed by atomizers. | - excellent aeration - reusability of nutrient solution - absence of GM - water-saving - low risk of diseases - high productivity - vertical usability | - maintenance effort - atomizers may clog - cleaning of root chambers - high initial costs - power/pump failures - control of nutrient concentrations and pH required |
Aquaponic [28,77,95] | Combining hydroponic culture of plants with aquaculture of fish in closed water cycle and nitrifying bacteria. | - efficient water and nutrient use - no fertilizers required | - maintenance effort - risk of algae growth - risk of diseases, etc. - power/pump failures - sufficient oxygenation |
Non-circulating methods | Nutrient solution is replaced when nutrient concentration decreases or pH and EC change. | ||
Root dipping technique [173] | Pots closely spaced submerged in nutrient solution. | - inexpensive - little maintenance - passive; no electricity needed - good aeration | - less efficient water and nutrient use - risk of diseases, etc. |
Floating technique [27] | Plants in small pots are fixed to Styrofoam sheet (or light plate) and float on nutrient solution. | - inexpensive - little maintenance - passive; no electricity needed | - less efficient water and nutrient use - risk of diseases, etc. - artificial aeration |
Capillary action technique [174] | Plant pots with holes at bottom and inert medium placed in shallow containers. Nutrient solution reaches medium by capillary action. | - suitable for ornamental, flower and indoor plants | - aeration depending on medium |
Technique | Description | Advantages | Disadvantages |
---|---|---|---|
Hanging bag technique [173] | Approximately 1 m long polyethylene bags filled with sterilized coconut fibers are sealed at the bottom and hung up (“verti-grow” technique). Plants in net pots pressed into holes in the sides of hanging bags. Nutrient solution distributed evenly from the top by micro-sprinkler. The nutrient solution drips down and moistens coconut fibers and plant roots. | - chance to reuse solution through nutrient solution-collecting channel - suitable for lettuce, leafy vegetables, strawberry and small flower plants | - risk of algae or mold growth - power/pump failures |
Grow bag technique [175] | Polythene bags about 1 m long filled with sterilized coconut dust are placed horizontally in rows on the ground. Small holes are made at the top of the bags and 2–3 plants in net pots per bag are pressed into them. Slits on each side of the bags are provided for drainage, and fertilization is done with a black capillary tube leading from the main feed line to each plant. | - chance to reuse solution through nutrient solution-collecting channel | - risk of algae or mold growth - power/pump failures |
Trench or trough technique [176] | Plants are grown in narrow trenches or in above-ground stone troughs. Inner linings of trenches are covered by thick polythene sheets. Size and shape of trench are constructed according to cropping nature. All required nutrients with water are circulated through the dripping system with a pump. | - suitable for lettuce, coriander, spinach, etc. - chance to reuse solution if nutrient solution-collecting channel is used | - tall-growing vine plants (cucumber, tomato, etc.) need additional support to carry the weight of their fruits - risk of algae or mold growth - power/pump failures |
Pot technique [27] | Pot technique is similar to trench or trough culture, but growing media is filled in clay or plastic pots. | - chance to reuse solution if nutrient solution-collecting channel is used - greater controllability by singling out | - tall-growing plants need additional support - risk of algae or mold growth - power/pump failures |
Type of Crop | Plant Species | Expected Yield | References |
---|---|---|---|
Cereals | Avena sativa (Oat) | Comparable or higher | Al-Karaki and Al-Momani [177], Fazaeli et al. [178], Singh and Singh [32] |
Glycine max (Soybean) | Higher and greater quality | Palermo et al. [179], Singh and Singh [32] | |
Oryza sativa (Rice) | Cultivar-dependent, higher | Vargas-Rodríguez [180], Singh and Singh [32], Irfan et al. [181] | |
Pisum sativum (Peas) | Comparable or higher | Singh and Singh [32], Jada, M. A. S. al [182] | |
Triticum aestivum (Wheat) | Higher | Gros et al. [183], Du Toit and Labuschagne [184], Singh and Singh [32] | |
Zea mays (Maize) | Comparable or higher | Vargas-Rodríguez [180], Rivera et al. [185], Singh and Singh [32], Bhattacharya [186] | |
Fruits | Cucumis melo (Melons) | Higher and greater quality | Guler et al. [187], Fukuda and Anami [188], Yam et al. [189] |
Fragaria ananassa (Strawberry) | Lower | Sarooshi and Cresswell [190], Albaho et al. [191], Treftz and Omaye [192] | |
Rubus idaeus (Raspberry) | Higher | Treftz and Omaye [193] | |
Vaccinium corymbosum (Blueberry) | Higher | Nascimento et al. [194] | |
Vitis vinifera (Grapes) | Comparable | Nemati et al. [55] | |
Vegetables | Allium cepa (Onion) | Comparable | Pascual et al. [195] |
Allium fistulosum (Scallion) | NA | ||
Allium schoenoprasum (Chive) | Comparable | Resh [83] | |
Apium graveolens (Celery) | Comparable | Pascale et al. [196] | |
Asparagus officinalis (Asparagus) | Lower | Poll et al. [197] | |
Beta vulgaris (Beet) | Higher | Singh and Singh [32] | |
Brassica oleracea var. botrytis (Cauliflower) | Higher | Singh and Singh [32] | |
Brassica oleracea var. capitata (Cabbage) | Higher | Singh and Singh [32] | |
Brassica oleracea var. sabellica (Kale) | Higher | Chandra et al. [198] | |
Capsicum annum (Bell pepper) | Lower or Higher | Albaho et al. [191], Chandra et al. [198] | |
Capsicum frutescens (Chili) | Higher | Alimuddin et al. [199] | |
Cucumis sativus (Cucumbers) | Comparable or higher | Gros et al. [183], Singh and Singh [32], Chandra et al. [198] | |
Cucurbita pepo (Zucchini) | Higher | Chandra et al. [198] | |
Lycopersicon esculentum (Tomato) | Higher | Singh and Singh [32], Chandra et al. [198] | |
Psophocarpus tetragonolobus (Winged bean) | Comparable or lower | Chow and Price [200] | |
Raphanus sativus (Radish) | Comparable | Gros et al. [183] | |
Solanum melongena (Eggplant) | Higher | Costa et al. [201] | |
Solanum tuberosum (Potato) | Comparable or higher | Ritter et al. [202], Singh and Singh [32] | |
Leafy vegetables | Atriplex spp. (Saltbush) | Comparable | Sharma et al. [33] |
Beta vulgaris subsp. vulgaris (Swiss chard) | Higher | Maboko and Plooy [203], Chandra et al. [198] | |
Ipomoea aquatica (Kang Kong) | Semi-aquatic plant | Xiang et al. [204] | |
Lactuca sativa (Lettuce) | Higher | Singh and Singh [32], Barbosa et al. [205], Touliatos et al. [38] | |
Spinacia oleracea (Spinach) | Higher | Ranawade et al. [40] | |
Condiments | Anethum graveolens (Dill) | Comparable | Resh [83] |
Anthriscus cerefolium (Chervil) | Comparable | Resh [83] | |
Artemisia dracunculus (Tarragon) | Comparable | Resh [83] | |
Barbarea verna (Upland cress) | Comparable | Resh [83] | |
Brassica integrifolia (Mustard) | Higher | Padmathilake et al. [206] | |
Foeniculum vulgare (Fennel) | Comparable | Resh [83] | |
Mentha x piperita (Peppermint) | Higher | Daryadar [207], Mairapetyan et al. [208] | |
Mentha spicata (Mint) | Higher and greater quality | Hayden [44], Padmathilake et al. [206], Vimolmangkang et al. [209], Surendran et al. [210] | |
Nasturtium officinale (Watercress) | Comparable | Resh [83] | |
Ocimum spp. (Basil) | Comparable or higher and greater quality | Sgherri et al. [211], Resh [83], Chandra et al. [198], Mairapetyan et al. [208] | |
Origanum majorana (Marjoram) | Comparable | Resh [83] | |
Origanum vulgare (Oregano) | Comparable | Resh [83] | |
Petroselinum crispum (Parsley) | Higher | Chandra et al. [198] | |
Salvia officinalis (Sage) | Comparable | Resh [83] | |
Thymus vulgaris (Thyme) | Comparable | Resh [83] | |
Trachyspermum roxburghianum (Asamodagam) | Higher | Padmathilake et al. [206] | |
