The Growth Characteristics and the Active Compounds of Cudrania tricuspidata Fruits in Different Cultivation Environments in South Korea
Abstract
:1. Introduction
2. Results
2.1. Soil Characteristics and Meteorological Factors
2.2. Growth Characteristics
2.3. Validtaion and Quantitative Analysis of Active Compounds
2.4. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Chemicals
4.2. Soil Analysis
4.3. Meteorological Data
4.4. Growth Characteristics
4.5. Sample and Standard Preparation
4.6. UPLC Conditions
4.7. Method Validation
4.8. Statistical and Multivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, D.-C.; Yoon, C.-S.; Quang, T.H.; Ko, W.; Kim, J.-S.; Oh, H.; Kim, Y.-C. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells. Int. J. Mol. Sci. 2016, 17, 255. [Google Scholar] [CrossRef]
- Jeong, G.-S.; Lee, D.-S.; Kim, Y.-C. Cudratricusxanthone A from Cudrania tricuspidata suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages. Int. Immunopharmacol. 2009, 9, 241–246. [Google Scholar] [CrossRef]
- Hano, Y.; Matsumoto, Y.; Sun, J.-Y.; Nomura, T. Structure of three new isoprenylated xanthones, cudraxanthones E, F, and G1,2. Planta Med. 1990, 56, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.; Kim, N.; Lee, H.; Woo, E.-R.; Kim, Y.-C.; Oh, H.; Lee, D.-S. Anti-Inflammatory Effects of Compounds from Cudrania tricuspidata in HaCaT Human Keratinocytes. Int. J. Mol. Sci. 2021, 22, 7472. [Google Scholar] [CrossRef]
- Heo, J. Herbs/Acupuncture and Moxibustion. In Donguibogam: Treasured Mirror of Eastern Medicine; Part 7; Ahn, S.W., Kwon, O., Eds.; Ministry of Health & Welfare: Seoul, Republic of Korea, 2013; pp. 3696–3697. [Google Scholar]
- Xin, L.-T.; Yue, S.-J.; Fan, Y.-C.; Wu, J.-S.; Yan, D.; Guan, H.-S.; Wang, C.-Y. Cudrania tricuspidata: An updated review on eth-nomedicine, phytochemistry and pharmacology. RSC Adv. 2017, 7, 31807–31832. [Google Scholar] [CrossRef]
- Nam, S.; Jang, H.W.; Shibamoto, T. Antioxidant Activities of Extracts from Teas Prepared from Medicinal Plants, Morus alba L., Camellia sinensis L., and Cudrania tricuspidata, and Their Volatile Components. J. Agric. Food Chem. 2012, 60, 9097–9105. [Google Scholar] [CrossRef]
- Seo, W.-G.; Pae, H.-O.; Oh, G.-S.; Chai, K.-Y.; Yun, Y.-G.; Chung, H.-T.; Jang, K.K.; Kwon, T.-O. Ethyl Acetate Extract of the Stem Bark of Cudrania Tricuspidata Induces Apoptosis in Human Leukemia HL-60 Cells. Am. J. Chin. Med. 2001, 29, 313–320. [Google Scholar] [CrossRef]
- Zou, Y.-S.; Hou, A.-J.; Zhu, G.-F.; Chen, Y.-F.; Sun, H.-D.; Zhao, Q.-S. Cytotoxic isoprenylated xanthones from Cudrania tri-cuspidata. Bioorg. Med. Chem. 2004, 12, 1947–1953. [Google Scholar] [CrossRef]
- Zhang, P.; Feng, Z.; Wang, Y. Flavonoids, including an unusual flavonoid-Mg2+ salt, from roots of Cudrania tricuspidata. Phytochemistry 2005, 66, 2759–2765. [Google Scholar] [CrossRef]
- Kim, T.-J.; Han, H.-J.; Lim, Y.; Song, M.-C.; Kim, J.; Hong, J.-T.; Yoo, H.-S.; Pyo, M.-Y.; Hwang, B.-Y.; Lee, M.-K.; et al. Antiproliferative action of Cudraflavone B, isolated from Cudrania tricuspidata, through the downregulation of pRb phosphorylation in aortic smooth muscle cell proliferation signaling. J. Cardiovasc. Pharmacol. 2009, 53, 341–348. [Google Scholar] [CrossRef]
- Jeon, S.-M.; Lee, D.-S.; Jeong, G.-S. Cudraticusxanthone A isolated from the roots of Cudrania tricuspidata inhibits metastasis and induces apoptosis in breast cancer cells. J. Ethnopharmacol. 2016, 194, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-B.; Kim, M.-J.; Yang, J.M.; Lee, H.-P.; Hong, J.T.; Jeong, H.-S.; Kim, E.S.; Yoon, D.-Y. Cudrania tricuspidata Stem Extract Induces Apoptosis via the Extrinsic Pathway in SiHa Cervical Cancer Cells. PLoS ONE 2016, 11, e0150235. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Cao, C.; Sun, W.; Chen, Z.; Li, X.; Nahar, L.; Sarker, S.D.; Georgiev, M.I.; Bai, W. Scandenolone from Cudrania tricuspidata fruit extract suppresses the viability ot breast cancer cells (MCF-7) in vitro and in vivo. Food Chem. Toxicol. 2019, 126, 56–66. [Google Scholar] [CrossRef]
- Nile, S.H.; Kim, D.H. HPLC Analysis, Antioxidant, Anti-inflammatory and Xanthine Oxidase Inhibitory Activity of Cudrania tricuspidata. Nat. Prod. Commun. 2015, 10, 1839–1842. [Google Scholar] [CrossRef] [PubMed]
