Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici
Abstract
:1. Introduction
2. Results
2.1. Quantitative Immunolocalization Analysis of RbcL and PPDK in the Developing Leaves of Bienertia sinuspersici
2.2. Quantitative Immunolocalization Analysis of PsbO and Cytochrome f in Mature Leaves
2.3. Subcellular Localization and Quantification of Chloroplast-Encoded Photosynthetic Transcripts
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hatch, M.D. C4 photosynthesis: A unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta. 1987, 895, 81–106. [Google Scholar] [CrossRef]
- Voznesenskaya, E.V.; Franceschi, V.R.; Kiirats, O.; Freitag, H.; Edwards, E. Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 2001, 414, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Voznesenskaya, E.V.; Franceschi, V.R.; Kiirats, O.; Artyusheva, E.G.; Freitag, H.; Edwards, G.E. Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J. 2002, 31, 649–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitag, H.; Stichler, W. Bienertia cycloptera Bunge ex Boiss.; Chenopodiaceae, another C4 plant without Kranz tissues. Plant Biol. 2002, 4, 121–132. [Google Scholar] [CrossRef]
- Akhani, H.; Barroca, J.; Koteeva, N.; Voznesenskaya, E.; Franceschi, V.; Edwards, G.E.; Ghaffari, S.M.; Ziegler, H. Bienertia sinuspersici (Chenopodiaceae): A new species from southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Systematic Bot. 2005, 30, 290–301. [Google Scholar] [CrossRef]
- Akhani, H.; Chatrenoor, T.; Dehghani, M.; Khoshravesh, R.; Mahdavi, P.; Matinzadeh, Z. A new species of Bienertia (Chenopodiaceae) from Iranian salt deserts: A third species of the genus and discovery of a fourth terrestrial C4 plant without Kranz anatomy. Plant Biosystems. 2012, 146, 550–559. [Google Scholar]
- Voznesenskaya, E.V.; Koteyeva, N.K.; Chuong, S.D.D.; Akhani, H.; Edwards, G.E.; Franceschi, V.R. Differentiation of cellular and biochemical features of the single-cell C4 syndrome during leaf development in Bienertia cycroptera (Chenopodiaceae). Am. J. Bot. 2005, 92, 1784–1795. [Google Scholar] [CrossRef]
- Chuong, S.D.D.; Franceschi, V.R.; Edwards, G.E. The cytoskelton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. Plant Cell 2006, 18, 2207–2223. [Google Scholar] [CrossRef] [Green Version]
- Edwards, G.E.; Franceschi, V.R.; Voznesenskaya, E.V. Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu. Rev. Plant Biol. 2004, 55, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Martineau, B.; Taylor, W.C. Photosynthetic gene expression and cellular differentiation in developing maize leaves. Plant Physiol. 1985, 78, 399–404. [Google Scholar] [CrossRef]
- Langdale, J.A.; Rothermel, B.A.; Nelson, T. Cellular pattern of photosynthetic gene expression in developing maize leaves. Genes Dev. 1988, 2, 106–115. [Google Scholar] [CrossRef]
- Sheen, J.Y.; Bogorad, L. Differential expression of C4 pathway genes in mesophyll and bundle sheath cells of greening maize leaves. J. Biol. Chem. 1987, 262, 11726–11730. [Google Scholar] [CrossRef]
- Wang, J.L.; Kessig, D.F.; Berry, J.O. Regulation of C4 gene expression in developing amaranth leaves. Plant Cell 1992, 4, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Turgeon, R.; Carr, J.P.; Berry, J.O. Carbon sink-to-source transition is coordinated with establishment of cell-specific gene expression in a C4 plant. Plant Cell 1993, 5, 289–296. [Google Scholar] [CrossRef]
- Ramsperger, V.C.; Summers, R.G.; Berry, J.O. Photosynthetic gene expression in meristems and during initial leaf development in a C4 dicotyledonous plant. Plant Physiol. 1996, 111, 999–1010. [Google Scholar] [CrossRef] [Green Version]
