Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps
Abstract
:1. Introduction
2. Results
2.1. Cytotype Screening of Senecio doronicum Identifies Three Ploidies in Tête Grosse
2.2. Repetitive DNA Content in S. doronicum
2.3. Phylogenetic Implications of Cytotype Diversity in S. doronicum
3. Discussion
3.1. Flow Cytometry Uncovers the Existence of Minority Cytotypes in S. doronicum
3.2. Correlation of TE Amounts among Ploidy Levels Supports the Autopolyploid Evolution in S. doronicum
3.3. Unreduced Gamete Formation in Tetraploid Individuals as the Most Likely Origin of the Hexaploid Cytotype
4. Materials and Methods
4.1. Sampling of Senecio doronicum
4.2. Cytotype Screening by Flow Cytometry
4.3. Genomic DNA Extraction and Illumina Sequencing
4.4. Flow-Graph-Based Clustering in RepeatExplorer2
4.5. Phylogenetic Analyses and Plastid Reconstruction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brownfield, L.; Köhler, C. Unreduced gamete formation in plants: Mechanisms and prospects. J. Exp. Bot. 2011, 62, 1659–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltis, P.S.; Marchant, D.B.; Van de Peer, Y.; Soltis, D.E. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 2015, 35, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, J.W.; Donoghue, P.C.J. Whole-genome duplication and plant macroevolution. Trends Plant Sci. 2018, 23, 933–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, T.E.; Takebayashi, N.; Barker, M.S.; Mayrose, I.; Greenspoon, P.B.; Rieseberg, L.H. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 2009, 106, 13875–13879. [Google Scholar] [CrossRef] [Green Version]
- Barker, M.S.; Arrigo, N.; Baniaga, A.E.; Li, Z.; Levin, D.A. On the relative abundance of autopolyploids and allopolyploids. New Phytol. 2016, 210, 391–398. [Google Scholar] [CrossRef]
- Dodsworth, S.; Chase, M.W.; Leitch, A.R. Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot. J. Linn. Soc. 2016, 180, 1–5. [Google Scholar] [CrossRef]
- Jiao, Y.; Wickett, N.J.; Ayyampalayam, S.; Chanderbali, A.S.; Landherr, L.; Ralph, P.E.; Tomsho, L.P.; Hu, Y.; Liang, H.; Soltis, P.S.; et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473, 97–100. [Google Scholar] [CrossRef]
- DePamphilis, C.W.; Palmer, J.D.; Rounsley, S.; Sankoff, D.; Schuster, S.C.; Ammiraju, J.S.S.; Barbazuk, W.B.; Chamala, S.; Chanderbali, A.S.; Determann, R.; et al. The Amborella genome and the evolution of flowering plants. Science 2013, 342, 1241089. [Google Scholar] [CrossRef]
- Leebens-Mack, J.H.; Barker, M.S.; Carpenter, E.J.; Deyholos, M.K.; Gitzendanner, M.A.; Graham, S.W.; Grosse, I.; Li, Z.; Melkonian, M.; Mirarab, S.; et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 2019, 574, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Bomblies, K.; Madlung, A. Polyploidy in the Arabidopsis genus. Chromosom. Res. 2014, 22, 117–134. [Google Scholar] [CrossRef]
- Kolář, F.; Čertner, M.; Suda, J.; Schönswetter, P.; Husband, B.C. Mixed-ploidy species: Progress and opportunities in polyploid research. Trends Plant Sci. 2017, 22, 1041–1055. [Google Scholar] [CrossRef] [PubMed]