Trigonella foenum-graecum (Methi) | Higher | Gurdas et al. [212] | |
Flower/ornamental crops | Chrysanthemum indicum (Chrysanthemum) | Higher | Wilson and Finlay [213] |
Dianthus caryophyllus (Carnations) | Higher | Hanan and Holley [214] | |
Rosa berberifolia (Roses) | Comparable | Das et al. [215] | |
Tagetes patula (Marigold) | Comparable | Sarmah and Bora [216] | |
Medical crops | Aloe vera (Indian Aloe) | Higher | Bhattacharya [186] |
Anemopsis californica (Yerba mansa) | Lower | Hayden [44] | |
Solenostemon scutellarioides (Coleus) | NA | ||
Urtica dioica (Nettle) | Comparable | Hayden [44] | |
Fodder crops | Axonopus compressus (Carpet grass) | NA | |
Cynodon dactylon (Bermuda grass) | NA | ||
Hordeum vulgare (Barley) | Comparable | Asadullah et al. [37], Al-Karaki and Al-Hashimi [217] | |
Medicago sativa (Alfalfa) | Comparable | Al-Karaki and Al-Hashimi [217] | |
Sorghum bicolor (Sorghum) | Comparable or higher | Vargas-Rodríguez [180], Bhattacharya [186] |
Material | Origin | Advantages | Disadvantages |
---|---|---|---|
Sand | Natural with particles of 0.05–2.0 mm | Relatively inexpensive, good drainage ability | Low nutrient- and water-holding capacity, high volume weight, low total pore space |
Rockwool | Melted silicates at 1500–2000 °C | Light volume weight, high total pore space, ease of handling, totally inert, nutrition can be carefully controlled | Disposal problems, energy consumed during manufacture |
Vermiculite | Mg, Al and Fe silicate sieved and heated to 1000 °C | Light volume weight, high nutrient-holding ability, good water-holding ability, good pH buffering capacity, good aeration due to high pore space | Compacts when too wet, energy-consuming product, expensive |
Perlite | Siliceous volcanic mineral sieved and heated to 1000 °C | Light volume weight, sterile, neutral in pH (6.5–7.5), no decay, sufficient total pore space | Low nutrient capacity, energy-consuming product, expensive |
Pumice | Light silicate mineral of volcanic material | Relatively light volume weight, good total pore space, cheap and long-lasting, environmentally friendly | High transport costs, pH may be high |
Peat | Natural anaerobically processed plant residues | Physical stability, good air and water-holding capacity due to high total pore space, low microbial activity, light volume weight, low and easily adjustable pH, low nutrient content | Finite resource, environmental concerns (CO2 release), increasing cost due to energy crisis, may be strongly acidic, shrinking may lead to substrate hydro-repellence |
Coconut coir | By-product of fiber coconut processing | Physical stability, light weight, good air content due to high total pore space and high water-holding capacity, subacid-neutral pH (5–6.8) | May contain high salt levels, energy consumption during transport |
Bark (well-aged) | By-product or waste of wood manufacture | Good air content and water-holding capacity, good total pore space, sub-acid-neutral pH (5–7), sufficient volume weight, long-lasting | High variability, need time to reduce C:N ratio and terpenes concentrations, increasing cost since used as an alternative to fuel and in landscaping |
Green compost | Composted plant residues | Good source of potassium and micronutrients, suppression of diseases, good moisture-holding capacity, urban waste reduction | Non-homogeneous, high volume weight, may contain excess salt, need time to be composted, becomes easily waterlogged |
Biochar and hydrochar | Solid material derived from biomass pyrolysis or biomass hydrolysis | Production energy-neutral, helps with carbon sequestration, biologically very stable, wet material can be used for hydrochar; hydrochar has low electric conductivity | Properties vary dependent on feedstock (biochar), high production costs, biochar often has high pH, can be dusty |
References
- Wackernagel, M.; Cranston, G.; Morales, J.C.; Galli, A. Ecological Footprint Accounts. In Handbook of Sustainable Development; Atkinson, G., Dietz, S., Neumayer, E., Eds.; Edward Elgar: Cheltenham, England, 2014; ISBN 1848444729. [Google Scholar]
- Lin, D.; Galli, A.; Borucke, M.; Lazarus, E.; Grunewald, N. Tracking Supply and Demand of Biocapacity through Ecological Footprint Accounting. In Sustainability Assessment of Renewables-Based Products; Dewulf, J., de Meester, S., Alvarenga, R.A.F., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2015; pp. 179–200. ISBN 9781118933916. [Google Scholar]
- Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M.S.; Martindill, J.; Medouar, F.-Z.; Huang, S.; et al. Ecological Footprint Accounting for Countries: Updates and Results of the National Footprint Accounts, 2012–2018. Resources 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Wackernagel, M.; Galli, A.; Hanscom, L.; Lin, D.; Mailhes, L. Ecological Footprint accounting: Criticisms and applications. In Routledge Handbook of Sustainability Indicators; Bell, S., Morse, S., Eds.; Routledge: London, UK, 2018; pp. 521–539. ISBN 9780367497552. [Google Scholar]
- Wackernagel, M.; Galli, A.; Hanscom, L.; Lin, D.; Mailhes, L. Ecological Footprint accounting. In Principles Routledge Handbook of Sustainability Indicators; Bell, S., Morse, S., Eds.; Routledge: London, UK, 2018; pp. 244–264. ISBN 9780367497552. [Google Scholar]
- Wackernagel, M.; Beyers, B. Ecological Footprint: Managing Our Biocapacity Budget; New Society Publishers: Gabriola Island, Canada, 2019; ISBN 9781771423007. [Google Scholar]
- Wackernagel, M.; Lin, D.; Evans, M.; Hanscom, L.; Raven, P. Defying the Footprint Oracle: Implications of Country Resource Trends. Sustainability 2019, 11, 2164. [Google Scholar] [CrossRef] [Green Version]
- Global Footprint Network. National Footprint accounts 2019 edition. 2019.
- Lin, D.; Wambersie, L.; Wackernagel, M.; Hanscom, P. (Eds.) Global Footprint Network. In Calculating Earth Overshoot Day 2020: Estimates Point to August 22nd; Global Footprint Network: Oakland, CA, USA, 2020. [Google Scholar]
- Peters, G.P.; Marland, G.; Le Quéré, C.; Boden, T.; Canadell, J.G. Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nat. Clim. Chang. 2012, 2, 2–4. [Google Scholar] [CrossRef]
- Galli, A.; Halle, M.; Grunewald, N. Physical limits to resource access and utilisation and their economic implications in Mediterranean economies. Environ. Sci. Policy 2015, 51, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Ryder, J.; Iddya, K.; Ababouch, L.; Hallegraeff, G. Impacts of climate change on harmful algal blooms and seafood safety. In Assessment and Management of Seafood Safety and Quality: Current Practices and Emerging Issues. Food and Agric; Organization of the United Nations: Rome, Italy, 2014; pp. 174–184. [Google Scholar]
- Edwards, P. Aquaculture environment interactions: Past, present and likely future trends. Aquaculture 2015, 447, 2–14. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, W.; Tong, C.; Zeng, C.; Yu, X.; Mou, X. China’s coastal wetlands: Conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 2015, 79, 25–41. [Google Scholar] [CrossRef]
- Sutradhar, L.C.; Bala, S.K.; Islam, A.; Hasan, M.A.; Paul, S.; Rhaman, M.M.; Pavell, M.A.A.; Billah, M. A review of good adaptation practices on climate change in Bangladesh. In Proceedings of the 5th International Conference on Water & flood Management, Tokyo, Japan, 14–18 March 2015. [Google Scholar]
- Rockström, J.; Karlberg, L. The Quadruple Squeeze: Defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene. AMBIO J. Environ. Soc. 2010, 39, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Killebrew, K.; Wolff, H. Environmental Impacts of Agricultural Technologies. Evans Sch. Policy Anal. Res. Group 2010, EPAR Brief No. 65, 1–18. [Google Scholar]
- Walls, M. Agriculture and environment. MTT Agrifood Res. Finl. 2006. Available online: https://www.oecd.org/agriculture/topics/agriculture-and-the-environment/ (accessed on 3 February 2022).