- Sheen, J.Y.; Bogorad, L. Regulation of levels of nuclear transcripts for C4 photosynthesis in bundle sheath and mesophyll cells of maize leaves. Plant Mol. Biol. 1987, 8, 227–238. [Google Scholar] [CrossRef]
- Langdale, J.A.; Taylor, W.C.; Nelson, T. Cell-specific accumulation of maize phosphoenolpyruvate carboxylase is correlated with demethylation at a specific site greater than 3 kb upstream of the gene. Mol. Gen. Genet. 1991, 225, 49–55. [Google Scholar] [CrossRef]
- Matsuoka, M.; Numazawa, T. Cis-acting elements in the pyruvate, orthophosphate dikinase gene from maize. Mol. Gen. Genet. 1991, 228, 143–152. [Google Scholar] [CrossRef]
- Long, J.J.; Berry, J.O. Tissue-specific and light-mediated expression of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. Plant Physiol. 1996, 112, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Nomura, M.; Sentoku, N.; Nishimura, A.; Lin, J.H.; Honda, C.; Taniguchi, M.; Ishida, Y.; Ohta, S.; Komari, T.; Miyao-Tokutomi, M.; et al. The evolution of C4 plants: Acquisition of cis-regulatory sequences in the promoter of C4-type pyruvate, orthophosphate dikinase gene. Plant J. 2000, 22, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, M.; Izawa, K.; Ku, M.S.S.; Lin, J.H.; Saito, H.; Ishida, Y.; Ohta, S.; Komari, T.; Matsuoka, M.; Sugiyama, T. Binding of cell type-specific nuclear proteins to the 5’-flanking region of maize C4 phosphoenolpyruvate carboxylase gene confers its differential transcription in mesophyll cells. Plant Mol. Biol. 2000, 44, 543–557. [Google Scholar] [CrossRef] [PubMed]
- McCormac, D.J.; Litz, H.; Wang, J.; Gollnick, P.D.; Berry, J.O. Light-associated and processing-dependent protein binding to 5’ regions of rbcL mRNA in the Chloroplasts of a C4 plant. J. Biol. Chem. 2001, 276, 3476–3483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibberd, J.M.; Covshoff, S. The regulation of gene expression required for C4 photosynthesis. Annu. Rev. Plant Biol. 2010, 61, 181–207. [Google Scholar] [CrossRef] [PubMed]
- Sheen, J. C4 gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 187–217. [Google Scholar] [CrossRef] [PubMed]
- Edwards, G.E.; Franceschi, V.R.; Ku, M.S.S.; Voznesenskaya, E.V.; Pyankov, V.I.; Andreo, C.S. Compartmentation of photosynthesis in cells and tissues of C4 plants. J. Exp. Bot. 2001, 52, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Voznesenskaya, E.V.; Edwards, G.E.; Kirats, O.; Artyusheva, E.G.; Francheschi, V.R. Development of biochemical specialization and organelle partitioning in the single-cell C4 system in leaves of Borszczowia aralocaspica (Chenopodiaceae). Am. J. Bot. 2003, 90, 1669–1680. [Google Scholar] [CrossRef]
- Lara, M.V.; Offermann, S.; Smith, M.; Okita, T.W.; Andreo, C.S.; Edwards, G.E. Leaf development in the single-cell C4 system in Bienertia sinuspersici: Expression of genes and peptide levels for C4 metabolism in relation to chlorenchyma structure under different light conditions. Plant Physiol. 2008, 148, 593–610. [Google Scholar] [CrossRef] [Green Version]
- Offermann, S.; Okita, T.W.; Edwards, G.E. Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici. Plant Physiol. 2011, 155, 1612–1628. [Google Scholar] [CrossRef] [Green Version]
- Majeran, W.; Zybailov, B.; Ytterberg, J.A.; Dunsmore, J.; Sun, Q.; van Wijk, K.J. Consequences of C4 differentiation for chloroplast membrene proteomes in maize mesophyll and bundle sheath cells. Mol. Cell Proteomics. 2008, 7, 1609–1638. [Google Scholar] [CrossRef] [Green Version]
- Hofer, M.U.; Santore, U.J.; Westhoff, P. Differential accumulation of the 10-, 16- and 23-kDa peripheral componentsof the water-splitting complex of photosystem II in mesophyll and bundle-sheath chloroplasts of the dicotyledonous C4 plant Flaveria trinervia (Spreng.) C. Mohr. Planta 1992, 186, 304–312. [Google Scholar] [CrossRef]