- Shin, G.R.; Lee, S.; Lee, S.; Do, S.-G.; Shin, E.; Lee, C.H. Maturity stage-specific metabolite profiling of Cudrania tricuspidata and its correlation with antioxidant activity. Ind. Crop. Prod. 2015, 70, 322–331. [Google Scholar] [CrossRef]
- Song, S.-H.; Ki, S.H.; Park, D.-H.; Moon, H.-S.; Lee, C.-D.; Yoon, I.-S.; Cho, S.-S. Quantitative analysis, extraction optimization, and biological evaluation of Cudrania tricuspidata leaf and fruit extracts. Molecules 2017, 22, 1489. [Google Scholar] [CrossRef]
- Yong, G.-R.; Gebru, Y.A.; Kim, D.-W.; Kim, D.-H.; Han, H.-A.; Kim, Y.-H.; Kim, M.-K. Chemical Composition and Antioxidant Activity of Steam-Distilled Essential Oil and Glycosidically Bound Volatiles from Maclura Tricuspidata Fruit. Foods 2019, 8, 659. [Google Scholar] [CrossRef]
- Yoon, C.-S.; Kim, D.-C.; Quang, T.H.; Seo, J.; Kang, D.G.; Lee, H.S.; Oh, H.; Kim, Y.-C. A prenylated xanthone, cudra-tricusxanthone A, isolated from Cudrania tricuspidata inhibits lipopolysaccharide-induced neuroinflammation through inhibition of NF-κB and p38 MAPK pathway in BV2 microglia. Molecules 2016, 21, 1240. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Park, S.-E.; Yeo, S.-H.; Kim, S. Anti-inflammatory and cytotoxicity effects of Cudrania tricuspidata fruits vinegar in a co-culture system with RAW264.7 macrophages and 3T3-L1 adipocytes. Foods 2020, 9, 1232. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kwon, J.; Lee, D.; Mar, W. Effects of Cudrania tricuspidata Fruit Extract and Its Active Compound, 5,7,3′,4′-Tetrahydroxy-6,8-diprenylisoflavone, on the High-Affinity IgE Receptor-Mediated Activation of Syk in Mast Cells. J. Agric. Food Chem. 2015, 63, 5459–5467. [Google Scholar] [CrossRef]
- Jo, Y.H.; Choi, K.-M.; Liu, Q.; Kim, S.B.; Ji, H.-J.; Kim, M.; Shin, S.-K.; Do, S.-G.; Shin, E.; Jung, G.; et al. Anti-obesity effect of 6, 8-diprenylgenistein, an isoflavonoid of Cudrania tricuspidata fruits in high-fat diet-induced obese mice. Nutrients 2015, 7, 10480–10490. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.H.; Kim, S.B.; Liu, Q.; Do, S.-G.; Hwang, B.Y.; Lee, M.K. Comparison of pancreatic lipase inhibitory isoflavonoids from unripe and ripe fruits of Cudrania tricuspidata. PLoS ONE 2017, 12, e0172069. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Sharma, A.; Baek, K.-H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting mem-brane permeability and surface characteristics of food-borne pathogens. Food Control 2013, 32, 582–590. [Google Scholar] [CrossRef]
- Lim, J.-W.; Jo, Y.H.; Choi, J.-S.; Lee, M.K.; Lee, K.Y.; Kang, S.Y. Antibacterial Activities of Prenylated Isoflavones from Maclura tricuspidata against Fish Pathogenic Streptococcus: Their Structure-Activity Relationships and Extraction Optimization. Molecules 2021, 26, 7451. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Jo, Y.H.; Lee, K.Y.; Do, S.-G.; Hwang, B.Y.; Lee, M.K. Optimization of pancreatic lipase inhibition by Cudrania tricuspidata fruits using response surface methodology. Bioorganic Med. Chem. Lett. 2014, 24, 2329–2333. [Google Scholar] [CrossRef]
- Park, Y.; Park, P.S.; Jeong, D.H.; Sim, S.; Kim, N.; Park, H.; Jeon, K.S.; Kim, M.-J. The characteristics of the growth and the acitive compounds of Angelica gigas Nakai in cultivation sites. Plants 2020, 9, 823. [Google Scholar] [CrossRef]
- Wink, M.; Schimmer, O. Molecular modes of action of defensive secondary metabolites. In Annual Plant Reviews, Functions and Biotechnology of Plant Secondary Metabolites, 2nd ed.; Wink, M., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2010; Volume 39, pp. 157–158. [Google Scholar]
- Afendi, F.M.; Okada, T.; Yamazaki, M.; Hirai-Morita, A.; Nakamura, Y.; Nakamura, K.; Ikeda, S.; Takahashi, H.; Altaf-Ul-Amin, M.; Darusman, L.K.; et al. KNApAScK family databases: Intergrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 2012, 53, e1. [Google Scholar] [CrossRef]
- Williams, C.A.; Grayer, R.J. Anthocyanins and Other Flavonoids. Nat. Prod. Rep. 2004, 21, 539–573. [Google Scholar] [CrossRef]
- Yonekura-Sakakibara, K.; Higashi, Y.; Nakabayashi, R. The Origin and Evolution of Plant Flavonoid Metabolism. Front. Plant Sci. 2019, 10, 943. [Google Scholar] [CrossRef]
- Gould, K.S.; Lister, C. Flavonoid functions in plants. In Flavonoids: Chemistry, Biochemistry and Applications; Andersen, Ø.M., Markham, K.R., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 397–398. [Google Scholar]