- Baduel, P.; Bray, S.; Vallejo-Marin, M.; Kolář, F.; Yant, L. The “Polyploid Hop”: Shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front. Ecol. Evol. 2018, 6, 117. [Google Scholar] [CrossRef] [Green Version]
- Soltis, D.E.; Rieseberg, L.H. Autopolyploidy in Tolmiea menziesii (Saxifragaceae): Genetic insights from enzyme electrophoresis. Am. J. Bot. 1986, 73, 310–318. [Google Scholar] [CrossRef]
- Ness, B.; Soltis, D.; Soltis, P. Autopolyploidy in Heuchera micranta (Saxifragaceae). Am. J. Bot. 1989, 76, 614–626. [Google Scholar] [CrossRef]
- Moreyra, L.D.; Márquez, F.; Susanna, A.; Garcia-Jacas, N.; Vázquez, F.M.; López-Pujol, J. Genesis, evolution, and genetic diversity of the hexaploid, narrow endemic Centaurea tentudaica. Diversity 2021, 13, 72. [Google Scholar] [CrossRef]
- Parisod, C.; Holderegger, R.; Brochmann, C. Evolutionary consequences of autopolyploidy. New Phytol. 2010, 186, 5–17. [Google Scholar] [CrossRef]
- Pellicer, J.; Clermont, S.; Houston, L.; Rich, T.C.G.; Fay, M.F. Cytotype diversity in the Sorbus complex (Rosaceae) in Britain: Sorting out the puzzle. Ann. Bot. 2012, 110, 1185–1193. [Google Scholar] [CrossRef] [Green Version]
- Trávníček, P.; Kubátová, B.; Čurn, V.; Rauchová, J.; Krajníková, E.; Jersáková, J.; Suda, J. Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): Evidence from flow cytometry. Ann. Bot. 2011, 107, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Kiedrzyński, M.; Zielińska, K.M.; Jedrzejczyk, I.; Kiedrzyńska, E.; Tomczyk, P.P.; Rewicz, A.; Rewers, M.; Indreica, A.; Bednarska, I.; Stupar, V.; et al. Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L. Sci. Rep. 2021, 11, 18735. [Google Scholar] [CrossRef]
- Rojas-Andrés, B.M.; Padilla-García, N.; de Pedro, M.; López-González, N.; Delgado, L.; Albach, D.C.; Castro, M.; Castro, S.; Loureiro, J.; Martínez-Ortega, M.M. Environmental differences are correlated with the distribution pattern of cytotypes in Veronica subsection Pentasepalae at a broad scale. Ann. Bot. 2020, 125, 471–484. [Google Scholar] [CrossRef]
- Urfusová, R.; Mahelka, V.; Krahulec, F.; Urfus, T. Evidence of widespread hybridization among couch grasses (Elymus, Poaceae). J. Syst. Evol. 2021, 59, 113–124. [Google Scholar] [CrossRef]
- McCann, J.; Jang, T.-S.; Macas, J.; Schneeweiss, G.M.; Matzke, N.J.; Novák, P.; Stuessy, T.F.; Villaseñor, J.L.; Weiss-Schneeweiss, H. Dating the species network: Allopolyploidy and repetitive DNA evolution in american daisies (Melampodium sect. Melampodium, Asteraceae). Syst. Biol. 2018, 67, 1010–1024. [Google Scholar] [CrossRef] [PubMed]
- Viruel, J.; Conejero, M.; Hidalgo, O.; Pokorny, L.; Powell, R.F.; Forest, F.; Kantar, M.B.; Soto Gomez, M.; Graham, S.W.; Gravendeel, B.; et al. A target capture-based method to estimate ploidy from herbarium specimens. Front. Plant Sci. 2019, 10, 937. [Google Scholar] [CrossRef] [PubMed]
- Bennetzen, J.L.; Wang, H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 2014, 65, 505–530. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, Z.; Li, Y.; Hu, H.; Wang, Z.; Du, X.; Zhang, S.; Zhu, M.; Dong, L.; Ren, G.; et al. Which factors contribute most to genome size variation within angiosperms? Ecol. Evol. 2021, 11, 2660–2668. [Google Scholar] [CrossRef]