- Kläring, H.-P. Strategies to control water and nutrient supplies to greenhouse crops. A review. Agronomie 2001, 21, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Bridgewood, L. Hydroponics: Soilless Gardening Explained; The Crowood Press Limited: Marlborough, UK, 2003. [Google Scholar]
- Marginson, S. Aero-Farms Urban Agriculture System: Less Space, Less Water, and No Pesticides. New Atlas [Online], 11 June 2010. Available online: https://newatlas.com/aerofarms-urban-agriculture/15371/ (accessed on 3 February 2022).
- Brechner, M.; Both, A.J.; CEA Staff. Hydroponic Lettuce Handbook; Cornell Controlled Environment Agriculture, Cornell University: New York, NY, USA, 1998. [Google Scholar]
- Geilfus, C.-M. Controlled Environment Horticulture: Improving Quality of Vegetables and Medicinal Plants; Springer Nat.: Berlin/Heidelberg, Germany, 2019; ISBN 9783030231972. [Google Scholar]
- Khan, F.A. A review on hydroponic greenhouse cultivation for sustainable agriculture. Int. J. Agric. Environ. Food Sci. 2018, 2, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Beibel, J.P. Hydroponics—The Science of Growing Crops Without Soil. Fla. Dep. Agric. Bull. 1960, 180. Available online: https://www.labroots.com/trending/videos/10250/hydroponics-science-growing-plants-without-soil (accessed on 3 February 2022).
- Maharana, L.; Koul, D.N.; The emergence of Hydroponics. Yojana 2011, 39–40. Available online: https://thenaturalfarmer.org/article/the-history-of-hydroponics/ (accessed on 3 February 2022).
- Hussain, A.; Iqbal, K.; Aziem, S.; Mahato, P.; Negi, A.K. A Review On The Science Of Growing Crops Without Soil (Soilless Culture)—A Novel Alternative For Growing Crops. Int. J. Agric. Crop. Sci. 2014, 7, 833–842. [Google Scholar]
- AlShrouf, A. Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. Int. Sch. Res. Netw. Agron. (ISRN) 2017, 27, 247–255. [Google Scholar]
- Van Os, E.; Gieling, T.H.; Ruijs, M.N.A. Equipment for hydroponic installations. In Hydroponic Production of Vegetables and Ornamentals; Savvas, D., Passam, H.C., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 103–141. [Google Scholar]
- Savvas, D.; Gianquinto, G.; Tuzel, Y.; Gruda, N. Good Agricultural Practices for greenhouse vegetable crops—12. Soilless Culture: Principles for Mediterranean Climate Areas. Food Agric. Organ. U. N. 2013, 217. Available online: https://www.researchgate.net/publication/260984593_Good_Agricultural_Practices_for_greenhouse_vegetable_crops_Principles_for_Mediterranean_climate_areas (accessed on 3 February 2022).
- Savvas, D.; Gruda, N. Application of soilless culture technologies in the modern greenhouse industry—A review. Eur. J. Hortic. Sci. 2018, 83, 280–293. [Google Scholar] [CrossRef]
- Singh, S.; Singh, B.S. Hydroponics—A technique for cultivation of vegetables and medicinal plant. In Proceedings of the 4th Global Conference on Horticulture for Food, Nutrition and Livelihood Options, Bhubaneshwar, India, 5 August 2017; p. 220. [Google Scholar]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2018, 17, 364–371. [Google Scholar] [CrossRef]
- Mohammed, S.B.; Sookoo, R. Nutrient Film Technique for Commercial Production. Agric. Sci. Res. J. 2016, 6, 269–274. [Google Scholar]
- Peckenpaugh, D. Hydroponic Solutions: Volume 1: Hydroponic Growing Tips; New Moon Publishing, Inc.: HongKong, China, 2004; ISBN 9780944557044. [Google Scholar]
- Hovorka, A.J. The (Re) Production of Gendered Positionality in Botswana’s Commercial Urban Agriculture Sector. Ann. Assoc. Am. Geogr. 2005, 95, 294–313. [Google Scholar] [CrossRef]
- Ajmi, A.A.; Salih, A.A.; Kadim, I.; Othman, Y. Yield and water use efficiency of Barley fodder produced under hydroponic system in GCC countries using tertiary treated sewage effluents. J. Phytol. 2009, 1, 342–348. [Google Scholar]
- Touliatos, D.; Dodd, I.C.; McAinsh, M. Vertical farming increases lettuce yield per unit area compared to conventional horizontal hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frezza, D.; León, A.; Logegaray, V.; Chiesa, A.; Desimone, M.; Diaz, L. Soilless culture technology for high quality lettuce: Proc. IS on Soilless Culture and Hydroponics. Acta Hortic. 2005, 697, 43–48. [Google Scholar] [CrossRef]
- Ranawade, P.S.; Tidke, S.D.; Kate, A.K. Comparative Cultivation and Biochemical Analysis of Spinacia oleraceae Grown in Aquaponics, Hydroponics and Field Conditions. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1007–1013. [Google Scholar] [CrossRef]
- Bulgari, R.; Baldi, A.; Ferrante, A.; Lenzi, A. Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. N. Z. J. Crop. Hortic. Sci. 2016, 45, 119–129. [Google Scholar] [CrossRef]
- Majdi, Y.; Ahmandizadeh, M.; Ebrahimi, R. Effect of different substrates on growth indices and yield of green peppers at hydroponic cultivate. Curr. Res. J. Biol. Sci. 2012, 4, 496–499. [Google Scholar]
- Mohammed, S. Tomorrow’s Agriculture: “NFT Hydroponics”-Grow within Your Budget; Springer Int. Publ.: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hayden, A.L. Aeroponic and Hydroponic Systems for Medicinal Herb, Rhizome, and Root Crops. Am. Soc. Hortic. Sci. 2006, 41, 536–538. [Google Scholar] [CrossRef] [Green Version]
- Walters, K.J.; Currey, C.J. Hydroponic Greenhouse Basil Production: Comparing Systems and Cultivars. HortTechnology 2015, 25, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Gruda, N.; Qaryouti, M.M.; Leonardi, C. Growing Media. In Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; Baudoin, W., Nono-Womdim, R., Lutaladio, N., Hodder, A., Castilla, N., Leonardi, C., De Pascale, S., Qaryouti, S., Duffy, R., Eds.; FAO: Rome, Italy, 2013; pp. 271–302. [Google Scholar]
- Böhme, M. Effects of closed systems in substrate culture for vegetable production in greenhouses. Acta Hortic. 1995, 45–54. [Google Scholar] [CrossRef]
- Grillas, S.; Lucas, M.; Bardopoulous, E.; Sarafopoulos, S. Perlite based soilless culture systems: Current commercial application and prospects. Acta Hortic. 2001, 548, 105–113. [Google Scholar] [CrossRef]
- Gruda, N.; Caron, J.; Prasad, M.; Maher, M.J. Growing Media. In Encyclopedia of Soil Sciences, 3rd ed.; Ward Chesworth, W., Lal, R., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxford, UK; ISBN 9781498738934.
