Adventitious Shoot Regeneration from Leaf Explants in Sinningia Hybrida ‘Isa’s Murmur’
Abstract
:1. Introduction
2. Results
2.1. Effect of Cytokinins on Adventitious Shoot Regeneration
2.2. Effect of Plant Growth Regulators on Shoot Proliferation from Two Types of Leaves Explants
2.3. Adventitious Shoot Elongation and Rooting
2.4. Acclimatization and Transplantation
3. Discussion
3.1. Effect of PGRs
3.2. Leaf as Explant Source for Regeneration
3.3. Elongation, Rooting
4. Materials and Methods
4.1. Plant Material, Basal Medium, and Culture Conditions
4.2. Screening for Cytokinins
4.3. Plant Growth Regulators (PGRs) on Adventitious Bud Proliferation
4.4. Adventitious Shoot Elongation, Rooting, Acclimatization and Transplantation
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaitlin, D.; Pierce, A.J. Nuclear DNA Content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome 2010, 53, 1066–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaitlin, D. Intraspecific diversity in Sinningia speciosa (Gesneriaceae: Sinningieae), and possible origins of the cultivated florist’s gloxinia. AoB Plants 2012, 2012, pls 039. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.N.; Hsu, H.C.; Wang, C.C.; Lee, T.K.; Kuo, Y.F. Quantifying floral shape variation in 3D using microcomputed tomography: A case study of a hybrid line between actinomorphic and zygomorphic flowers. Front. Plant Sci. 2015, 6, 724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.L.; Lan, F.; Qin, J.Q. Saying “Gesneriaceae”. Landsc. Archit. 2017, 2, 56–59. (In Chinese) [Google Scholar]
- Jia, N.; Lai, B.D.; Shu, Y. Glass sheltered angel mini-Sinningia small flower house. Buowu 2015, 4, 24–27. (In Chinese) [Google Scholar]
- Citerne, H.; Cronk, Q. The origin of the peloric Sinningia. New Plantsman 1999, 6, 219–222. [Google Scholar]
- Perret, M. Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Ann. Bot. 2001, 87, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.J. The first choice for indoor plants, Mini–Sinningia. Flowers 2017, 19, 40–42. (In Chinese) [Google Scholar]
- Scaramuzzi, F.; Apollonio, G.; D’Emerico, S. Adventitious shoot regeneration from Sinningia speciosa leaf discs in vitro and stability of ploidy level in subcultures. In Vitro Cell. Dev. Biol. Plant 1999, 35, 217–221. [Google Scholar] [CrossRef]
- Pang, J.L.; Wang, L.L.; Hu, J.Q.; Lian, H.M. Effect of gibberellin on direct regeneration of floral buds from young flower buds in Sinningia speciosa Hiern. Acta Biol. Exp. Sin. 2004, 37, 241–246. [Google Scholar]
- Nhut, A.; Nguyet, N.A.; Phuc, H.T.; Huy, N.P.; Uyen, P.N.; Vi, T.K.; Hai, N.T.; Binh, N.; Thien, N.Q. Primary designs of tube-shaped nylon film culture system in shoot regeneration of Sinningia spp. leaf explants. In Proceedings of the International Work-Shop on Biotechnology in Agriculture, Ho Chi Minh City, Vietnam, 20–21 October 2006; Volume 10, pp. 131–133. [Google Scholar]
- Pang, J.L.; Wang, L.L.; Hu, J.Q.; Xiang, T.H.; Liang, H.M. Synergistic promotion of gibberellin and cytokinin on direct regeneration of floral buds from in vitro cultures of sepal segments in Sinningia speciosa Hiern. In Vitro Cell. Dev. Biol. Plant 2006, 42, 450–454. [Google Scholar] [CrossRef]