- Jeon, J.-S.; Kim, S.-M.; Lee, H.J.; Um, B.H.; Kim, H.K.; Kim, C.Y. Preparative isolation and purification of prenylated iosfla-vonoids from Cudrania tricuspidata fruits using centrifugal partition chromatography. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 1607–1615. [Google Scholar] [CrossRef]
- Lee, J.; Kim, B.Y.; Son, Y.; Giang, D.H.; Lee, D.; Eo, S.-K.; Kim, K. 4´-O-methylalpinumisoflavone inhibits the activation of monocyes/macrophages to an immunostimulatory phenotype induced by 27-hydroxycholesterol. Int. J. Mol. Med. 2019, 43, 2177–2186. [Google Scholar]
- Liu, Y.; Veena, C.K.; Morgan, J.B.; Mohammed, K.A.; Jekabsons, M.B.; Nagle, D.G.; Zhou, Y.-D. Methylalpinumisoflavone Inhibits Hypoxia-inducible Factor-1 (HIF-1) Activation Simultaneously Targeting Multiple Pathways. J. Biol. Chem. 2009, 284, 5859–5868. [Google Scholar] [CrossRef] [PubMed]
- Dridi, N.; Ferreira, R.; Bouslimi, H.; Brito, P.; Martins-Dias, S.; Caçador, I.; Sleimi, N. Assessment of tolerance to lanthanum and cerium in Helianthus Annuus plant: Effect on growth, mineral nutririon, and secondary metabolism. Plants 2022, 11, 988. [Google Scholar] [CrossRef]
- Li, G.; Lu, Q.; Wang, J.; Hu, Q.; Liu, P.; Yang, Y.; Li, Y.; Tang, H.; Xie, H. Correlation analysis of compounds in essential oil of Amomum tsaoko seed and fruit morphological characteristics, geographical conditions, locality of growth. Agronomy 2021, 11, 744. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Yu, Y.-G.; Yang, D.-F.; Qi, Z.-C.; Liu, R.-Z.; Deng, F.-T.; Cai, Z.-X.; Li, Y.; Sun, Y.-F.; Liang, Z.-S. Chemotaxonomic variation in secondary metabolites contents and their correlation between environmental factors in Salvia miltiorrhiza Bunge from natural habitat of China. Ind. Crop. Prod. 2018, 113, 335–347. [Google Scholar] [CrossRef]
- Kandimalla, R.; Das, M.; Barge, S.R.; Sarma, P.P.; Koiri, D.J.; Devi, A.; Karki, A.K.; Kumar, A.; Devi, R.; Pal, B.C.; et al. Variation in biosynthesis of an effective anticancer secondary metabolite, mahanine in Murraya koenigii, conditional on soil physicochemistry and weather suitability. Sci. Rep. 2020, 10, 20096. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Forest Science. Forest Soil Acidification Status in Korea; National Institute of Forest Science: Seoul, Republic of Korea, 2021; p. 23. (In Korean) [Google Scholar]
- Lee, A.L.; Koo, N. Comparison of soil physicochemical properties according to the sensitivity of forest soil to acidification in the Republic of Korea. J. Korean Soc. For. Sci. 2020, 109, 157–168. (In Korean) [Google Scholar] [CrossRef]
- Kinraide, T.B. Toxicity factors in acidic forest soils: Attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. Eur. J. Soil Sci. 2003, 54, 323–333. [Google Scholar] [CrossRef]
- de Wit, H.A.; Eldhuset, T.D.; Mulderm, J. Dissolved Al reduces Mg uptake in norway spruce forest: Results from a long-term field manipulation experiment in Norway. For. Ecol. Manag. 2010, 259, 2072–2082. [Google Scholar] [CrossRef]
- Zama, N.; Kirkman, K.; Mkhize, N.; Tedder, M.; Magadlela, A. Soil Acidification in Nutrient-Enriched Soils Reduces the Growth, Nutrient Concentrations, and Nitrogen-Use Efficiencies of Vachellia sieveriana (DC.) Kyal. & Boate Saplings. Plants 2022, 11, 3564. [Google Scholar] [CrossRef]
- King, A.E.; Ali, G.A.; Gillespie, A.W.; Wagner-Riddle, C. Soil Organic Matter as Catalyst of Crop Resource Capture. Front. Environ. Sci. 2020, 8, 50. [Google Scholar] [CrossRef]
- Song, Y.; Hyun, B.; Lee, Y. Assessment of Correlation between Soil Chemical Properties and Plant Nutrient Contents: Silkworn Thorn (Cudrania tricuspidata) On-Farm Survey. Korean J. Soil Sci. Fertil. 2022, 55, 533–540. (In Korean) [Google Scholar] [CrossRef]
- Ko, S.-C.; Paik, W.-K.; Oh, B.-U.; Yoon, C.-Y.; Jang, C.-G.; Chung, K.-S.; Chung, G.-Y.; Chung, Y.; Choi, H.-J. 17. Cudrania tricuspidata (Carrière) Bureau ex Lavallèe. In Silvics of Korea 1; Oh, B.-U., Oh, S.-H., Eds.; Korea National Arboretum: Pocheon, Republic of Korea, 2017; pp. 187–199. (In Korean) [Google Scholar]
- Koch, A.S.; Matzner, E. Heterogeneity of soil and soil solution chemistry under Norway spruce (Picea abies Karst.) and European beech (Fagus silvatica L.) as influenced by distance from the stem basis. Plant Soil 1993, 151, 227–237. [Google Scholar] [CrossRef]
- Bazihizina, N.; Barrett-Lennard, E.G.; Colmer, T.D. Plant growth and physiology under heterogeneous salinity. Plant Soil 2012, 354, 1–19. [Google Scholar] [CrossRef]