- Renny-Byfield, S.; Kovařík, A.; Chester, M.; Nichols, R.A.; Macas, J.; Novák, P.; Leitch, A.R. Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS ONE 2012, 7, e36963. [Google Scholar] [CrossRef] [Green Version]
- Weiss-Schneeweiss, H.; Leitch, A.R.; McCann, J.; Jang, T.-S.; Macas, J. Chapter 5—Employing next generation sequencing to explore the repeat landscape of the plant genome BT—Next-Generation Sequencing in Plant Systematics. In Proceedings of the Next-Generation Sequencing in Plant Systematics; Koeltz Botanical Books: Hessen, German, 2015; pp. 1–26. [Google Scholar]
- Novák, P.; Guignard, M.S.; Neumann, P.; Kelly, L.J.; Mlinarec, J.; Koblížková, A.; Dodsworth, S.; Kovařík, A.; Pellicer, J.; Wang, W.; et al. Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat. Plants 2020, 6, 1325–1329. [Google Scholar] [CrossRef]
- Serrato-Capuchina, A.; Matute, D.R. The role of transposable elements in speciation. Genes 2018, 9, 254. [Google Scholar] [CrossRef] [Green Version]
- Vitales, D.; Garcia, S.; Dodsworth, S. Reconstructing phylogenetic relationships based on repeat sequence similarities. Mol. Phylogenet. Evol. 2020, 147, 106766. [Google Scholar] [CrossRef]
- Dodsworth, S.; Chase, M.W.; Kelly, L.J.; Leitch, I.J.; Macas, J.; Novák, P.; Piednoël, M.; Weiss-Schneeweiss, H.; Leitch, A.R. Genomic repeat abundances contain phylogenetic signal. Syst. Biol. 2015, 64, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Aeschimann, D.; Lauber, K.; Martin, D.; Theurillat, J.-P. Flora Alpina; Belin: Paris, France, 2004. [Google Scholar]
- Rice, A.; Glick, L.; Abadi, S.; Einhorn, M.; Kopelman, N.M.; Salman-Minkov, A.; Mayzel, J.; Chay, O.; Mayrose, I. The Chromosome Counts Database (CCDB)—A community resource of plant chromosome numbers. New Phytol. 2015, 206, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.; Álvarez, I.; Aedo, C.; Pelser, P.B. A phylogenetic analysis and new delimitation of Senecio sect. Crociseris (Compositae: Senecioneae), with evidence of intergeneric hybridization. Taxon 2013, 62, 127–140. [Google Scholar] [CrossRef]
- Walter, G.M.; Abbott, R.J.; Brennan, A.C.; Bridle, J.R.; Chapman, M.; Clark, J.; Filatov, D.; Nevado, B.; Ortiz-Barrientos, D.; Hiscock, S.J. Senecio as a model system for integrating studies of genotype, phenotype and fitness. New Phytol. 2020, 226, 326–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baack, E.J. To succeed globally, disperse locally: Effects of local pollen and seed dispersal on tetraploid establishment. Heredity 2005, 94, 538–546. [Google Scholar] [CrossRef]
- Pegoraro, L.; Baker, E.C.; Aeschimann, D.; Balant, M.; Douzet, R.; Garnatje, T.; Guignard, M.S.; Leitch, I.J.; Leitch, A.R.; Palazzesi, L.; et al. The correlation of phylogenetics, elevation and ploidy on the incidence of apomixis in Asteraceae in the European Alps. Bot. J. Linn. Soc. 2020, 194, 410–422. [Google Scholar] [CrossRef]
- Staton, S.E.; Burke, J.M. Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance. BMC Genom. 2015, 16, 623. [Google Scholar] [CrossRef] [Green Version]
- Pellicer, J.; Balant, M.; Fernández, P.; Rodríguez González, R.; Hidalgo, O. Morphological and genome-wide evidence of homoploid hybridisation in Urospermum (Asteraceae). Plants 2022, 11, 182. [Google Scholar] [CrossRef]
- Vicient, C.M.; Casacuberta, J.M. Impact of transposable elements on polyploid plant genomes. Ann. Bot. 2017, 120, 195–207. [Google Scholar] [CrossRef]
- Baduel, P.; Quadrana, L.; Hunter, B.; Bomblies, K.; Colot, V. Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nat. Commun. 2019, 10, 5818. [Google Scholar] [CrossRef] [Green Version]
- Giraud, D.; Lima, O.; Huteau, V.; Coriton, O.; Boutte, J.; Kovarik, A.; Leitch, A.R.; Leitch, I.J.; Aïnouche, M.; Salmon, A. Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. Plant Sci. 2021, 302, 110671. [Google Scholar] [CrossRef]
- Arroyo-García, R.; Lefort, F.; De Andrés, M.T.; Ibáñez, J.; Borrego, J.; Jouve, N.; Cabello, F.; Martínez-Zapater, J.M. Chloroplast microsatellite polymorphisms in Vitis species. Genome 2002, 45, 1142–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hojsgaard, D.; Hörandl, E. The rise of apomixis in natural plant populations. Front. Plant Sci. 2019, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Obermayer, R.; Leitch, I.J.; HansonN, L.; Bennett, M.D. Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Ann. Bot. 2002, 90, 209–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loureiro, J.; Rodriguez, E.; Doležel, J.; Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Ann. Bot. 2007, 100, 875–888. [Google Scholar] [CrossRef] [Green Version]
- Pellicer, J.; Powell, R.F.; Leitch, I.J. The Application of flow cytometry for estimating genome size, ploidy level, endopolyploidy, and reproductive modes in plants BT. In Molecular Plant Taxonomy: Methods and Protocols; Besse, P., Ed.; Springer: New York, NY, USA, 2021; pp. 325–361. ISBN 978-1-0716-0997-2. [Google Scholar]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Novák, P.; Neumann, P.; Pech, J.; Steinhaisl, J.; Macas, J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 2013, 29, 792–793. [Google Scholar] [CrossRef] [Green Version]
- Novák, P.; Neumann, P.; Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 2020, 15, 3745–3776. [Google Scholar] [CrossRef]
- Neumann, P.; Novák, P.; Hoštáková, N.; Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 2019, 10, 1. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Pellicer, J.; Fernández, P.; Fay, M.F.; Michálková, E.; Leitch, I.J. Genome size doubling arises from the differential repetitive DNA dynamics in the genus Heloniopsis (Melanthiaceae). Front. Genet. 2021, 12, 1685. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, D.; Moulton, V. Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 2004, 21, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinforma. 2020, 70, e102. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
Genome Proportion (GP) | |||||||
---|---|---|---|---|---|---|---|
4x | 6x | 8x | |||||
Repeat Type | Lineage | [%] | [Mb] | [%] | [Mb] | [%] | [Mb] |
Ty1/Copia | 14.51 | 610.40 | 14.86 | 944.78 | 15.28 | 1237.56 | |