- Xu, Q.L.; Hu, Z.; Li, C.Y.; Wang, X.Y.; Wang, C.Y. Tissue culture of Sinningia speciosa and analysis of the in vitro-generated tricus-sate whorled phyllotaxis (twp) variant. In Vitro Cell. Dev. Biol. Plant 2009, 45, 583–590. [Google Scholar] [CrossRef]
- Chae, S.C.; Kim, H.H.; Park, S.U. Ethylene inhibitors enhance shoot organogenesis of gloxinia (Sinningia speciosa). Sci. World J. 2012, 859381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, E.H.; Bae, H.; Park, W.T.; Kim, Y.B.; Chae, S.C.; Park, S.U. Improved shoot organogenesis of gloxinia (Sinningia speciosa) using silver nitrate and putrescine treatment. Plant Omics J. 2012, 5, 6–9. [Google Scholar]
- Kuo, W.H.; Hung, Y.L.; Wu, H.W.; Pan, Z.J.; Hong, C.Y.; Wang, C.N. Shoot regeneration process and optimization of agrobacterium-mediated transformation in Sinningia speciosa. Plant Cell Tissue Organ Cult. 2018, 13, 317. [Google Scholar] [CrossRef] [Green Version]
- Saeed, W.; Naseem, S.; Id, A.; Gohar, D. Efficient and reproducible somatic embryogenesis and micropropagation in tomato via novel structures -Rhizoid Tubers. PLoS ONE 2019, 14, 0215929. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.H.; Ouyang, H.Y. Use of Thidiazuron for High-Frequency Callus Induction and Organogenesis of Field-grown Strawberry (Fragaria vesca). Plants 2021, 10, 67. [Google Scholar] [CrossRef]
- Taha, R.A.; Allam, M.A.; Hassan, S.A.M.; Bakr, B.M.M.; Hassan, M.M. Thidiazuron-induced direct organogenesis from immature inflorescence of three date palm cultivars. J. Genet. Eng. Biotechnol. 2021, 19, 14. [Google Scholar] [CrossRef]
- Zatloukal, M.; Gemrotov, M.; Dolezal, K.; Havlıcek, L.; Spıchal, L.; Strnad, M. Novel potent inhibitors of A. thaliana cytokinin oxidase/ dehydrogenase. Bioorg. Med. Chem. 2008, 16, 9268–9275. [Google Scholar] [CrossRef]
- Podwyszynska, M.; Novák, O.; Doležal, K.; Strnad, M. Endogenous cytokinin dynamics in micropropagated tulips during bulb formation process influenced by TDZ and 2iP pre-treatment. Plant Cell Tissue Organ Cult. 2014, 9, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Çelikel, F.G.; Zhang, Q.; Zhang, Y.; Reid, M.S.; Jiang, C.Z. A cytokinin analog thidiazuron suppresses shoot growth in potted rose plants via the gibberellic acid pathway. Front. Plant Sci. 2021, 12, 639717. [Google Scholar] [CrossRef]
- Rathore, M.S.; Mastan, S.G.; Yadav, P.; Bhatt, V.D.; Shekhawat, N.S.; Chikara, J. Shoot regeneration from leaf explants of Withania coagulans (Stocks) Dunal and genetic stability evaluation of regenerates with RAPD and ISSR markers. South Afr. J. Bot. 2016, 102, 12–17. [Google Scholar] [CrossRef]
- Solís, J.J.; Reyna, M.; Feria, M.D.; Cardona, M.A.; Rojas, D. In vitro propagation of Echeveria elegans, a species of the flora endangered Mexican. J. Environ. Sci. Eng. B 2013, 2, 555–558. [Google Scholar]
- Baskaran, P.; Moyo, M.; Staden, J. In vitro plant regeneration, phenolic compound production and pharmacological activities of Coleonema pulchellum. South Afr. J. Bot. 2014, 90, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.G.; Yang, H.L.; Yang, Y.L.; He, J.Y.; Aer, E.G.; Ma, Y.H.; Zou, L.J. A novel and efficient in vitro organogenesis approach for Ajuga lupulina Maxim. Plants 2021, 10, 1918. [Google Scholar] [CrossRef] [PubMed]