- Passioura, J.B. Soil condition and plant growth. Plant Cell Environ. 2002, 25, 311–318. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Yu-Xin, T.; Qi-Chang, Y. Optimal control of environmental conditions affecting lettuce plant growth in a con-trolled environment with artificial lighting: A review. S. Afr. J. Bot. 2020, 130, 75–89. [Google Scholar] [CrossRef]
- Münzbergová, Z. Determinants of species rarity: Population growth rates of species sharing the same habitat. Am. J. Bot. 2005, 92, 1987–1994. [Google Scholar] [CrossRef]
- Bourgaud, F.; Hehn, A.; Larbat, R.; Doerper, S.; Gontier, E.; Kellner, S.; Matern, U. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem. Rev. 2006, 5, 293–308. (In Korean) [Google Scholar] [CrossRef]
- Kwon, Y.-S.; Park, B.-R.; Lee, S.; Yu, H.-C.; Baek, S.-J.; Oh, C.-J. A Study on the Morphological Characteristics of Leaves and Fruit of Cudrania tricuspidata in Korea. Korean J. Plant Resour. 2014, 27, 337–343. [Google Scholar] [CrossRef]
- Hautier, Y.; Randin, C.F.; Stöcklin, J.; Guisan, A. Changes in reproductive investment with altitude in an alpine plant. J. Plant Ecol. 2009, 2, 125–134. [Google Scholar] [CrossRef]
- Kirnak, H.; Higgs, D.; Kaya, C.; Tas, I. Effects of Irrigation and Nitrogen Rates on Growth, Yield, and Quality of Muskmelon in Semiarid Regions. J. Plant Nutr. 2005, 28, 621–638. [Google Scholar] [CrossRef]
- Hong, S.; Kwon, J.; Hiep, N.T.; Sim, S.J.; Kim, N.H.; Kim, K.H.; Lee, D.; Mar, W. The isoflavones and extracts from Maclura tricuspidata fruit protect against neuronal cell death in ischemic injury via induction of Nox4-targeting miRNA-25, miRNA-92a, and miRNA-146a. J. Funct. Foods 2018, 40, 785–797. [Google Scholar] [CrossRef]
- Ogle, D.; St. John, L. Plants for Saline to Sodic Soil Conditions; Plant Materials Technical Note; Natural Resources Conservation Service: Boise, ID, USA, 2010; Volume 9A, p. 10150. [Google Scholar]
- Kim, K.; Samaddar, S.; Chatterjee, P.; Krishnamoorthy, R.; Jeon, S.; Sa, T. Structural and functional responses of microbial community with respect to salinity levels in a coastal reclamation land. Appl. Soil Ecol. 2019, 137, 96–105. [Google Scholar] [CrossRef]
- Lim, S.U. Plant growth and nutrients. In Fertilizer; Ilsin: Seoul, Republic of Korea, 2006; pp. 143–151. (In Korean) [Google Scholar]
- Zhang, Q.; Zhou, B.-B.; Li, M.-J.; Wei, Q.-P.; Han, Z.-H. Multivariate analysis between meteorological factor and fruit quality of Fuji apple at different locations in China. J. Integr. Agric. 2018, 17, 1338–1347. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Badillo-Muñoz, G.; Céspedes-Acuña, C.; Alarcón-Enos, J. The relationship between fruit size and phenolic and enzymatic composition of avocado byproducts (Persea americana Mill): The importance for biorefinery applications. Hor-Ticulturae 2020, 6, 91. [Google Scholar] [CrossRef]
- Cunha, M.L.O.; de Oliveira, L.C.A.; Mendes, N.A.C.; Silva, V.M.; Vicente, E.F.; dos Reis, A.R. Selenium increases photo-synthetic pigments, flavonoid biosynthesis, nodulation, and growth of soybean plants (Glycine max L.). J. Soil Sci. Plant Nutr. 2023, 23, 1397–1407. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, H.; Huang, Z.; Zhang, C.; Lyu, L.; Li, W.; Wu, W. Metabolite Profiling and Classification of Highbush Blueberry Leaves under Different Shade Treatments. Metabolites 2022, 12, 79. [Google Scholar] [CrossRef]
Cultivation Sites (n = 3) | Soil Texture | pH [1:5] | EC [1:5] | OM | TN | Avail. P2O5 | Exchangeable Cation | CEC | BS | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
K+ | Ca2+ | Mg2+ | Na+ | |||||||||
(dS/m) | (%) | (%) | (mg/kg) | (cmol+/kg) | (cmol+/kg) | (%) | ||||||
1 | sandy loam | 4.24 ± 0.04 j | 0.19 ± 0.03 efgh | 3.88 ± 0.38 cdefgh | 0.25 ± 0.03 cdefgh | 53.07 ± 17.10 gh | 0.29 ± 0.02 fgh | 1.20 ± 0.12 ij | 0.25 ± 0.03 hij | 0.29 ± 0.00 abcde | 16.69 ± 0.30 cdef | 12.14 ± 1.13 j |
2 | loam | 4.96 ± 0.12 efghij | 0.14 ± 0.02 fgh | 2.37 ± 0.21 fghij | 0.13 ± 0.00 gh | 38.72 ± 07.62 h | 0.23 ± 0.04 h | 5.81 ± 0.36 cdefghij | 0.55 ± 0.03 ghij | 0.13 ± 0.02 def | 13.27 ± 0.18 fg | 50.59 ± 0.50 defgh |
3 | sandy loam | 4.28 ± 0.09 j | 0.17 ± 0.01 fgh | 3.47 ± 0.21 cdefghij | 0.20 ± 0.00 defgh | 49.11 ± 05.87 gh | 0.38 ± 0.08 defgh | 1.41 ± 0.16 hij | 0.43 ± 0.10 hij | 0.20 ± 0.03 cdef | 18.58 ± 0.16 bcde | 12.99 ± 0.63 j |