- Schmilewski, G. Growing medium constituents used in the EU. Acta Hortic. 2009, 33–46. [Google Scholar] [CrossRef]
- Raviv, M. Composts in growing media: What’s new and what’s next? Acta Hortic. 2013, 39–52. [Google Scholar] [CrossRef]
- Maher, M.J.; Thomson, D. Growth and manganese content of tomato (Lycopersicon esculentum) seedlings grown in Sitka spruce (Picea sitchensis (Bong.) Carr.) bark substrate. Sci. Hortic. 1991, 48, 223–231. [Google Scholar] [CrossRef]
- Gruda, N.; Schnitzler, W.H. Suitability of wood fiber substrate for production of vegetable transplants: I. Physical properties of wood fiber substrates. Sci. Hortic. 2004, 100, 309–322. [Google Scholar] [CrossRef]
- Gruda, N. Current and future perspective of growing media in Europe. Acta Hortic. 2012, 37–43. [Google Scholar] [CrossRef]
- Nemati, M.R.; Simard, F.; Fortin, J.-P.; Beaudoin, J. Potential Use of Biochar in Growing Media. Vadose Zone J. 2015, 14, 1–8. [Google Scholar] [CrossRef]
- Ortega, M.C.; Moreno, M.T.; Ordovás, J.; Aguado, M.T. Behaviour of different horticultural species in phytotoxicity bioassays of bark substrates. Sci. Hortic. 1996, 66, 125–132. [Google Scholar] [CrossRef]
- Morel, P.; Guillemain, G. Assessment of the possible phytotoxicity of a substrate using an easy and representative biotest. Acta Hortic. 2004, 644, 417–423. [Google Scholar] [CrossRef]
- Gruda, N.; Rau, B.J.; Wright, R.D. Laboratory Bioassay and Greenhouse Evaluation of a Pine Tree Substrate Used as a Container Substrate. Eur. J. Hortic. Sci. 2009, 74, 73–78. [Google Scholar]
- Gruda, N.; Schnitzler, W.H. The effect of water supply on bio-morphological and plant-physiological parameters of tomato transplants cultivated in wood fiber substrate. J. Appl. Bot. Food Qual. 2000, 74, 233–239. [Google Scholar]
- Grunert, O.; Hernandez-Sanabria, E.; Vilchez-Vargas, R.; Jauregui, R.; Pieper, D.H.; Perneel, M.; van Labeke, M.-C.; Reheul, D.; Boon, N. Mineral and organic growing media have distinct community structure, stability and functionality in soilless culture systems. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruda, N. Sustainable peat alternative growing media. Acta Hortic. 2012, 973–979. [Google Scholar] [CrossRef]
- Blok, C.; Urrestarazu, M. Substrate growing developments in Europe 2010–2027. Horticom Plataforma 2010. Available online: https://research.wur.nl/en/publications/substrate-growing-developments-in-europe-2010-2027 (accessed on 3 February 2022).
- Vinci, G.; Rapa, M. Hydroponic cultivation: Life cycle assessment of substrate choice. Br. Food J. 2019, 121, 1801–1812. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Christensen, T.H.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Boldrin, A. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agron. Sustain. Dev. 2013, 33, 721–732. [Google Scholar] [CrossRef] [Green Version]
- Steiner, C.; Harttung, T. Biochar as a growing media additive and peat substitute. Solid Earth 2014, 5, 995–999. [Google Scholar] [CrossRef]
- Raviv, M.; Krasnovsky, A.; Medina, S.; Reuveni, R. Assessment of various control strategies for recirculation of greenhouse effluents under semi-arid conditions. J. Hortic. Sci. Biotechnol. 1998, 74, 485–491. [Google Scholar] [CrossRef]
- Savvas, D. Nutrient solution recycling. In Hydroponic Production of Vegetables and Ornamentals; Embryo Publications: Athens, Greece, 2002; pp. 299–343. [Google Scholar]
- Maucieri, C.; Nicoletto, C.; Van Os, E.; Anseeuw, D.; van Havermaet, R.; Junge, R. Hydroponic Technologies. In Aquaponics Food Production; Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Combined Aquaculture and Hydroponic: Singapore, 2019. [Google Scholar]
- Zoschke, K.; Börnick, H.; Worch, E. Vacuum-UV radiation at 185 nm in water treatment—A review. Water Res. 2014, 52, 131–145. [Google Scholar] [CrossRef]
- Moriarty, M.J.; Semmens, K.; Bissonnette, G.K.; Jaczynski, J. Inactivation with UV-radiation and internalization assessment of coliforms and Escherichia coli in aquaponically grown lettuce. LWT 2018, 89, 624–630. [Google Scholar] [CrossRef]
- Van Os, E. Recent advances in soilless culture in Europe. Acta Hortic. 2017, 1–8. [Google Scholar] [CrossRef]
- Nicoletto, C.; Maucieri, C.; Sambo, P. Effects on Water Management and Quality Characteristics of Ozone Application in Chicory Forcing Process: A Pilot System. Agronomy 2017, 7, 29. [Google Scholar] [CrossRef]
- Runia, W.T. A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hortic. 1995, 221–229. [Google Scholar] [CrossRef]
- Le Quillec, S.; Fabre, R.; Lesourd, D. La désinfection par chloration à l’eau de Javel: Phytotoxicité sur tomate et chlorate de sodium. Infos CTIFL 2003, 40–43. Available online: https://agris.fao.org/agris-search/search.do?recordID=FR2004002114 (accessed on 3 February 2022).
- Lara, A. Nutrient Solution Management in the Hydroponic Production of Tomato. Terra Latinoam. 1999, 17, 221–229. [Google Scholar]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating aquaculture tank production systems: Aquaponics-integrating fish and plant culture SRAC Publication No. 454 (revision November 2006). South. Reg. Aquac. Cent. 2006. Available online: https://fisheries.tamu.edu/files/2013/09/SRAC-Publication-No.-454-Recirculating-Aquaculture-Tank-Production-Systems-Aquaponics-Integrating-Fish-and-Plant-Culture.pdf (accessed on 3 February 2022).
- Gislerød, H.R.; Kempton, R.J. The oxygen content of flowing nutrient solutions used for cucumber and tomato culture. Sci. Hortic. 1983, 20, 23–33. [Google Scholar] [CrossRef]
- Trejo-Tellez, L.I.; Gomez-Merino, F.C. Nutrient Solutions for Hydroponic Systems. In Hydroponics—A Standard Methodology for Plant Biological Researches; Asao, T., Ed.; BoD-Books on Demand: Nordstedt, Germany, 2012; ISBN 978-953-51-0386-8. [Google Scholar]
- De Kreij, C.; Voogt, W.; Baas, R. Nutrient Solutions and Water Quality for Soilless Cultures; Research Station for Floriculture and Glasshouse Vegetables (PBG): Naaldwijk, The Netherlands, 1999; Brochure 196. [Google Scholar]
- Silberbush, M.; Ben-Asher, J. Simulation study of nutrient uptake by plants from soilless cultures as affected by salinity buildup and transpiration. Plant Soil 2001, 233, 59–69. [Google Scholar] [CrossRef]
- Sonneveld, C. Effects of Salinity on Substrate Grown Vegetables and Ornamentals in Greenhouse Horticulture. Ph.D. Thesis, University of Wageningen, Wageningen, The Netherlands, 2000. [Google Scholar]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 7th ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439878675. [Google Scholar]
- Ikeda, H.; Koohakan, P.; Jaenaksorn, T. Problems and counter measures in the re-use of the nutrient solution in soilless production. Acta Hortic. 2002, 213–219. [Google Scholar] [CrossRef]
- Jones, J.W.; Mair, R.A.; Neves, R.J. Factors Affecting Survival and Growth of Juvenile Freshwater Mussels Cultured in Recirculating Aquaculture Systems. N. Am. J. Aquac. 2005, 67, 210–220. [Google Scholar] [CrossRef]
- Sardare, M.D.; Adame, S.V. A review on plant without soil-hydroponics. Int. J. Res. Eng. Technol. 2013, 2, 299–304. [Google Scholar] [CrossRef]
- Netherlands Department of Environment, Food and Rural Affairs, NDEFRA. Available online: https://www.government.nl/ministries/ministry-of-agriculture-nature-and-food-quality (accessed on 27 January 2021).