- Meierhoff, K.; Westhoff, P. Differential biogenesis of photosystem II in mesophyll and bundle-sheath cells of monocotyledonous NADP-malic enzyme-type C4 plants:the non-stoichiometric abundance of the subunits of photosystem II in the bundle-sheath chloroplasts and the translational activity of the plastome-encoded genes. Planta 1993, 191, 23–33. [Google Scholar]
- Koteyeva, N.K.; Voznesenskaya, E.V.; Berry, J.O.; Cousins, A.B.; Edwards, G.E. The unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodeaceae). J. Exp. Bot. 2016, 67, 2587–2601. [Google Scholar] [CrossRef]
- Lung, S.C.; Yanagisawa, M.; Chuong, S.D.D. Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici. Plant Cell Rep. 2011, 30, 473–484. [Google Scholar] [CrossRef]
- Dengler, N.G.; Taylor, W.C. Developmental aspects of C4 photosynthesis. In Photosynthesis: Physiology and Metabolism; Leegood, R.C., Sharkey, T.D., von Caemmerer, S., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 471–495. [Google Scholar]
- Langdale, J.A.; Metzler, M.C.; Nelson, T. The Argentia mutation dilays normal development of photosynthetic cell-types in Zea mays. Dev. Biol. 1987, 122, 243–255. [Google Scholar] [CrossRef]
- Freitag, H.; Stichler, W. A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodiaceae. Plant Biol. 2000, 2, 154–160. [Google Scholar] [CrossRef]
- Lesner, C.P.; Cousins, A.B.; Offermann, S.; Okita, T.W.; Edwards, G.E. The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae). Photosynth. Res. 2010, 106, 201–214. [Google Scholar] [CrossRef]
- Wimmer, D.; Bohnhorst, P.; Shekhar, V.; Hwang, I.; Offermann, S. Transit peptide elements mediate selective protein targeting to two different types of chloroplasts in the single-cell C4 species Bienertia sinuspersici. Sci. Rep. 2017, 7, 41187. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.M. Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: A personal perspective. Aust. J. Plant Physiol. 1999, 26, 625–639. [Google Scholar] [CrossRef]
- Adam, Z.; Charuvi, D.; Tsabari, O.; Knopf, R.R.; Reich, Z. Biogenesis of thylakoid networks in angiosperms: Knowns and unknowns. Plant Mol. Biol. 2010, 76, 221–234. [Google Scholar] [CrossRef]
- Offermann, S.; Friso, G.; Doroshenk, K.A.; Sun, Q.; Sharpe, R.M.; Okita, T.W.; Wimmer, D.; Edwards, G.E.; van Wijk, K.J. Developmental and subcellular organization of single-cell C4 photosynthesis in Bienertia sinuspercisi determined by large-scale proteomics and cDNA assembly from 454 DNA sequencing. J. Prot. Res. 2015, 14, 2090–2108. [Google Scholar] [CrossRef]
- Patel, M.; Berry, J.O. Rubisco gene expression in C4 plants. J. Exp. Bot. 2008, 59, 1625–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosnow, J.; Yerramsetty, P.; Berry, J.O.; Okita, T.W.; Edwards, G.E. Exploring mechanisms linked to differentiation and function of dimorphic chloroplasts in the single cell C4 species Bienertia sinuspersici. BMC Plant Biol. 2014, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Collett, H.; Butowt, R.; Smith, J.; Farrant, J.M.; Illing, N. Photosynthetic genes are differentially transcribed during the dehydration-rehydration cycle in the resurrection plant, Xerophyta humilis. J. Exp. Bot. 2003, 54, 2593–2595. [Google Scholar] [CrossRef] [PubMed]
- Marin-Navarro, J.; Manuell, L.; Wu, J.; Mayfield, S.P. Chloroplast translation regulation. Photosynth. Res. 2007, 94, 359–374. [Google Scholar] [CrossRef]