4 | sandy loam | 6.04 ± 0.20 bc | 0.23 ± 0.04 defgh | 3.65 ± 0.88 cdefghi | 0.23 ± 0.04 cdefgh | 103.35 ± 55.89 gh | 0.48 ± 0.03 cdefgh | 13.05 ± 1.77 ab | 1.84 ± 0.29 bcdef | 0.08 ± 0.00 f | 19.31 ± 1.59 bcd | 79.44 ± 0.21 abc |
5 | sandy loam | 5.45 ± 0.18 cde | 0.35 ± 0.01 bcd | 5.16 ± 0.22 cd | 0.31 ± 0.02 cd | 43.87 ± 03.84 gh | 0.53 ± 0.10 cdefgh | 9.99 ± 0.87 bcde | 1.06 ± 0.09 cdefghij | 0.12 ± 0.01 def | 20.63 ± 0.10 bcd | 56.66 ± 0.21 cdef |
6 | sandy loam | 4.38 ± 0.10 hij | 0.14 ± 0.01 fgh | 3.34 ± 0.55 defghij | 0.20 ± 0.04 defgh | 199.32 ± 43.58 fgh | 0.23 ± 0.02 h | 0.67 ± 0.17 j | 0.11 ± 0.01 j | 0.35 ± 0.04 abc | 16.84 ± 0.41 cdef | 8.12 ± 1.42 j |
7 | sandy loam | 5.31 ± 0.19 cde | 0.24 ± 0.02 cdefgh | 5.92 ± 0.21 bc | 0.32 ± 0.00 bcd | 238.69 ± 46.56 fgh | 0.75 ± 0.31 abcd | 10.67 ± 4.24 bcd | 1.35 ± 0.19 bcdefghi | 0.34 ± 0.07 abc | 20.40 ± 2.25 bcd | 60.89 ± 0.06 cde |
8 | sandy loam | 5.16 ± 0.49 defg | 0.23 ± 0.07 defgh | 4.75 ± 1.37 cdef | 0.27 ± 0.06 cdefg | 115.98 ± 31.88 gh | 0.47 ± 0.16 cdefgh | 11.44 ± 3.12 abc | 2.29 ± 0.74 ab | 0.42 ± 0.20 ab | 21.12 ± 2.68 bc | 67.46 ± 0.09 cde |
9 | sandy loam | 5.57 ± 0.39 cde | 0.36 ± 0.06 bcd | 7.65 ± 0.95 ab | 0.43 ± 0.04 ab | 591.22 ± 72.42 cde | 1.12 ± 0.26 a | 12.92 ± 4.22 ab | 2.19 ± 0.72 abc | 0.44 ± 0.10 a | 26.40 ± 2.67 a | 60.19 ± 0.07 cde |
10 | sandy loam | 5.40 ± 0.20 cde | 0.13 ± 0.01 gh | 1.49 ± 0.21 hij | 0.12 ± 0.00 h | 53.83 ± 06.51 gh | 0.17 ± 0.00 h | 5.79 ± 0.62 cdefghij | 0.63 ± 0.18 ghij | 0.30 ± 0.10 abcd | 10.96 ± 0.88 g | 62.54 ± 0.37 cde |
11 | sandy loam | 6.75 ± 0.34 a | 0.24 ± 0.02 cdefgh | 3.07 ± 0.49 defghij | 0.20 ± 0.03 defgh | 180.35 ± 38.25 fgh | 0.28 ± 0.06 fgh | 16.84 ± 2.81 a | 0.84 ± 0.36 fghij | 0.35 ± 0.14 abc | 19.67 ± 1.19 bcd | 92.36 ± 0.11 ab |
12 | sandy loam | 5.08 ± 0.19 defghi | 0.24 ± 0.01 cdefgh | 3.47 ± 0.14 cdefghij | 0.21 ± 0.01 defgh | 188.11 ± 49.41 fgh | 0.34 ± 0.08 defgh | 11.94 ± 3.05 abc | 1.01 ± 0.11 cdefghij | 0.20 ± 0.01 cdef | 17.95 ± 0.70 bcdef | 74.30 ± 0.07 bcd |
13 | sandy loam | 5.75 ± 0.12 bcd | 0.18 ± 0.02 efgh | 2.56 ± 0.48 efghij | 0.16 ± 0.02 efgh | 182.56 ± 49.77 fgh | 0.33 ± 0.01 efgh | 7.98 ± 0.64 bcdefg | 1.73 ± 0.05 bcdefg | 0.23 ± 0.02 bcdef | 16.98 ± 0.17 cdef | 60.49 ± 0.30 cde |
14 | sandy loam | 5.63 ± 0.12 bcde | 0.15 ± 0.01 fgh | 1.06 ± 0.10 j | 0.13 ± 0.00 gh | 793.83 ± 126.72 bcd | 0.30 ± 0.03 fgh | 7.16 ± 0.42 bcdefghi | 3.18 ± 0.29 a | 0.10 ± 0.01 ef | 10.58 ± 0.16 g | 101.74 ± 0.20 a |
15 | sandy loam | 4.54 ± 0.17 fghij | 0.28 ± 0.04 bcdef | 5.01 ± 0.68 cde | 0.30 ± 0.03 cde | 789.79 ± 155.93 bcd | 0.66 ± 0.21 cdefg | 2.52 ± 0.80 ghij | 1.24 ± 0.57 bcdefghij | 0.11 ± 0.02 def | 18.16 ± 0.36 bcdef | 24.76 ± 0.12 ij |
16 | sandy loam | 4.36 ± 0.25 ij | 0.27 ± 0.01 bcdefg | 2.94 ± 0.08 defghij | 0.20 ± 0.01 defgh | 933.97 ± 51.90 ab | 0.80 ± 0.19 abc | 3.78 ± 0.56 efghij | 0.98 ± 0.10 defghij | 0.08 ± 0.03 f | 16.71 ± 0.34 cdef | 33.85 ± 0.25 fghij |
17 | sandy loam | 6.32 ± 0.10 ab | 0.38 ± 0.04 abc | 4.35 ± 0.52 cdefg | 0.28 ± 0.04 cdef | 858.55 ± 141.55 abc | 0.88 ± 0.18 abc | 10.74 ± 1.86 bcd | 1.43 ± 0.29 bcdefgh | 0.10 ± 0.02 ef | 19.81 ± 1.09 bcd | 65.41 ± 0.12 cde |
18 | sandy loam | 5.23 ± 0.33 defg | 0.31 ± 0.04 bcde | 4.95 ± 0.57 cde | 0.36 ± 0.05 bc | 441.65 ± 83.63 ef | 0.68 ± 0.14 bcdef | 7.62 ± 1.73 bcdefgh | 2.12 ± 0.79 abcd | 0.06 ± 0.00 f | 22.73 ± 1.84 ab | 44.99 ± 0.13 efghi |
19 | sandy loam | 4.50 ± 0.08 ghij | 0.11 ± 0.01 h | 1.97 ± 0.14 ghij | 0.15 ± 0.01 fgh | 537.79 ± 122.07 de | 0.21 ± 0.03 h | 0.76 ± 0.22 j | 0.16 ± 0.03 ij | 0.06 ± 0.01 f | 14.20 ± 0.95 efg | 8.31 ± 0.62 j |
20 | sandy loam | 4.21 ± 0.05 j | 0.20 ± 0.00 efgh | 4.36 ± 0.89 cdefg | 0.27 ± 0.04 cdefg | 158.81 ± 21.94 fgh | 0.19 ± 0.02 h | 2.74 ± 1.47 ghij | 0.61 ± 0.39 ghij | 0.09 ± 0.03 ef | 15.97 ± 0.73 def | 23.88 ± 0.07 ij |
21 | sandy loam | 5.28 ± 0.58 def | 0.25 ± 0.01 cdefgh | 2.77 ± 0.23 defghij | 0.21 ± 0.01 defgh | 796.16 ± 161.84 bcd | 0.71 ± 0.11 bcde | 6.63 ± 1.56 cdefghij | 2.11 ± 0.74 abcd | 0.09 ± 0.02 ef | 17.13 ± 0.51 cdef | 55.22 ± 0.08 cdefg |
22 | loam | 4.42 ± 0.19 hij | 0.24 ± 0.03 cdefgh | 3.75 ± 0.83 cdefgh | 0.26 ± 0.04 cdefgh | 878.36 ± 168.52 abc | 0.25 ± 0.02 gh | 3.90 ± 1.28 efghij | 0.91 ± 0.23 efghij | 0.04 ± 0.00 f | 16.99 ± 1.01 cdef | 29.14 ± 0.13 hij |
23 | sandy loam | 5.29 ± 0.17 def | 0.16 ± 0.03 fgh | 1.96 ± 0.47 ghij | 0.16 ± 0.03 efgh | 1105.91 ± 118.28 a | 0.37 ± 0.13 defgh | 4.50 ± 0.66 defghij | 0.77 ± 0.15 fghij | 0.13 ± 0.01 def | 14.06 ± 2.03 efg | 41.36 ± 0.27 efghi |