- Uno, Y.; Yagi, M. Anther-Based Regeneration of African Violet (Saintpaulia ionantha). Methods Mol. Biol. 2021, 2289, 249–261. [Google Scholar] [PubMed]
- Uno, Y.; Koda-Katayama, H.; Kobayashi, H. Application of anther culture for efficient haploid production in the genus Saintpaulia. Plant Cell Tissue Organ Cult. 2016, 125, 241–248. [Google Scholar] [CrossRef]
- Shukla, M.; Sullivan, J.A.; Jain, S.M.; Murch, S.J.; Saxena, P.K. Micropropagation of African violet (Saintpaulia ionantha Wendl.). Methods Mol. Biol. 2013, 11013, 279–289. [Google Scholar]
- Wu, Q.G.; Zhang, C.; Yang, H.L.; Hu, J.Y.; Zou, L.J. In vitro propagation via organogenesis and formation of globular bodies of Salvia plebeia: A valuable medicinal plant. In Vitro Cell. Dev. Biol. Plant 2021, 58, 51–60. [Google Scholar] [CrossRef]
- Cheesman, L.; Finnie, J.F.; Van Staden, J. Eucomis zambesiaca baker: Factors affecting in vitro bulblet induction. South Afr. J. Bot. 2010, 76, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Aremu, A.O.; Plačková, L.; Pěnčík, A.; Novák, O.; Doležal, K.; Van Staden, J. Auxin-cytokinin interaction and variations in their metabolic products in the regulation of organogenesis in two Eucomis species. New Biotechnol. 2016, 33, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Khanam, M.N.; Anis, M. Organogenesis and efficient in vitro plantlet regeneration from nodal segments of Allamanda cathartica L. using TDZ and ultrasound assisted extraction of quercetin. Plant Cell Tissue Organ Cult. 2018, 134, 241–250. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, J.; Zhu, H.; Li, L.; Shi, Y.; Yin, X. Efficient culture protocol for plant regeneration from cotyledonary petiole explants of Jatropha curcas L. Biotechnol. Biotechnol. Equip. 2016, 30, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Harding, K.; Benson, E.E.; Roubelakis-Angelakis, K.A. Methylated DNA changes associated with the initiation and maintenance of Vitis vinifera in vitro shoot and callus cultures: A possible mechanism for age-related changes. Vitis 1996, 35, 79–85. [Google Scholar]
- Satish, L.; Ceasar, S.A.; Ramesh, M. Improved agrobacterium-mediated transformation and direct plant regeneration in four cultivars of finger millet (Eleusine coracana (L.) gaertn.). Plant Cell Tissue Organ Cult. 2017, 131, 547–565. [Google Scholar] [CrossRef]
- Jeong, B.R.; Sivanesan, I. Impact of light quality and sucrose on adventitious shoot regeneration and bioactive compound accumulation in Ajuga multiflora Bunge. Sci. Hortic. 2018, 236, 222–238. [Google Scholar] [CrossRef]
- Beasley, R.R.; Pijut, P.M. Regeneration of plants from Fraxinus nigra Marsh. hypocotyls. HortScience 2013, 48, 887–890. [Google Scholar] [CrossRef] [Green Version]
- Kumari, P.; Singh, S.; Yadav, S.; Tran, L.S.P. Pretreatment of seeds with thidiazuron delimits its negative effects on explants and promotes regeneration in chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult. 2018, 133, 103–114. [Google Scholar] [CrossRef]
- Fatima, N.; Anis, M. Thidiazuron induced high frequency axillary shoot multiplication in Withania somnifera L. (Dunal.). J. Med. Plants Res. 2011, 5, 6681–6687. [Google Scholar] [CrossRef]