SIRE | 13.08 | 550.07 | 13.34 | 848.01 | 13.60 | 1101.70 | |
Angela | 0.97 | 40.96 | 1.11 | 70.64 | 0.95 | 76.83 | |
TAR | 0.11 | 4.64 | 0.10 | 6.43 | 0.14 | 11.51 | |
Bianca | 0.06 | 2.44 | 0.06 | 3.99 | 0.31 | 24.73 | |
Ale | 0.03 | 1.24 | 0.01 | 0.82 | 0.03 | 2.81 | |
Tork | 0.06 | 2.37 | 0.04 | 2.48 | 0.06 | 4.60 | |
Ikeros | 0.21 | 8.68 | 0.20 | 12.42 | 0.19 | 15.39 | |
Ty3/Gypsy | 46.86 | 1970.85 | 44.02 | 2798.58 | 42.06 | 3406.09 | |
Tekay | 43.85 | 1843.88 | 40.61 | 2581.82 | 39.08 | 3164.91 | |
Athila | 1.67 | 70.09 | 1.60 | 101.55 | 1.56 | 126.28 | |
CRM | 0.39 | 16.41 | 0.42 | 26.46 | 0.36 | 29.44 | |
Retand | 0.96 | 40.47 | 1.40 | 88.76 | 1.06 | 85.47 | |
LTR-unclassified | 3.39 | 142.61 | 5.49 | 348.91 | 6.42 | 519.65 | |
Other repeats | |||||||
Pararetrovirus | 0.01 | 0.46 | 0.22 | 13.93 | 0.22 | 17.71 | |
DNA transposons | 0.61 | 25.54 | 0.71 | 44.93 | 0.56 | 45.12 | |
TIR/Enspm-CACTA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
TIR/MuDR-Mutator | 0.40 | 16.71 | 0.49 | 31.33 | 0.34 | 27.15 | |
TIR/haT | 0.18 | 7.59 | 0.16 | 10.00 | 0.17 | 13.62 | |
TIR/PIF-Harbinger | 0.03 | 1.24 | 0.06 | 3.60 | 0.05 | 4.35 | |
Tandem repeats | |||||||
Ribosomal DNA | 0.28 | 11.76 | 0.40 | 25.35 | 0.25 | 19.97 | |
Satellite | 0.37 | 15.64 | 0.62 | 39.16 | 0.45 | 36.71 | |
Unclassified repeat clusters (GP ≥ 0.01%) | 5.92 | 249.17 | 5.64 | 358.81 | 5.94 | 480.84 | |
Small unclassified clusters (GP < 0.01%) | 13.49 | 567.21 | 13.95 | 886.71 | 14.10 | 1141.67 | |
Total repeats | 85.45 | 3593.65 | 85.91 | 5461.17 | 85.27 | 6905.31 | |
Single copy | 14.55 | 611.75 | 14.09 | 895.83 | 14.73 | 1192.53 |
8x–6x | 6x–4x | 8x–4x | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Slope | SE | R2 | Sig. | Slope | SE | R2 | Sig. | Slope | SE | R2 | Sig. | |
Ty1/Copia | 1.37 | 0.01 | 0.996 | *** | 1.5 | 0.01 | 0.999 | *** | 2.06 | 0.02 | 0.996 | *** |
Ty3/Gypsy | 1.3 | 0.01 | 0.999 | *** | 1.5 | 0 | 0.999 | *** | 1.95 | 0.01 | 0.998 | *** |
All | 1.31 | 0 | 0.997 | *** | 1.5 | 0 | 0.999 | *** | 1.97 | 0.01 | 0.997 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, P.; Hidalgo, O.; Juan, A.; Leitch, I.J.; Leitch, A.R.; Palazzesi, L.; Pegoraro, L.; Viruel, J.; Pellicer, J. Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps. Plants 2022, 11, 1235. https://doi.org/10.3390/plants11091235
Fernández P, Hidalgo O, Juan A, Leitch IJ, Leitch AR, Palazzesi L, Pegoraro L, Viruel J, Pellicer J. Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps. Plants. 2022; 11(9):1235. https://doi.org/10.3390/plants11091235
Chicago/Turabian StyleFernández, Pol, Oriane Hidalgo, Ana Juan, Ilia J. Leitch, Andrew R. Leitch, Luis Palazzesi, Luca Pegoraro, Juan Viruel, and Jaume Pellicer. 2022. "Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps" Plants 11, no. 9: 1235. https://doi.org/10.3390/plants11091235
APA StyleFernández, P., Hidalgo, O., Juan, A., Leitch, I. J., Leitch, A. R., Palazzesi, L., Pegoraro, L., Viruel, J., & Pellicer, J. (2022). Genome Insights into Autopolyploid Evolution: A Case Study in Senecio doronicum (Asteraceae) from the Southern Alps. Plants, 11(9), 1235. https://doi.org/10.3390/plants11091235