- Rural Industries Research and Development Corporation; Australia.
- Butler, J.D.; Oebker, N.F. Hydroponics as a Hobby: Growing Plants without Soil; University of Illinois, College of Agriculture, Extension Service in Agriculture and Home Economics: Urbana, IL, USA, 1962; Available online: http://hdl.handle.net/2142/33041 (accessed on 3 February 2022).
- Rufí-Salís, M.; Calvo, M.J.; Petit-Boix, A.; Villalba, G.; Gabarrell, X. Exploring nutrient recovery from hydroponics in urban agriculture: An environmental assessment. Resour. Conserv. Recycl. 2020, 155, 104683. [Google Scholar] [CrossRef]
- Zimmermann, M.; Fischer, M. Impact assessment of water and nutrient reuse in hydroponic systems using Bayesian Belief Networks. J. Water Reuse Desalination 2020, 10, 431–442. [Google Scholar] [CrossRef]
- Tewolde, F.T.; Takagaki, M.; Oshio, T.; Maruo, T.; Kozai, T.; Kikuchi, Y. Environmental impact of tomato production under different hydroponic systems. Acta Hortic. 2016, 267–271. [Google Scholar] [CrossRef]
- Martin, M.; Molin, E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability 2019, 11, 4124. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, X.C.; Ge, Y.; Dzakpasu, M.; Zhao, Y.; Xiong, J. Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China. Ecol. Eng. 2015, 83, 268–275. [Google Scholar] [CrossRef]
- Cowx, I.G. Cultured Aquatic Species Information Programme—Oncorhynchus mykiss. Food Agric. Organ. Fish. Aquac. Dep. 2006. Available online: https://www.semanticscholar.org/paper/Cultured-Aquatic-Species-Information-Programme-canadum/f457e370eff829f33bf249e2c7ca0b9f6d0d5eba (accessed on 3 February 2022).
- Buhmann, A.; Papenbrock, J. Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectives. Environ. Exp. Bot. 2013, 92, 122–133. [Google Scholar] [CrossRef]
- Miličić, V.; Thorarinsdottir, R.; Santos, M.D.; Hančič, M.T. Commercial Aquaponics Approaching the European Market: To Consumers’ Perceptions of Aquaponics Products in Europe. Water 2017, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.Z.; Wong, M.-H. Integrated wetlands for food production. Environ. Res. 2016, 148, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Pullin, R.S.V.; Rosenthal, H.; Maclean, J.L. Environment and Aquaculture in Developing Countries: An Overview of Environmental Issues in Developing-Country Aquaculture. ICLARM: Manila, Philippines, 1993; p. 359. Available online: https://digitalarchive.worldfishcenter.org/handle/20.500.12348/2954.
- Bunting, S.W. Principles of Sustainable Aquaculture: Promoting Social, Economic and Environmental Resilience; Routledge: London, UK, 2013; ISBN 9781136462511. [Google Scholar]
- Jacobs, A.E.; Harrison, J.A. Effects of floating vegetation on denitrification, nitrogen retention, and greenhouse gas production in wetland microcosms. Biogeochemistry 2014, 119, 51–66. [Google Scholar] [CrossRef]
- Okaichi, T. Toxic algal blooms and red tides: A global perspective. In Red Tides: Biology Environmental Science and Toxicology; Anderson, D.M., Nemoto, T., Anderson, D.M., Eds.; Elsevier: New York, NY, USA, 1989. [Google Scholar]
- Backer, L.C.; Mc Gillicuddy, D.J., Jr. Harmful algal blooms: At the interface between coastal oceanography and human health. Oceanography 2006, 19, 94–106. [Google Scholar]
- Kadlec, R.H.; Zmarthie, L.A. Wetland treatment of leachate from a closed landfill. Ecol. Eng. 2010, 36, 946–957. [Google Scholar] [CrossRef]
- König, B.; Janker, J.; Reinhardt, T.; Villarroel, M.; Junge, R. Analysis of aquaponics as an emerging technological innovation system. J. Clean. Prod. 2018, 180, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Jijakli, M.H.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Timmons, M.; Ebeling, J.M. Recirculating Aquaculture Systems. In Aquaculture Production Systems; Tidwell, J., Ed.; Wiley-Blackwell: Ames, IA, USA, 2012; pp. 245–277. ISBN 9781118250105. [Google Scholar]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. (Eds.) Update on tilapia and vegetable production in the UVI aquaponic system. In Proceedings of the 6th International Symposium on Tilapia in Aquaculture, Manila, Philippines, 12–16 September 2004; University of the Virgin Islands: Kingshill, VI, USA, 2010; pp. 1–15. [Google Scholar]
- Maucieri, C.; Nicoletto, C.; Junge, R.; Schmautz, Z.; Sambo, P.; Borin, M. Hydroponic systems and water management in aquaponics: A review. Ital. J. Agron. 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.J. The ABC of NFT; Grower Books: London, UK, 1979. [Google Scholar]
- Resh, H.M. Hydroponic food production. In A Definitive Guidebook of Soilless Food-Growing Methods; Wood Press Publishing Company: Santa Barbara, CA, USA, 1995. [Google Scholar]
- Food and Agriculture Organization of the United Nations. The State of the World Fisheries and Aquaculture: Sustainability in Action; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Tyson, R.V.; Simonne, E.H.; Treadwell, D.D.; White, J.M.; Simonne, A. Reconciling pH for Ammonia Biofiltration and Cucumber Yield in a Recirculating Aquaponic System with Perlite Biofilters. HortScience 2008, 43, 719–724. [Google Scholar] [CrossRef]
- Danaher, J.J.; Shultz, R.C.; Rakocy, J.E.; Bailey, D.S. Alternative Solids Removal for Warm Water Recirculating Raft Aquaponic Systems. J. World Aquac. Soc. 2013, 44, 374–383. [Google Scholar] [CrossRef]
- Delaide, B.; Goddek, S.; Gott, J.; Soyeurt, H.; Jijakli, M. Lettuce (Lactuca sativa L. var. sucrine) Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics. Water 2016, 8, 467. [Google Scholar] [CrossRef]
- Endut, A.; Jusoh, A.; Ali, N.; Wan Nik, W.B.; Hassan, A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour. Technol. 2010, 101, 1511–1517. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H. A Practical Guide for Aquaponics as an Alternative Enterprise; UF/IFAS Extension Service: 2014. Available online: https://www.youngfarmers.org/wp-content/uploads/2019/08/practical-guide-to-aquaponics_university-of-fl.pdf (accessed on 13 March 2021).
- Cripps, S.J.; Bergheim, A. Solids management and removal for intensive land-based aquaculture production systems. Aquac. Eng. 2000, 22, 33–56. [Google Scholar] [CrossRef]
- Turcios, A.E.; Papenbrock, J. Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef] [Green Version]
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef]
- Torbati, S.; Khataee, A.R.; Movafeghi, A. Application of watercress (Nasturtium officinale R. Br.) for biotreatment of a textile dye: Investigation of some physiological responses and effects of operational parameters. Chem. Eng. Res. Des. 2014, 92, 1934–1941. [Google Scholar] [CrossRef]
- Okumuş, V.; Çelik, K.S.; Sadin, Ö.; Dündar, A.; Onay, A.; Kılınç, E. Simultaneous Removal of Some Pesticides from Aqueous Solution by Using Submerged Aquatic Plant (Nasturtium officinale). Batman Univ. Yasam Bilimleri Derg. 2016, 6, 174–187. [Google Scholar]
- Okumuş, V.; Basaran, D.; Onay, A. Heavy metals biosorption by submerged plant Nasturtium officinale. Asian J. Chem. 2010, 22, 455–460. [Google Scholar]
- Aslan, M.; Unlu, M.Y.; Turkmen, N.; Ylmaz, Y.Z. Sorption of cadmium and effects on growth, protein content, and photosynthetic pigment composition of Nasturtium officinale R. Br. and Mentha aquatica L. Bull. Environ. Contam. Toxicol. 2003, 323–329. Available online: https://link.springer.com/article/10.1007/s00128-003-0167-1?noAccess=true (accessed on 3 February 2022).