- Kou, E.F.; Huang, X.M.; Zhu, Y.N.; Su, W.; Liu, H.C.; Sun, G.G.; Chen, R.Y.; Hao, Y.W.; Song, S.W. Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage. Sci. Rep. 2021, 11, 3976. [Google Scholar] [CrossRef]
- Zeng, Q.; Han, Z.; Kang, X. Adventitious shoot regeneration from leaf; petiole and root explants in triploid (Populus alba × P. glandulosa) × P. tomentosa. Plant Cell Tissue Organ Cult. 2019, 138, 121–130. [Google Scholar] [CrossRef]
- Kumar, S.; Kumaria, S.; Tandon, P. Efficient in vitro plant regeneration protocol from leaf explant of Jatropha curcas L—A promising biofuel plant. J. Plant Biochem. Biotechnol. 2010, 19, 273–275. [Google Scholar] [CrossRef]
- Srinivasan, P.; Raja, H.D.; Tamilvanan, R. Effect of coconut water and cytokinins on rapid micropropagation of Ranunculus wallichianus Wight & Arnn-a rare and endemic medicinal plant of the Western Ghats; India. In Vitro Cell. Dev. Biol. Plant 2021, 57, 365–371. [Google Scholar]
- Al-Qudah, T.; Shibli, R.A.; Alali, F.Q. In vitro propagation and secondary metabolites production in field-grown germander (Teucrium polium L.). In Vitro Cell. Dev. Biol. Plant 2011, 47, 496–505. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
Cytokinin (mg·L−1) | Differentiation Rate (%) | No. of Shoot (Per Explant) | Visible Appearance | |
---|---|---|---|---|
The Color of the Leaves | Shoot Growth State | |||
TDZ 1.0 | 63.0 ± 2.9 b | 12.5 ± 1.2 bc | Dark-green | Healthy |
TDZ 2.0 | 74.0 ± 2.0 a | 17.5 ± 0.6 a | Dark-green | Healthy |
TDZ 3.0 | 61.9 ± 3.6 b | 14.3 ± 0.8 ab | Dark-green | Healthy |
ZT 1.0 | 43.7 ± 4.3 d | 5.8 ± 0.4 cd | Light-green | Hyperhydricity |
ZT 2.0 | 54.6 ± 1.8 bc | 8.5 ± 0.9 c | Light-green | Hyperhydricity |
ZT 3.0 | 51.4 ± 2.8 bc | 6.0 ± 0.4 cd | Light-green | Hyperhydricity |
Kin 1.0 | 34.4 ± 3.0 e | 2.7 ± 0.7 e | Light-green | Hyperhydricity |
Kin 2.0 | 42.1 ± 2.7 d | 6.3 ± 0.8 cd | Light-green | Hyperhydricity |
Kin 3.0 | 40.9 ± 2.9 d | 4.1 ± 0.4 d | Light-green | Hyperhydricity |
BA 1.0 | 68.7 ± 3.4 ab | 9.5 ± 0.9 ab | Dark-green | Healthy |
BA 2.0 | 72.7 ± 2.7 a | 14.9 ± 0.9 ab | Dark-green | Healthy |
BA 3.0 | 66.9 ± 2.2 ab | 13.9 ± 1.3 ab | Dark-green | Healthy |
Explant | NAA (mg·L−1) | TDZ (mg·L−1) | BA (mg·L−1) | Browning Rate (%) | Differentiation Rate (%) | Shoot Length (cm) | Shoot Proliferation Coefficient |
---|---|---|---|---|---|---|---|
WL | 0.1 | 1.0 | - | 71.3 ± 3.0 cd | 86.0 ± 3.4 bc | 0.4 ± 0.1 b | 16.5 ± 1.0 bc |
WL | 0.1 | 2.0 | - | 67.8 ± 2.6 de | 91.7 ± 2.0 ab | 0.7 ± 0.2 b | 24.5 ± 2.0 a |
WL | 0.1 | 3.0 | - | 72.9 ± 2.2 cd | 88.4 ± 1.3 bc | 0.5 ± 0.2 b | 18.6 ± 1.1 b |
WL | 0.3 | 1.0 | - | 73.6 ± 1.9 cd | 78.3 ± 1.5 cd | 0.8 ± 0.2 b | 12.5 ± 0.9 de |
WL | 0.3 | 2.0 | - | 77.2 ± 2.8 c | 85.5 ± 3.0 b | 0.9 ± 0.4 b | 16.6 ± 1.3 bc |
WL | 0.3 | 3.0 | - | 82.6 ± 2.9 b | 81.6 ± 1.4 c | 0.8 ± 0.1 ab | 11.6 ± 1.2 de |
WL | 0.1 | - | 1.0 | 70.5 ± 4.6 cd | 88.4 ± 2.3 b | 0.9 ± 0.2 b | 19.4 ± 1.3 b |
WL | 0.1 | - | 2.0 | 66.0 ± 2.4 de | 95.3 ± 1.7 a | 1.3 ± 0.2 a | 20.7 ± 1.5 b |
WL | 0.1 | - | 3.0 | 80.2 ± 2.8 b | 86.1 ± 1.6 bc | 1.1 ± 0.2 a | 18.1 ± 0.8 b |