- Mulo, P.; Sakurai, I.; Aro, E.M. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: From transcription to PSII repair. Biochim. Biophys. Acta. 2011, 1817, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Fromm, H.; Devic, M.; Fluhr, R.; Edelman, M. Control of psbA gene expression: In mature Spirodela chloroplasts light regulation of 32-kd protein synthesis is independent of transcript level. EMBO J. 1985, 4, 291–295. [Google Scholar] [CrossRef]
- Klein, R.R.; Mullet, J.E. Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis. J. Biol. Chem. 1986, 261, 11138–11145. [Google Scholar] [CrossRef]
- Klaff, P.; Gruissem, W. Changes in chloroplast mRNA stability during leaf development. Plant Cell 1991, 3, 517–529. [Google Scholar] [CrossRef]
- Staub, J.M.; Maliga, P. Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J. 1993, 12, 601–606. [Google Scholar] [CrossRef]
- Kim, J.; Eichacker, L.A.; Rudiger, W.; Mullet, J.E. Chlorophyll regulates accumulation of the plastid-encoded chlorophyll proteins P700 and D1 by increasing apoprotein stability. Plant Physiol. 1994, 104, 907–916. [Google Scholar] [CrossRef] [Green Version]
- van Wijk, K.J.; Bingsmark, S.; Aro, E.M.; Andersson, B. In vitro synthesis and assembly of photosystem II core proteins. The D1 protein can be incorporated into photosystem II in isolated chloroplasts and thylakoids. J. Biol. Chem. 1995, 270, 25685–25695. [Google Scholar] [CrossRef]
- Edhofer, I.; Muhlbauer, S.K.; Eichacker, L.A. Light regulates the rate of translation elongation of chloroplast reaction center protein D1. Eur. J. Biochem. 1998, 257, 78–84. [Google Scholar] [CrossRef]
- Xu, R.; Bingham, S.E.; Webber, A.N. Increased mRNA accumulation in a psaB frame-shift mutation of Chlamydomonas reinhardtii suggests a role for translation in psaB mRNA stability. Plant Mol. Biol. 1993, 22, 465–474. [Google Scholar] [CrossRef]
- Bowman, S.M.; Patel, M.; Yerramsetty, P.; Mure, C.; Zielinski, A.M.; Bruenn, J.A.; Berry, J.O. A novel RNA binding protein affects rbcL gene expression and is specific to bundle sheath chloroplasts in C4 plants. BMC Plant Biol. 2013, 13, 138. [Google Scholar] [CrossRef] [Green Version]
- Yerramsetty, P.; Agar, E.M.; Yim, W.C.; Cushman, J.C.; Berry, J.O. An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria. J. Exp. Bot. 2017, 68, 4635–4649. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Chai, X.; Manavski, N.; Williams-Carrier, R.; He, B.; Brachmann, A.; Ji, D.; Ouyang, M.; Liu, Y.; Barka, A.; et al. An RNA chaperone–like protein plays critical roles in chloroplast mRNA stability and translation in Arabidopsis and maize. Plant Cell 2019, 31, 1308–1327. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, K.; Lee, K.H.; Jung, S.; Jeon, Y.; Pai, H.S.; Kang, H. A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. Plant J. 2015, 83, 277–289. [Google Scholar] [CrossRef]
- Lung, S.C.; Yanagisawa, M.; Chuong, S.D.D. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici. Plant Methods 2012, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucl. Acids Res. 2001, 29, 2002–2007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yanagisawa, M.; Chuong, S.D.X. Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici. Plants 2023, 12, 77. https://doi.org/10.3390/plants12010077
Yanagisawa M, Chuong SDX. Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici. Plants. 2023; 12(1):77. https://doi.org/10.3390/plants12010077
Chicago/Turabian StyleYanagisawa, Makoto, and Simon D. X. Chuong. 2023. "Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici" Plants 12, no. 1: 77. https://doi.org/10.3390/plants12010077
APA StyleYanagisawa, M., & Chuong, S. D. X. (2023). Development of C4 Biochemistry and Change in Expression of Markers for Photosystems I and II in the Single-Cell C4 Species, Bienertia sinuspersici. Plants, 12(1), 77. https://doi.org/10.3390/plants12010077