24 | sandy loam | 5.11 ± 0.09 defgh | 0.49 ± 0.16 a | 8.13 ± 2.56 a | 0.49 ± 0.15 a | 882.20 ± 227.94 abc | 0.69 ± 0.10 bcdef | 11.29 ± 3.32 abc | 2.06 ± 0.35 bcde | 0.07 ± 0.01 f | 26.55 ± 4.42 a | 51.99 ± 0.15 defgh |
25 | sandy loam | 4.56 ± 0.13 fghij | 0.25 ± 0.02 cdefgh | 2.79 ± 0.17 defghij | 0.19 ± 0.00 defgh | 184.18 ± 37.68 fgh | 0.25 ± 0.01 gh | 6.83 ± 0.38 bcdefghij | 1.40 ± 0.09 bcdefgh | 0.12 ± 0.03 def | 16.94 ± 0.33 cdefg | 50.77 ± 0.46 defgh |
26 | sandy loam | 5.74 ± 0.09 bcd | 0.40 ± 0.06 ab | 4.27 ± 0.89 cdefg | 0.28 ± 0.04 cdef | 356.51 ± 29.06 efg | 0.82 ± 0.05 abc | 9.05 ± 1.62 bcdef | 1.12 ± 0.10 bcdefghij | 0.06 ± 0.01 f | 19.50 ± 1.22 bcd | 56.03 ± 0.18 cdefg |
27 | sandy loam | 5.17 ± 0.08 defg | 0.25 ± 0.03 cdefgh | 2.67 ± 0.31 defghij | 0.20 ± 0.01 defgh | 622.02 ± 93.29 cde | 1.07 ± 0.14 ab | 3.57 ± 0.33 fghij | 0.58 ± 0.05 ghij | 0.11 ± 0.04 def | 17.56 ± 0.61 cdef | 30.42 ± 1.07 ghij |
28 | sandy loam | 5.26 ± 0.02 def | 0.17 ± 0.02 fgh | 1.14 ± 0.36 ij | 0.12 ± 0.00 h | 122.60 ± 29.29 gh | 0.15 ± 0.05 h | 4.96 ± 0.43 defghij | 0.60 ± 0.11 ghij | 0.12 ± 0.03 def | 10.34 ± 1.61 g | 58.25 ± 0.14 cdef |
Cultivation Sites (n = 3) | Length of Fruit | Width of Fruit | Fresh Weight of Fruit | Sugar Contents of Fruit | Number of Seeds | Aspect Ratio |
---|---|---|---|---|---|---|
(mm) | (mm) | (g) | (Brix°) | |||
1 | 19.53 ± 0.37 m | 23.66 ± 0.67 k | 7.64 ± 0.76 j | 13.71 ± 2.06 bcdefgh | 9.78 ± 1.87 k | 1.21 ± 0.01 abcd |
2 | 28.75 ± 0.30 bcdef | 32.46 ± 0.99 bcdef | 20.41 ± 1.08 abc | 12.73 ± 1.18 cdefghij | 31.89 ± 2.80 a | 1.13 ± 0.02 cde |
3 | 25.72 ± 0.83 fghij | 29.07 ± 0.72 efghij | 14.17 ± 0.75 fghi | 13.38 ± 0.41 bcdefghi | 24.67 ± 2.17 abcdef | 1.13 ± 0.01 cde |
4 | 26.42 ± 0.94 fgh | 33.81 ± 0.55 bcd | 14.35 ± 0.57 efghi | 15.14 ± 0.67 bcdef | 17.11 ± 2.70 efghijk | 1.29 ± 0.07 a |
5 | 26.25 ± 1.77 fghi | 29.90 ± 1.94 defghi | 13.67 ± 2.31 fghi | 11.54 ± 1.76 fghij | 20.89 ± 4.57 bcdefghi | 1.14 ± 0.02 bcde |
6 | 19.89 ± 0.87 lm | 24.94 ± 0.56 jk | 7.53 ± 0.72 j | 19.40 ± 1.10 a | 9.33 ± 0.51 k | 1.26 ± 0.03 ab |
7 | 22.77 ± 0.23 jkl | 25.70 ± 1.06 ijk | 10.06 ± 0.97 ij | 12.57 ± 1.08 cdefghij | 21.33 ± 5.36 bcdefgh | 1.14 ± 0.05 bcde |
8 | 28.02 ± 1.31 cdefg | 33.36 ± 3.51 bcde | 16.59 ± 2.99 cdefgh | 10.86 ± 0.21 hij | 26.44 ± 6.22 abcde | 1.19 ± 0.07 abcde |
9 | 26.42 ± 1.78 fgh | 29.79 ± 1.77 defghi | 13.57 ± 2.82 fghi | 12.04 ± 2.24 defghij | 30.11 ± 2.84 ab | 1.13 ± 0.03 cde |
10 | 29.87 ± 1.31 bcde | 32.76 ± 0.69 bcde | 20.05 ± 2.34 abcd | 12.42 ± 0.50 cdefghij | 29.11 ± 3.93 abc | 1.10 ± 0.02 de |
11 | 25.64 ± 0.19 fghijk | 28.06 ± 0.21 fghij | 11.20 ± 0.93 hij | 14.96 ± 0.38 bcdefg | 11.78 ± 2.47 hijk | 1.10 ± 0.01 de |
12 | 24.91 ± 0.23 ghijk | 29.7 ± 1.46 efghij | 13.24 ± 0.93 fghi | 12.54 ± 0.61 cdefghij | 16.33 ± 1.02 fghijk | 1.17 ± 0.06 abcde |
13 | 23.03 ± 1.52 ijk | 26.41 ± 0.59 hijk | 13.17 ± 1.39 fghi | 15.71 ± 0.36 bcd | 11.22 ± 2.21 ijk | 1.15 ± 0.06 bcde |
14 | 28.67 ± 0.96 bcdef | 31.31 ± 2.56 bcdefg | 15.32 ± 0.88 cdefghi | 11.72 ± 0.90 efghij | 27.67 ± 1.02 abcd | 1.10 ± 0.05 de |
15 | 22.41 ± 1.05 klm | 27.73 ± 1.27 ghijk | 11.00 ± 0.55 hij | 12.34 ± 0.82 cdefghij | 10.33 ± 1.53 jk | 1.25 ± 0.04 abc |
16 | 30.81 ± 0.89 abc | 35.47 ± 1.48 ab | 23.76 ± 2.25 a | 10.86 ± 0.97 hij | 26.67 ± 3.50 abcde | 1.15 ± 0.02 bcde |
17 | 28.48 ± 1.47 cdef | 32.54 ± 0.85 bcdef | 17.03 ± 1.05 bcdefg | 11.19 ± 1.19 hij | 28.78 ± 3.09 abc | 1.15 ± 0.04 bcde |
18 | 30.56 ± 0.88 abc | 35.04 ± 0.31 abc | 19.89 ± 0.94 abcde | 9.47 ± 0.33 j | 19.89 ± 0.29 cdefghij | 1.15 ± 0.04 bcde |
19 | 26.80 ± 0.70 efgh | 31.06 ± 0.83 bcdefg | 15.37 ± 0.74 cdefghi | 11.38 ± 0.71 ghij | 16.67 ± 1.02 fghijk | 1.16 ± 0.04 abcde |
20 | 30.31 ± 0.66 abcd | 33.44 ± 0.55 bcde | 22.16 ± 1.52 ab | 13.14 ± 1.21 bcdefghij | 32.67 ± 3.10 a | 1.11 ± 0.01 de |
21 | 33.25 ± 1.53 a | 38.94 ± 2.84 a | 24.58 ± 4.49 a | 10.98 ± 1.07 hij | 18.78 ± 2.82 defghijk | 1.17 ± 0.03 abcde |
22 | 29.08 ± 0.90 bcdef | 31.93 ± 0.24 bcdefg | 17.14 ± 1.33 bcdefg | 13.46 ± 2.11 bcdefghi | 17.22 ± 1.79 efghijk | 1.11 ± 0.04 de |
23 | 31.90 ± 0.18 ab | 35.46 ± 0.19 ab | 25.29 ± 1.47 a | 9.78 ± 1.29 ij | 23.89 ± 2.16 abcdef | 1.11 ± 0.00 de |
24 | 26.65 ± 0.62 efgh | 30.64 ± 0.41 cdefgh | 13.67 ± 0.83 fghi | 16.42 ± 0.61 ab | 18.33 ± 0.96 defghijk | 1.15 ± 0.02 bcde |
25 | 28.39 ± 1.00 cdef | 31.67 ± 1.61 bcdefg | 16.67 ± 1.58 bcdefgh | 15.43 ± 0.64 bcde | 23.11 ± 2.33 abcdefg | 1.12 ± 0.04 de |
26 | 27.14 ± 0.76 defgh | 31.24 ± 0.85 bcdefg | 14.69 ± 0.20 defghu | 15.94 ± 1.18 ab | 26.00 ± 3.93 abcdef | 1.16 ± 0.05 bcde |
27 | 31.23 ± 0.76 abc | 33.57 ± 0.67 bcde | 18.09 ± 1.72 bcdef | 10.52 ± 0.23 hij | 19.89 ± 2.26 cdefghij | 1.08 ± 0.01 e |
28 | 23.78 ± 1.17 hijk | 27.74 ± 0.99 ghijk | 11.98 ± 1.35 ghij | 15.40 ± 0.21 bcde | 14.00 ± 2.01 ghijk | 1.18 ± 0.03 abcde |
Compound | Regression Equation | Correlation Coefficient (r2) | Range (µg/mL) | LOD (µg/mL) | LOQ (µg/mL) |
---|---|---|---|---|---|
6,8-diprenylorobol | Y = 15,750X − 32,632 | 0.9997 | 6.25–200 | 0.01 | 0.05 |
6,8-diprenylgenistein | Y = 14,552X − 70,083 | 0.9996 | 5–600 | 0.03 | 0.09 |
4′-O-methylalpinumisoflavone | Y = 6514.5X + 36,219 | 0.9992 | 12.5–400 | 0.01 | 0.04 |
Compound | Concentration (µg/mL) | Intra-Day a (n = 3) | Inter-Day b (n = 3) | ||
---|---|---|---|---|---|
Concentration Found (µg/mL) | RSD (%) | Concentration Found (µg/mL) | RSD (%) | ||
6,8-diprenylorobol | 12.5 | 13.1 | 0.14 | 12.8 | 0.86 |
50 | 53.6 | 0.56 | 50.5 | 1.05 | |
200 | 219.9 | 0.44 | 202.3 | 0.20 | |
6,8-diprenylgenistein | 100 | 102.5 | 0.14 | 101.0 | 0.27 |
200 | 212.0 | 0.01 | 206.2 | 1.82 | |
400 | 432.6 | 0.29 | 416.0 | 1.02 | |
4′-O-methylalpinumisoflavone | 25 | 25.9 | 0.06 | 24.2 | 0.30 |
100 | 102.9 | 0.12 | 103.9 | 0.75 | |
400 | 423.8 | 0.04 | 412.9 | 0.81 |
Compound | Concentration (µg/mL) | Recovery (%) (n = 3) | RSD (%) |
---|---|---|---|
6,8-diprenylorobol | 6.25 | 101.19 | 0.61 |
25 | 100.81 | 0.80 | |
100 | 98.18 | 1.05 | |
6,8-diprenylgenistein | 50 | 104.24 | 0.12 |
200 | 100.52 | 0.67 | |
800 | 97.25 | 0.72 | |
4′-O-methylalpinumisoflavone | 25 | 98.29 | 0.45 |
100 | 104.98 | 1.18 | |
400 | 101.62 | 0.28 |
Cultivation Sites (n = 3) | 6,8-Diprenylorobol (µg/g) | 6,8-Diprenylgenistein (µg/g) | 4′-O-Methylalpinumisoflavone (µg/g) | Total (µg/g) |
---|---|---|---|---|
1 | 137.55 ± 47.73 a | 262.24 ± 24.40 ab | 245.89 ± 17.23 bc | 647.14 ± 61.06 a |
2 | 34.37 ± 08.98 efgh | 217.80 ± 39.03 bc | 108.73 ± 31.75 hijklmno | 362.15 ± 68.70 cdefg |
3 | 21.39 ± 00.69 fgh | 154.27 ± 07.77 cdef | 142.97 ± 14.30 fghijk | 322.73 ± 22.56 defgh |
4 | 76.43 ± 23.73 bcd | 157.35 ± 08.63 cdef | 115.75 ± 03.60 ghijklmn | 350.78 ± 25.78 cdefg |
5 | 91.31 ± 17.04 bc | 209.18 ± 03.17 bcd | 171.52 ± 76.76 defghi | 472.84 ± 93.57 bc |
6 | 47.07 ± 09.85 defgh | 213.05 ± 19.74 bcd | 179.75 ± 18.00 cdefgh | 441.64 ± 46.50 cd |
7 | 46.35 ± 02.09 defgh | 36.38 ± 01.60 ijk | 45.95 ± 00.68 nopqr | 129.16 ± 03.04 ijk |
8 | 73.93 ± 11.24 bcde | 114.32 ± 18.91 fghi | 129.16 ± 20.34 ghijklm | 318.26 ± 35.03 defgh |
9 | 103.37 ± 08.89 ab | 164.48 ± 22.84 cdef | 182.87 ± 18.62 cdefg | 452.44 ± 32.95 cd |
10 | 24.98 ± 02.07 fgh | 27.50 ± 02.40 jk | 31.46 ± 03.50 pqr | 88.01 ± 07.85 jk |
11 | 55.91 ± 02.34 cdef | 294.68 ± 17.97 a | 226.73 ± 07.51 bcde | 582.12 ± 27.77 ab |
12 | 23.15 ± 00.86 fgh | 65.73 ± 11.08 ghijk | 18.29 ± 02.80 qr | 108.70 ± 13.84 jk |
13 | 29.86 ± 00.50 fgh | 163.09 ± 05.59 cdef | 157.72 ± 04.35 efghij | 353.19 ± 09.70 cdefg |
14 | 33.38 ± 00.40 fgh | 198.41 ± 07.09 bcde | 202.48 ± 03.93 cdef | 437.52 ± 03.68 cd |
15 | 48.26 ± 00.97 defg | 166.49 ± 44.50 cdef | 98.52 ± 42.06 ijklmnop | 315.31 ± 56.27 defgh |
16 | 19.66 ± 02.43 fgh | 33.12 ± 01.56 ijk | 322.60 ± 11.90 a | 377.19 ± 09.74 cdef |
17 | 53.28 ± 15.79 cdefg | 231.96 ± 83.15 abc | 121.05 ± 18.70 ghijklm | 408.19 ± 109.04 cde |
18 | 17.82 ± 00.81 fgh | 21.13 ± 02.88 k | 288.34 ± 33.81 ab | 328.58 ± 37.35 defgh |
19 | 17.37 ± 01.86 fgh | 46.10 ± 05.98 hijk | 12.17 ± 02.38 r | 79.21 ± 10.17 jk |
20 | 13.39 ± 00.64 gh | 53.03 ± 20.60 ghijk | 139.11 ± 15.43 fghijkl | 207.72 ± 16.82 hij |
21 | 54.51 ± 01.77 cdefg | 122.23 ± 53.67 efgh | 115.63 ± 25.54 ghijklmn | 293.20 ± 60.09 efgh |
22 | 27.61 ± 03.64 fgh | 34.22 ± 05.29 ijk | 39.39 ± 05.92 opqr | 103.30 ± 14.78 jk |
23 | 16.00 ± 00.72 fgh | 19.89 ± 00.78 k | 234.27 ± 18.52 bcd | 271.37 ± 19.82 efgh |
24 | 90.53 ± 02.77 bc | 132.69 ± 03.78 defg | 70.37 ± 01.21 klmnopq | 294.61 ± 05.66 efgh |
25 | 35.13 ± 04.85 efgh | 111.78 ± 22.76 fghi | 85.91 ± 14.18 jklmnopq | 233.86 ± 27.83 ghi |
26 | 89.71 ± 06.85 bc | 104.16 ± 12.23 fghij | 59.28 ± 03.67 mnopqr | 254.97 ± 21.04 fghi |
27 | 6.37 ± 00.63 h | 27.77 ± 02.66 jk | 10.61 ± 02.14 r | 46.79 ± 04.96 k |