- Kara, Y. Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinale. Int. J. Environ. Sci. Technol. 2005, 2, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Duman, F.; Leblebici, Z.; Aksoy, A. Growth and bioaccumulation characteristics of watercress (Nasturtium officinale R. BR.) exposed to cadmium, cobalt and chromium. Chem. Speciat. Bioavailab. 2009, 21, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Duman, F.; Ozturk, F. Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). J. Environ. Sci. 2010, 22, 526–532. [Google Scholar] [CrossRef]
- Keser, G.; Saygideger, S. Effects of Lead on the Activities of Antioxidant Enzymes in Watercress, Nasturtium officinale R. Br. Biol. Trace Elem. Res. 2010, 137, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, F.; Duman, F.; Leblebici, Z.; Temizgul, R. Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environ. Exp. Bot. 2010, 69, 167–174. [Google Scholar] [CrossRef]
- Aydin, D.; Coskun, O.F. Effects of EDTA on Cr+3 Uptake, Accumulation, and Biomass in Nasturtium officinale (Watercress). Ekoloji 2013, 22, 16–23. [Google Scholar] [CrossRef]
- Lin, L.J.; Luo, L.; Liao, M.A.; Zhang, X.; Yang, D.Y.; Ya, A.S.; Water, C.M. Cadmium accumulation characteristics of emerged plant Nasturtium officinale R. BR. Resour. Environ. Yangtze Basin 2015, 24, 684–689. [Google Scholar]
- Gounden, D.; Kisten, K.; Moodley, R.; Shaik, S.; Jonnalagadda, S.B. Impact of spiked concentrations of Cd, Pb, As and Zn in growth medium on elemental uptake of Nasturtium officinale (Watercress). J. Environ. Sci. Health Part B 2016, 51, 1–7. [Google Scholar] [CrossRef]
- Huang, K.; Lin, L.; Chen, F.; Liao, M.; Wang, J.; Tang, Y.; Lai, Y.; Liang, D.; Xia, H.; Wang, X.; et al. Effects of live Myriophyllum aquaticum and its straw on cadmium accumulation in Nasturtium officinale. Environ. Sci. Pollut. Res. Int. 2017, 24, 22503–22509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, F.; Wang, J.; Lin, L.; Liao, M.; Tang, Y.; Sun, G.; Wang, X.; Lv, X.; Deng, Q.; et al. Cutting after grafting affects the growth and cadmium accumulation of Nasturtium officinale. Environ. Sci. Pollut. Res. Int. 2019, 26, 15436–15442. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Barickman, T.C.; Sams, C.E.; McElroy, J.S. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). J. Agric. Food Chem. 2007, 55, 10628–10634. [Google Scholar] [CrossRef]
- Fernandez-Going, B.; Even, T.; Simpson, J. The effect of different nutrient concentrations on the growth rate and nitrogen storage of watercress (Nasturtium officinale R. Br.). Hydrobiologia 2013, 705, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Hernández, Y.D.; Martínez-Gutiérrez, G.A.; Urrestarazu, M.; Vasquez-Vasquez, L.; Escamirosa-Tinoco, C. Productivity under Shade and Different Nutrient Solution of Hydroponic Watercress (Nasturtium officinale R. BR.). J. Plant Nutr. 2015, 38, 1495–1504. [Google Scholar] [CrossRef]
- Dyer, D.J. Effectiveness of aquatic phytoremediation of nutrients via watercress (Nasturtium officinale), basil (Ocimum basilicum), dill (Anethum graveolens) and lettuce (Lactuca sativa) from effluent of a flow-through aquaculture operation. Grad. Theses Diss. Probl. Rep. 2006. [Google Scholar] [CrossRef]
- Smith, E.N. Watercress (Nasturtium officinale) Production Utilizing Brook Trout (Salvelinus fontinalis) Flow-through Aquaculture Effluent. Davis College of Agriculture; Natural Resources and Design: Alexandria, Australia, 2007. [Google Scholar]
- Chen, P.; Zhu, G.; Kim, H.-J.; Brown, P.B.; Huang, J.-Y. Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. J. Clean. Prod. 2020, 275, 122888. [Google Scholar] [CrossRef]
- IGB. INAPRO—Innovative Aquaponics for Professional Applications: IGB—Leibniz Institute of Freshwater Ecology and Inland Fisheries in the Research Association Berlin e.V. Available online: https://www.igb-berlin.de/projekt/inapro-innovative-aquaponik-fuer-professionelle-anwendungen (accessed on 2 February 2022).
- IGB. CITYFOOD—Multitrophic food production: A Water and Energy Efficient Solution Approach in the Context of Global Urbanisation: IGB—Leibniz Institute of Freshwater Ecology and Inland Fisheries in the Research Association Berlin e.V. Available online: https://www.igb-berlin.de/projekt/cityfood (accessed on 2 February 2022).
- University of Rostock. Standpunkt Fischglashaus—Agrar- und Umweltwissenschaftliche Fakultät: Viewpoint Fishgreenhouse—Faculty of Agricultural and Environmental Sciences. Available online: https://www.alamy.com/stock-photo-rostock-germany-27th-nov-2015-the-new-fischglashaus-lit-fish-greenhouse-90612177.html (accessed on 2 February 2022).
- Dos-Santos, M.J.P.L. COST FA1305—The EU Aquaponics Hub—Realising Sustainable Integrated Fish and Vegetable Production for the EU: COST—European Cooperation in Science and Technology. Available online: https://www.researchgate.net/project/COST-FA1305-The-EU-Aquaponics-Hub-Realising-Sustainable-Integrated-Fish-and-Vegetable-Production-for-the-EU (accessed on 2 February 2022).
- Der Tagesspiegel GmbH. Aquaponik-Farmen: Mit Fischen will dieses Berliner Unternehmen die Ernährung Revolutionieren—Berlin: Aquaponics Farms: With Fish, This Berlin Company Wants to Revolutionize Nutrition—Berlin. Available online: https://www.tagesspiegel.de/berlin/aquaponik-farmen-mit-fischen-will-dieses-berliner-unternehmen-die-ernaehrung-revolutionieren/26613842.html (accessed on 2 February 2022).
- ECF Farm Berlin. Urban Farming Meets Aquaponic! Available online: https://www.ecf-farm.de/ (accessed on 2 February 2022).
- TopFarmers GmbH. Aquaponic—Future Urban Farming: AquaTerraPonic. Available online: http://www.topfarmers.de/ (accessed on 2 February 2022).
- IFUN. Indoor Farming University Network. Available online: https://ifun.vertical-farming.net/ (accessed on 9 March 2021).
- Levin, J.; Stevenson, M. The 2050 Criteria: Guide to Responsible Investment in Agricultural, Forest, and Seafood Commodities; WWF Int.: Gran, Switzerland, 2012. [Google Scholar]
- Kalaitzoglou, P.; van Ieperen, W.; Harbinson, J.; van der Meer, M.; Martinakos, S.; Weerheim, K.; Nicole, C.C.S.; Marcelis, L.F.M. Effects of Continuous or End-of-Day Far-Red Light on Tomato Plant Growth, Morphology, Light Absorption, and Fruit Production. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Ntagkas, N.; Woltering, E.; Nicole, C.; Labrie, C.; Marcelis, L.F.M. Light regulation of vitamin C in tomato fruit is mediated through photosynthesis. Environ. Exp. Bot. 2019, 158, 180–188. [Google Scholar] [CrossRef]
- Butturini, M.; Marcelis, L.F.M. Vertical farming in Europe: Present status und outlook. In Plant factory: An indoor vertical farming system for efficient quality food production, 2nd ed.; Kozai, T., Niu, G., Takagaki, M., Eds.; Acad. Press: Amsterdam, The Netherlands, 2020; pp. 77–91. ISBN 9780128166918. [Google Scholar]
- Ji, Y.; Nuñez Ocaña, D.; Choe, D.; Larsen, D.H.; Marcelis, L.F.M.; Heuvelink, E. Far-red radiation stimulates dry mass partitioning to fruits by increasing fruit sink strength in tomato. New Phytol. 2020, 228, 1914–1925. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.A.; Nelson, J.S. Challenges of using organic fertilizers in hydroponic production systems. Acta Hortic. 2016, 365–370. [Google Scholar] [CrossRef]
- De Bang, T.C.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 2021, 229, 2446–2469. [Google Scholar] [CrossRef] [PubMed]
- ASABE. Annual International Meeting by the American Society of Agricultural and Biological Engineers. Available online: https://www.asabe.org/Events/2017-Annual-International-Meeting (accessed on 9 March 2021).