WL | 0.3 | - | 1.0 | 74.8 ± 3.1 cd | 84.3 ± 3.9 bc | 1.0 ± 0.3 ab | 9.6 ± 1.9 e |
WL | 0.3 | - | 2.0 | 60.9 ± 2.4 de | 84.6 ± 4.2 bc | 1.1 ± 0.3 a | 13.0 ± 2.6 de |
WL | 0.3 | - | 3.0 | 80.5 ± 2.3 bc | 82.6 ± 2.6 bc | 1.0 ± 0.3 ab | 16.0 ± 2.0 bc |
ASL | 0.1 | 1.0 | - | 80.7 ± 1.5 bc | 55.6 ± 3.3 f | 0.6 ± 0.2 b | 10.0 ± 1.4 e |
ASL | 0.1 | 2.0 | - | 83.9 ± 3.2 b | 67.3 ± 3.6 e | 0.9 ± 0.3 ab | 12.6 ± 2.1 de |
ASL | 0.1 | 3.0 | - | 84.5 ± 3.7 b | 64.2 ± 2.7 e | 0.6 ± 0.1 b | 11.0 ± 2.3 de |
ASL | 0.3 | 1.0 | - | 84.5 ± 3.9 b | 47.3 ± 1.7 g | 0.6 ± 0.2 b | 16.3 ± 0.8 bc |
ASL | 0.3 | 2.0 | - | 81.6 ± 1.6 bc | 56.8 ± 3.4 f | 0.8 ± 0.2 b | 21.5 ± 1.4 ab |
ASL | 0.3 | 3.0 | - | 94.3 ± 1.0 a | 40.2 ± 3.4 h | 0.7± 0.1 b | 17.7 ± 1.8 b |
ASL | 0.1 | - | 1.0 | 86.2 ± 1.8 b | 57.9 ± 1.9 f | 0.5 ± 0.2 b | 12.2 ± 1.9 de |
ASL | 0.1 | - | 2.0 | 88.2 ± 2.4 b | 69.7 ± 3.4 e | 0.8 ± 0.3 b | 14.7 ± 1.1 d |
ASL | 0.1 | - | 3.0 | 89.4 ± 2.3 b | 57.5 ± 3.2 f | 0.6 ± 0.3 b | 9.1 ± 2.1 e |
ASL | 0.3 | - | 1.0 | 92.6 ± 2.1 a | 53.7 ± 4.0 f | 0.5 ± 0.2 b | 16.2 ± 1.5 bc |
ASL | 0.3 | - | 2.0 | 83.7 ± 3.5 b | 62.9 ± 2.6 e | 0.7± 0.2 b | 20.0 ± 1.3 b |
ASL | 0.3 | - | 3.0 | 95.9 ± 1.6 a | 60.6 ± 1.3 e | 0.7 ± 0.2 b | 18.0 ± 0.9 b |
PGRs for Shoot Elongation (mg·L−1) | Shoot Length (cm) | Observed Results |
---|---|---|
NAA0.2 + BA0.5 + GA30.5 + 100.0 casein | 1.4 ± 0.2 c | Light-green; soft and fragile; dwarf shoot |
NAA0.2 + BA1.0 + GA30.5 + 100.0 casein | 2.2 ± 0.5 b | Light-green; soft and fragile; dwarf shoot |
IBA0.2 + BA0.5 + GA30.5 + 100.0 casein | 2.7 ± 0.4 a | Dark-green; robust shoot |
IBA0.2 + BA1.0 + GA30.5 + 100.0 casein | 3.0 ± 0.3 a | Dark-green; robust shoot |
Treatment (mg·L−1) | Culture Time | Rooting Rate (%) | Mean Root Number | Root Length (cm) | |
---|---|---|---|---|---|
2 Weeks | 4 Weeks | ||||
0 | − | − | 38.0 ± 3.2 e | 1.8 ± 1.4 e | 1.3 ± 0.3 e |
IBA 0.1 | − | + | 87.6 ± 0.5 bc | 9.5 ± 0.2 c | 2.5 ± 0.1 cd |
IBA 0.3 | + | + | 100 ± 0.1 a | 13.4 ± 0.4 a | 3.6 ± 0.2 a |
IBA 0.5 | + | + | 99.1 ± 0.8 a | 11.4 ± 0.7 b | 2.8 ± 0.4 bc |
NAA 0.1 | − | − | 75.5 ± 0.6 d | 7.2 ± 0.5 d | 2.1 ± 0.3 d |
NAA 0.3 | − | + | 90.8 ± 0.4 b | 9.4 ± 0.5 c | 3.3 ± 0.5 a |
NAA 0.5 | − | + | 81.6 ± 1.6 cd | 8.0 ± 0.2 dc | 2.8 ± 0.1 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yang, Y.; Wang, Q.; He, J.; Liang, L.; Qiu, H.; Wang, Y.; Zou, L. Adventitious Shoot Regeneration from Leaf Explants in Sinningia Hybrida ‘Isa’s Murmur’. Plants 2022, 11, 1232. https://doi.org/10.3390/plants11091232
Yang H, Yang Y, Wang Q, He J, Liang L, Qiu H, Wang Y, Zou L. Adventitious Shoot Regeneration from Leaf Explants in Sinningia Hybrida ‘Isa’s Murmur’. Plants. 2022; 11(9):1232. https://doi.org/10.3390/plants11091232
Chicago/Turabian StyleYang, Honglin, Yihua Yang, Qiang Wang, Jinyu He, Liyun Liang, Hui Qiu, Yue Wang, and Lijuan Zou. 2022. "Adventitious Shoot Regeneration from Leaf Explants in Sinningia Hybrida ‘Isa’s Murmur’" Plants 11, no. 9: 1232. https://doi.org/10.3390/plants11091232
APA StyleYang, H., Yang, Y., Wang, Q., He, J., Liang, L., Qiu, H., Wang, Y., & Zou, L. (2022). Adventitious Shoot Regeneration from Leaf Explants in Sinningia Hybrida ‘Isa’s Murmur’. Plants, 11(9), 1232. https://doi.org/10.3390/plants11091232