28 | 97.45 ± 07.05 b | 113.37 ± 04.29 fghi | 66.44 ± 00.90 lmnopqr | 281.02 ± 11.34 efgh |
Correlation Coefficient (r) a | ||||||
---|---|---|---|---|---|---|
Length of Fruit | Width of Fruit | Fresh Weight of Fruit | Sugar Contents of Fruit | Number of Seeds | Aspect Ratio | |
pH | 0.075 (0.500) | 0.080 (0.472) | −0.053 (0.634) | −0.044 (0.691) | 0.056 (0.615) | −0.034 (0.759) |
EC | 0.066 (0.550) | 0.098 (0.378) | −0.031 (0.778) | 0.033 (0.764) | 0.089 (0.420) | 0.023 (0.836) |
OM | −0.155 (0.158) | −0.098 (0.373) | −0.213 (0.052) | 0.064 (0.566) | 0.032 (0.770) | 0.114 (0.302) |
TN | −0.080 (0.472) | −0.029 (0.794) | −0.146 (0.186) | 0.042 (0.703) | 0.033 (0.766) | 0.093 (0.398) |
Avail. P2O5 | 0.372 ** (0.000) | 0.352 ** (0.001) | 0.337 ** (0.002) | −0.309 ** (0.004) | 0.055 (0.620) | −0.093 (0.401) |
K+ | 0.120 (0.277) | 0.117 (0.290) | −0.006 (0.959) | −0.220 * (0.044) | 0.102 (0.354) | −0.047 (0.669) |
Ca2+ | −0.003 (0.976) | 0.016 (0.882) | −0.128 (0.247) | 0.032 (0.775) | 0.046 (0.675) | −0.015 (0.890) |
Mg2+ | 0.176 (0.109) | 0.201 (0.066) | 0.060 (0.588) | −0.191 (0.082) | 0.188 (0.086) | −0.007 (0.950) |
Na+ | −0.310 ** (0.004) | −0.254 * (0.020) | −0.255 * (0.019) | 0.082 (0.458) | −0.106 (0.336) | 0.154 (0.162) |
CEC | −0.095 (0.391) | −0.033 (0.768) | −0.191 (0.082) | 0.022 (0.844) | −0.037 (0.739) | 0.104 (0.346) |
BS | 0.259 * (0.018) | 0.159 (0.152) | 0.321 ** (0.003) | −0.036 (0.745) | 0.455 ** (0.000) | −0.230 * (0.036) |
Correlation Coefficient (r) a | ||||||
---|---|---|---|---|---|---|
Length of Fruit | Width of Fruit | Fresh Weight of Fruit | Sugar Contents of Fruit | Number of Seeds | Aspect Ratio | |
Annual mean temp. | 0.034 (0.757) | 0.176 (0.110) | 0.015 (0.889) | −0.089 (0.419) | −0.076 (0.491) | 0.278 * (0.010) |
Annual mean max temp. | −0.067 (0.546) | 0.073 (0.508) | −0.031 (0.776) | −0.006 (0.959) | −0.127 (0.250) | 0.293 ** (0.007) |
Annual mean min temp. | 0.069 (0.535) | 0.201 (0.067) | 0.032 (0.773) | −0.122 (0.269) | −0.037 (0.741) | 0.253 * (0.020) |
Annual max temp. | −0.363 ** (0.001) | −0.219 * (0.045) | −0.306 ** (0.005) | 0.086 (0.438) | −0.221 * (0.043) | 0.336 ** (0.002) |
Annual min temp. | −0.198 (0.071) | −0.038 (0.732) | −0.150 (0.173) | −0.041 (0.710) | −0.083 (0.453) | 0.348 ** (0.001) |
Total precipitation | −0.060 (0.585) | 0.050 (0.650) | −0.062 (0.575) | 0.129 (0.241) | −0.078 (0.480) | 0.235 * (0.031) |
Altitude | −0.325 ** (0.003) | −0.412 ** (0.000) | −0.245 * (0.024) | 0.279 * (0.010) | −0.126 (0.252) | −0.119 (0.281) |
Correlation Coefficient (r) a | ||||||
---|---|---|---|---|---|---|
Length of Fruit | Width of Fruit | Fresh Weight of Fruit | Sugar Contents of Fruit | Number of Seeds | Aspect Ratio | |
6,8-diprenylorobol | −0.436 ** (0.000) | −0.327 ** (0.002) | −0.447 ** (0.000) | 0.310 ** (0.004) | −0.182 (0.098) | 0.296 ** (0.006) |
6,8-diprenylgenistein | −0.401 ** (0.000) | −0.351 ** (0.001) | −0.418 ** (0.000) | 0.281 ** (0.010) | −0.217 * (0.047) | 0.183 (0.095) |
4′-O-methylalpinumisoflavone | −0.004 (0.972) | 0.007 (0.951) | 0.062 (0.577) | −0.118 (0.285) | −0.020 (0.853) | 0.027 (0.806) |
Total | −0.326 ** (0.002) | −0.267 * (0.014) | −0.301 ** (0.005) | 0.161 (0.142) | −0.174 (0.113) | 0.186 (0.090) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-H.; Son, Y.-H.; Jang, J.-H.; Lee, S.-Y.; Kim, H.-J. The Growth Characteristics and the Active Compounds of Cudrania tricuspidata Fruits in Different Cultivation Environments in South Korea. Plants 2023, 12, 2107. https://doi.org/10.3390/plants12112107
Lee D-H, Son Y-H, Jang J-H, Lee S-Y, Kim H-J. The Growth Characteristics and the Active Compounds of Cudrania tricuspidata Fruits in Different Cultivation Environments in South Korea. Plants. 2023; 12(11):2107. https://doi.org/10.3390/plants12112107
Chicago/Turabian StyleLee, Dong-Hwan, Yong-Hwan Son, Jun-Hyuk Jang, Sun-Young Lee, and Hyun-Jun Kim. 2023. "The Growth Characteristics and the Active Compounds of Cudrania tricuspidata Fruits in Different Cultivation Environments in South Korea" Plants 12, no. 11: 2107. https://doi.org/10.3390/plants12112107
APA StyleLee, D. -H., Son, Y. -H., Jang, J. -H., Lee, S. -Y., & Kim, H. -J. (2023). The Growth Characteristics and the Active Compounds of Cudrania tricuspidata Fruits in Different Cultivation Environments in South Korea. Plants, 12(11), 2107. https://doi.org/10.3390/plants12112107