- Orsini, F.; Pennisi, G.; Michelon, N.; Minelli, A.; Bazzocchi, G.; Sanyé-Mengual, E.; Gianquinto, G. Features and Functions of Multifunctional Urban Agriculture in the Global North: A Review. Front. Sustain. Food Syst. 2020, 4, 228. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernández, J.A.; Stanghellini, C.; et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Pennisi, G.; Blasioli, S.; Cellini, A.; Maia, L.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernández, J.A.; Stanghellini, C.; et al. Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Front. Plant Sci. 2019, 10, 305. [Google Scholar] [CrossRef] [Green Version]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F.M. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Landolfo, M.; Pistillo, A.; Crepaldi, A.; Nicola, S.; Fernández, J.A.; Marcelis, L.F.M.; Gianquinto, G. Optimal photoperiod for indoor cultivation of leafy vegetables and herbs. Eur. J. Hortic. Sci. 2020, 85, 329–338. [Google Scholar] [CrossRef]
- Orsini, F.; Pennisi, G.; Zulfiqar, F.; Gianquinto, G. Sustainable use of resources in plant factories with artificial lighting (PFALs). Eur. J. Hortic. Sci. 2020, 85, 297–309. [Google Scholar] [CrossRef]
- Romeo, D.; Vea, E.B.; Thomsen, M. Environmental Impacts of Urban Hydroponics in Europe: A Case Study in Lyon. Procedia CIRP 2018, 69, 540–545. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef] [Green Version]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil. University of California: Berkeley, CA, USA, 1950. [Google Scholar]
- Reshma, T.; Joseph, S. Hydroponic cultivation of tomatoes—An attempt for Kerala conditions. J. Trop. Agric. 2017, 54, 164. [Google Scholar]
- Budye, D.; Dhanawade, P.; Parab, K.; Mahesh, P.; Gupte, A. Automation in hydroponic system. Int. J. Res. Eng. Appl. Manag. 2018, 3, 118–120. [Google Scholar]
- Sheikh, B.A. Hydroponics: Key to sustain agriculture in water stressed and urban environment. Pak. J. Agric. Agric. Eng. Vet. Sci. 2006, 22, 53–57. [Google Scholar]
- Sinha, A.; Singh, D.; Swapnil, D. Hydroponic—A new method of growing crops without soil. Sci. Agric. Allied Sect. Mon. Newsl. 2020, 2, 3. [Google Scholar]
- Schröder, F.G.; Lieth, J.H. Irrigation control in hydroponics. In Hydroponic Production of Vegetables and Ornamentals; Savvas, D., Passam, H., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 263–298. ISBN 9608002125. [Google Scholar]
- Hasan, M.; Sabir, N.; Singh, A.K.; Singh, M.C.; Pragnya, P. Hydroponics Technology for Horticultural Crops; ICAR IARI New Delhi: New Delhi, India, 2018; Available online: https://www.researchgate.net/profile/murtaza_hasan6/publication/331832817_hydroponics_technology_for_horticultural_crops (accessed on 19 January 2021).
- Sengupta, A.; Banerjee, H. Soil-less culture in modern agriculture. World J. Sci. Technol. 2012, 2, 103–108. [Google Scholar]
- Miranda, F.R.d.; Silva, V.B.d.; dos Santos, F.S.R.; Rossetti, A.G.; Silva, C.; de Fatima Bruce da Silva, C. Production of strawberry cultivars in closed hydroponic systems and coconut fibre substrate. Rev. Ciênc. Agron. 2014, 45, 833–841. [Google Scholar] [CrossRef] [Green Version]
- Waiba, K.M.; Sharma, P.; Sharma, A.; Chadha, S.; Kaur, M. Soil-less vegetable cultivation: A review. J. Pharmacogn. Phytochem. 2020, 9, 631–636. [Google Scholar]
- Al-Karaki, G.N.; Al-Momani, N. Evaluation of some barley cultivars for green fodder production and water use efficiency under hydroponic conditions. Jordan J. Biol. Sci. 2011, 7, 3. [Google Scholar]
- Fazaeli, H.; Golmohammadi, H.A.; Tabatabayee, S.N.; Asghari-Tabrizi, M. Productivity and nutritive value of barley green fodder yield in hydroponic system. World Appl. Sci. J. 2012, 16, 531–539. [Google Scholar]
- Palermo, M.; Paradiso, R.; Pascale, S.d.; Fogliano, V. Hydroponic cultivation improves the nutritional quality of soybean and its products. J. Agric. Food Chem. 2012, 60, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Rodríguez, C.F. Comparison of production yields of green hydroponic fodder of corn, rice and sorghum. Agron. Mesoam. 2008, 19, 233–240. [Google Scholar]
- Irfan, M.; Aziz, T.; Maqsood, M.A.; Bilal, H.M.; Rasheed, N. Differential Performance of Lowland Rice Cultivars for Phosphorus Uptake and Utilization Efficiency under Hydroponic and Soil Conditions. Int. J. Agric. Biol. 2019, 21, 703–710. [Google Scholar] [CrossRef]
- Al Jada, M.A.S. Effects of Salinity, Nutrients, Heavy Metals and Organic Matters on Growth, Yield and Uptake of Pea in Piped Hydroponics; An Najah National University: Nablus, Palestine, 2014. [Google Scholar]
- Gros, J.B.; Lasseur, C.; Tikhomirov, A.A.; Manukovsky, N.S.; Kovalev, V.S.; Ushakova, S.A.; Zolotukhin, I.G.; Tirranen, L.S.; Karnachuk, R.A.; Dorofeev, V.Y. Testing soil-like substrate for growing plants in bioregenerative life support systems. Adv. Space Res. 2005, 36, 1312–1318. [Google Scholar] [CrossRef]
- Du Toit, A.G.A.; Labuschagne, M.T. A comparison between hydroponics systems and pots for growing wheat in the greenhouse. S. Afr. J. Plant Soil 2007, 24. [Google Scholar] [CrossRef] [Green Version]
- Rivera, A.; Moronta, M.; González-Estopiñán, M.; González, D.; Perdomo, D.; García, D.E.; Hernández, G. Hydroponic forage production of corn (Zea mays L.) under natural conditions of light deficiency. Zootec. Trop. 2010, 28, 33–41. [Google Scholar]
- Bhattacharya, N. Hydroponics: Producing plants In-vitro on artificial support medium. Int. J. Sci. Eng. Res. 2017, 8, 224–229. [Google Scholar]
- Guler, H.G.; Olympios, C.; Gerasopoulos, D. The effect of the substrate on the fruit quality of hydroponically grown melons (Cucumis Melo, L.). Acta Hortic. 1995, 261–266. [Google Scholar] [CrossRef]
- Fukuda, N.; Anami, Y. Substrate and nutrient level: Effects on the growth and yield of melon (Cucumis melo) in soilless culture. Acta Hortic. 2002, 111–117. [Google Scholar] [CrossRef]
- Yam, R.S.W.; Fan, Y.-T.; Lin, J.-T.; Fan, C.; Lo, H.-F. Quality Improvement of Netted Melon (Cucumis melo L. var. reticulatus) through Precise Nitrogen and Potassium Management in a Hydroponic System. Agronomy 2020, 10, 816. [Google Scholar] [CrossRef]
- Sarooshi, R.A.; Cresswell, G.C. Effects of hydroponic solution composition, electrical conductivity and plant spacing on yield and quality of strawberries. Aust. J. Exp. Agric. 1994, 34, 529–535. [Google Scholar] [CrossRef]
