Rapid Adaptation of Chimonobambusa opienensis Leaves to Crown–Thinning in Giant Panda Ecological Corridor, Niba Mountain
Abstract
:1. Introduction
2. Results
2.1. Variations of Leaf Traits in Age Categories and Treatments
2.2. Allometric Relationships between Core Leaf Traits
2.2.1. Length vs. Width
2.2.2. Biomass vs. Area
2.2.3. SLA vs. Thickness
3. Materials and Methods
3.1. Site
3.2. Experimental Design and Survey
3.3. Leaf Sampling and Measurement
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, G.; Niklas, K.J.; Li, M.; Sun, J.; Lyu, M.; Chen, X.; Wang, M.; Zhong, Q.; Cheng, D. “Diminishing Returns” in the scaling between leaf area and twig size in three forest communities along an elevation gradient of Wuyi Mountain, China. Forests 2019, 10, 1138. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Sack, L.; