Can Peat Amendment of Mars Regolith Simulant Allow Soybean Cultivation in Mars Bioregenerative Life Support Systems?
Abstract
:1. Introduction
2. Results
Plant Growth
3. Discussion
4. Materials and Methods
4.1. Plant Growth Conditions and Measurements
4.2. Statistical Analysis of Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Häder, D.P.; Braun, M.; Hemmersbach, R. Bioregenerative life support systems in space research. In Gravitational Biology I. Springer Briefs in Space Life Sciences; Springer International Publishing: Cham, Switzerland, 2018; pp. 113–122. [Google Scholar] [CrossRef]
- Wheeler, R.M. Plants for human life support in space: From Myers to Mars. Gravit. Space Biol. 2010, 23, 25–36. [Google Scholar]
- Lasseur, C.; Brunet, J.; Weever, H.; Dixon, M.; Dussap, C.G.; Gòdia, F.; Leys, N.; Mergeay, M.; Van Der Straeten, D. MELiSSA: The European project of closed life support system. Gravit. Space Biol. 2010, 23, 3–12. [Google Scholar]
- Caporale, A.G.; Vingiani, S.; Palladino, M.; El-Nakhel, C.; Duri, L.G.; Pannico, A.; Rouphael, Y.; De Pascale, S.; Adamo, P. Geo-mineralogical characterisation of Mars simulant MMS-1 and appraisal of substrate physico-chemical properties and crop performance obtained with variable green compost amendment rates. Sci. Total Environ. 2020, 720, 137543. [Google Scholar] [CrossRef] [PubMed]
- Duri, L.G.; El-Nakhel, C.; Caporale, A.G.; Ciriello, M.; Graziani, G.; Pannico, A.; Palladino, M.; Ritieni, A.; De Pascale, S.; Vingiani, S.; et al. Mars regolith simulant ameliorated by compost as in situ cultivation substrate improves lettuce growth and nutritional aspects. Plants 2020, 9, 628. [Google Scholar] [CrossRef] [PubMed]
- Duri, L.G.; Caporale, A.G.; Rouphael, Y.; Vingiani, S.; Palladino, M.; De Pascale, S.; Adamo, P. The potential for Lunar and Martian Regoliths Simulants to sustain plant growth: A multidisciplinary overview. Front. Astron. Space Sci. 2022, 8, 747821. [Google Scholar] [CrossRef]
- Caporale, A.G.; Palladino, M.; De Pascale, S.; Duri, L.G.; Rouphael, Y.; Adamo, P. How to make the lunar and martian soils suitable for food production—Assessing the changes after manure addition and implications for plant growth. J. Environ. Manag. 2023, 325, 116455. [Google Scholar] [CrossRef]
- Caporale, A.G.; Amato, M.; Duri, L.G.; Bochicchio, R.; De Pascale, S.; Simeone, G.D.R.; Palladino, M.; Pannico, A.; Rao, M.A.; Rouphael, Y.; et al. Can lunar and martian soils support food plant production? Effects of horse/swine monogastric manure fertilisation on regolith simulants enzymatic activity, nutrient bioavailability, and lettuce growth. Plants 2022, 11, 3345. [Google Scholar] [CrossRef] [PubMed]
- Duri, L.G.; Pannico, A.; Petropoulos, S.A.; Caporale, A.G.; Adamo, P.; Graziani, G.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Bioactive compounds and antioxidant activity of lettuce grown in different mixtures of monogastric-based manure with Lunar and Martian Soils. Front. Nutr. 2022, 9, 890786. [Google Scholar] [CrossRef] [PubMed]
- Caporale, A.G.; Paradiso, R.; Liuzzi, G.; Palladino, M.; Amitrano, C.; Arena, C.; Arouna, N.; Verrillo, M.; Cozzolino, V.; De Pascale, S.; et al. Green compost amendment improves potato plant performance on Mars regolith simulant as substrate for cultivation in Space. Plant Soil.
- Paradiso, R.; Buonomo, R.; De Micco, V.; Aronne, G.; Palermo, M.; Barbieri, G.; De Pascale, S. Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs). Hydroponic cultivation. Adv. Space Res. 2012, 50, 1501–1511. [Google Scholar] [CrossRef]
- Paradiso, R.; De Micco, V.; Buonomo, R.; Aronne, G.; Barbieri, G.; De Pascale, S. Soilless cultivation of soybean for Bioregenerative Life Support Systems (BLSSs): A literature review and the experience of the MELiSSA Project—Food characterization Phase, I. Plant Biol. 2014, 16, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Palermo, M.; Paradiso, R.; De Pascale, S.; Fogliano, V. Hydroponic cultivation improves the nutritional quality of soybean and its products. J. Agric. Food Chem. 2012, 60, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.L.; Elardo, S.M.; Ferl, R. Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Commun. Biol. 2022, 5, 382. [Google Scholar] [CrossRef] [PubMed]
- Paoli, R.; Feofilovs, M.; Kamenders, A.; Romagnoli, F. Peat production for horticultural use in the Latvian context: Sustainability assessment through LCA modeling. J. Clean. Prod. 2022, 378, 134559. [Google Scholar] [CrossRef]
- Singh, G. The Soybean: Botany, Production and Uses; CABI: Wallingford, UK, 2010; ISBN 978-1-84593-644-0. [Google Scholar]
- Kumudini, S. Soybean growth and development. In The Soybean: Botany, Production and Uses; CABI: Wallingford, UK, 2010; pp. 48–73. [Google Scholar]
- ISTA International Seed Testing Association. International Rules for Seed Testing; ISTA: Bassersdorf, Switzerland, 1999. [Google Scholar]
- Wild, A. Soil as a medium for plant growth. In Soils and the Environment; Cambridge University Press: Cambridge, UK, 1993; pp. 109–136. [Google Scholar] [CrossRef]
- Biswas, S. Prospects and constraints of transplanted maize, wheat, sorghum and pearl millet: A review. Int. J. Environ. Clim. Change 2020, 10, 24–43. [Google Scholar] [CrossRef]
- Rymuza, K.; Radzka, E. Effect of pH levels on soybean seed germination dynamics. Acta Sci. Pol. Agric. 2021, 20, 81–88. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Wheeler, R.M.; Mackowiak, C.L.; Stutte, G.S.; Yorio, N.C.; Ruffe, L.M.; Sager, J.C.; Prince, R.P.; Knott, W.M. Crop productivities and radiation use efficiencies for bioregenerative life support. Adv. Space Res. 2008, 41, 706–713. [Google Scholar] [CrossRef]
Plant Height | Fresh Weight | Dry Weight | Dry Matter | |||||
---|---|---|---|---|---|---|---|---|
Aerial Part | Roots | Total | Aerial Part | Roots | Total | |||
(cm) | (g Plant−1) | (g Plant−1) | (g Plant−1) | (g Plant−1) | (g Plant−1) | (g Plant−1) | (% of FW) | |
Sowing | ||||||||
R100-S | 23.25 c | 0.78 | 0.19 c | 0.97 | 0.13 cd | 0.02 bc | 0.14 cd | 15.08 |
R85P15-S | 34.13 ab | 1.17 | 0.34 abc | 1.51 | 0.20 ab | 0.04 a | 0.23 a | 15.45 |
R70P30-S | 36.63 a | 1.36 | 0.32 abc | 1.68 | 0.21 a | 0.04 a | 0.25 a | 14.85 |
mean | 31.33 a | 1.10 | 0.29 | 1.39 | 0.18 a | 0.03 a | 0.21 a | 15.13 a |
Transplanting | ||||||||
R100-T | 33.00 ab | 1.42 | 0.43 a | 1.85 | 0.19 ab | 0.03 ab | 0.22 ab | 11.73 |
R85P15-T | 27.75 bc | 1.63 | 0.25 bc | 1.88 | 0.16 bc | 0.02 bc | 0.17 bc | 11.93 |
R70P30-T | 20.33 c | 0.89 | 0.36 ab | 1.25 | 0.10 d | 0.01 c | 0.12 d | 9.97 |
mean | 27.03 b | 1.31 | 0.35 | 1.66 | 0.15 b | 0.02 b | 0.17 b | 11.21 b |
Significance | ||||||||
Substrate (S) | ns | ns | ns | ns | ns | ns | ns | ns |
Planting method (Pm) | * | ns | ns | ns | * | ** | ** | ** |
SxPm | ** | ns | ** | ns | ** | ** | ** | ns |
C (%) | N (%) | C/N | S (%) | |||||
---|---|---|---|---|---|---|---|---|
Shoots | Roots | Shoots | Roots | Shoots | Roots | Shoots | Roots | |
Sowing | ||||||||
R100-S | 42.7 | 33.1 | 7.54 a | 5.10 | 5.66 | 6.50 | 0.55 | 0.81 |
R85P15-S | 42.5 | 41.9 | 5.66 c | 4.02 | 7.50 | 10.4 | 0.76 | 0.84 |
R70P30-S | 42.4 | 30.6 | 5.42 c | 2.79 | 7.83 | 11.0 | 0.42 | 1.12 |
mean | 42.5 | 35.2 | 6.21 | 3.97 | 6.99 | 9.30 | 0.58 | 0.93 |
Transplanting | ||||||||
R100-T | 42.5 | 35.7 | 5.49 c | 5.41 | 7.74 | 6.60 | 0.47 | 1.09 |
R85P15-T | 45.7 | 37.2 | 6.76 b | 4.54 | 6.75 | 8.18 | 0.42 | 0.65 |
R70P30-T | 44.9 | 35.4 | 7.69 a | 4.76 | 5.84 | 7.45 | 0.53 | 0.68 |
mean | 44.4 | 36.1 | 6.65 | 4.91 | 6.78 | 7.41 | 0.47 | 0.81 |
Significance | ||||||||
Substrate (S) | ns | ns | ns | ns | ns | ns | ns | ns |
Planting method (Pm) | ns | ns | ns | ns | ns | ns | ns | ns |
SxPm | ns | ns | ** | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caporale, A.G.; Paradiso, R.; Liuzzi, G.; Arouna, N.; De Pascale, S.; Adamo, P. Can Peat Amendment of Mars Regolith Simulant Allow Soybean Cultivation in Mars Bioregenerative Life Support Systems? Plants 2023, 12, 64. https://doi.org/10.3390/plants12010064
Caporale AG, Paradiso R, Liuzzi G, Arouna N, De Pascale S, Adamo P. Can Peat Amendment of Mars Regolith Simulant Allow Soybean Cultivation in Mars Bioregenerative Life Support Systems? Plants. 2023; 12(1):64. https://doi.org/10.3390/plants12010064
Chicago/Turabian StyleCaporale, Antonio Giandonato, Roberta Paradiso, Greta Liuzzi, Nafiou Arouna, Stefania De Pascale, and Paola Adamo. 2023. "Can Peat Amendment of Mars Regolith Simulant Allow Soybean Cultivation in Mars Bioregenerative Life Support Systems?" Plants 12, no. 1: 64. https://doi.org/10.3390/plants12010064
APA StyleCaporale, A. G., Paradiso, R., Liuzzi, G., Arouna, N., De Pascale, S., & Adamo, P. (2023). Can Peat Amendment of Mars Regolith Simulant Allow Soybean Cultivation in Mars Bioregenerative Life Support Systems? Plants, 12(1), 64. https://doi.org/10.3390/plants12010064