- Albaho, M.; Thomas, B.; Christopher, A. Evaluation of Hydroponic Techniques on Growth and Productivity of Greenhouse Grown Bell Pepper and Strawberry. Int. J. Veg. Sci. 2008, 14, 23–40. [Google Scholar] [CrossRef]
- Treftz, C.; Omaye, S.T. Comparison between hydroponic and soil systems for growing strawberries in a greenhouse. Int. J. Agric. Ext. 2016, 3, 195–200. [Google Scholar]
- Treftz, C.; Omaye, S.T. Nutrient Analysis of Soil and Soilless Strawberries and Raspberries Grown in a Greenhouse. Food Nutr. Sci. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, D.C.; Schuch, M.W.; Peil, R.M.N. Growth and mineral nutrient content of blueberry transplants in conventional and semi-hydroponic systems: Crescimento e conteúdo de nutrientes minerais em mudas de mirtileiro em sistema convencional e semi-hidropônico. Rev. Bras. Frutic. 2011, 33, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Pascual, M.P.; Lorenzo, G.A.; Gabriel, A.G. Vertical Farming Using Hydroponic System: Toward a Sustainable Onion Production in Nueva Ecija, Philippines. Open J. Ecol. 2018, 08, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Pascale, S.d.; Maggio, A.; Ruggiero, C.; Barbieri, G. Growth, Water Relations, and Ion Content of Field-grown Celery [Apium graveolens L. var. dulce (Mill.) Pers.] under Saline Irrigation. J. Am. Soc. Hortic. Sci. 2003, 128, 136–143. [Google Scholar] [CrossRef]
- Poll, J.T.K.; Kramer, C.F.G.; van Kruistum, G. Forcing of Asparagus in climatised rooms during the off-season. Acta Hortic. 1990, 163–172. [Google Scholar] [CrossRef]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; Elsohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid.-Based Complement. Altern. Med. eCAM 2014, 253875. [Google Scholar] [CrossRef]
- Alimuddin, M.; Subrata, D.; Nurmayulis, R.; Khastini, O.; Arafiyah, R. Analysis of Chilli Plant Physiology Conventional System, Green House Hydroponic Utilization System Using Fuzzy Logic. IOP Conf. Ser. Mater. Sci. Eng. 2018, 434, 12219. [Google Scholar] [CrossRef]
- Chow, K.K.; Price, T.V. Biomass and flower production of winged bean in a nutrient film (NFT) hydroponic system. Plant Soil 1989, 113, 85–92. [Google Scholar] [CrossRef]
- Costa, J.C.; Mendes, A.Q.; de Carvalho, I.D.E.; Da Silva, J.; Carvalho Filho, J.L.S.; de Menezes, D. Interaction of Eggplant Genotypes by Cropping Systems and Correlations between Characters. J. Exp. Agric. Int. 2019, 1–10. [Google Scholar] [CrossRef]
- Ritter, E.; Angulo, B.; Riga, P.; Herrán, C.; Relloso, J.; San Jose, M. Comparison of hydroponic and aeroponic cultivation systems for the production of potato minitubers. Potato Res. 2001, 44, 127–135. [Google Scholar] [CrossRef]
- Maboko, M.M.; Plooy, C.P. Effect of plant spacing and harvesting frequency on the yield of Swiss chard cultivars (Beta vulgaris L.) in a closed hydroponic system. Afr. J. Agric. Res. 2013, 8, 936–942. [Google Scholar]
- Xiang, S.; Wu, S.; Zhang, Q.; Liu, Y.; Ruan, R. A nitrogen dynamic hydroponic culture on performance and quality of water spinach (Ipomoea aquatica). J. Plant Nutr. 2020, 43, 773–783. [Google Scholar] [CrossRef]
- Barbosa, G.L.; Gadelha, F.D.A.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.M.; Halden, R.U. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [Green Version]
- Padmathilake, K.R.E.; Wickramaarachchi, V.N.; Anver, M.A.M.S.; Bandara, D.C. Biological and Economic Feasibility of Growing Mint (Mentha sylvestris L.), Mustard (Brassica integrifolia L.) and Asamodagam (Trachyspermum involucratum L.) under hydroponics. Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka. Trop. Agric. Res. 2007, 19, 193–201. [Google Scholar]
- Daryadar, M. Water stream hydroponics as a new technology for soilless production of valuable essential oil and medicinal plant peppermint. Acad. Publ. House 2015, 3, 259–263. [Google Scholar]
- Mairapetyan, S.; Alexanyan, J.; Tovmasyan, A.; Mamikonyan, V. Productivity, Biochemical Indices and Antioxidant Activity of Peppermint (Mentha piperita L.) and Basil (Ocimum basilicum L.) in Conditions of Hydroponics. J. Aquac. Res. Dev. 2016, 7, 6. [Google Scholar] [CrossRef]
- Vimolmangkang, S.; Sitthithaworn, W.; Vannavanich, D.; Keattikunpairoj, S.; Chittasupho, C. Productivity and quality of volatile oil extracted from Mentha spicata and M. arvensis var. piperascens grown by a hydroponic system using the deep flow technique. J. Nat. Med. 2010, 64, 31–35. [Google Scholar] [CrossRef]
- Surendran, U.; Chandran, C.; Joseph, E.J. Hydroponic cultivation of Mentha spicata and comparison of biochemical and antioxidant activities with soil-grown plants. Acta Physiol. Plant. 2017, 39, 1–14. [Google Scholar] [CrossRef]
- Sgherri, C.; Cecconami, S.; Pinzino, C.; Navari-Izzo, F.; Izzo, R. Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chem. 2010, 123, 416–422. [Google Scholar] [CrossRef]
- Gurdas, S.; Patil, R.K.; Diksha, J.; Patil, H.C. To evaluate growth factors of Feenugreek in hydroponic system and soil based system. Int. J. Res. Anal. Rev. 2020, 7, 265–269. [Google Scholar]
- Wilson, D.P.; Finlay, A.R. Hydroponic system for production of all year round Chrysanthemums. Acta Hortic. 1995, 185–192. [Google Scholar] [CrossRef]
- Hanan, J.J.; Holley, W.D. Introduction of hydroponics in Colorado; technique and implications in a semi-arid region. Agric. Meteorol. 1970, 7, 29–38. [Google Scholar] [CrossRef]
- Das, A.; Bhui, S.; Chakraborty, D. Growth behavior of rose plants in low cost hydroponics culture. J. Hortic. Sci. Ornam. Plants 2012, 4, 1–6. [Google Scholar]
- Sarmah, R.; Bora, S. Quality Blooming of Marigold in Hydroponics. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 1792–1799. [Google Scholar] [CrossRef]
- Al-Karaki, G.N.; Al-Hashimi, M. Green Fodder Production and Water Use Efficiency of Some Forage Crops under Hydroponic Conditions. Int. Sch. Res. Not. Agron. (ISRN) 2012, 2012, 924672. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fussy, A.; Papenbrock, J. An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants 2022, 11, 1153. https://doi.org/10.3390/plants11091153
Fussy A, Papenbrock J. An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants. 2022; 11(9):1153. https://doi.org/10.3390/plants11091153
Chicago/Turabian StyleFussy, Andre, and Jutta Papenbrock. 2022. "An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability" Plants 11, no. 9: 1153. https://doi.org/10.3390/plants11091153
APA StyleFussy, A., & Papenbrock, J. (2022). An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants, 11(9), 1153. https://doi.org/10.3390/plants11091153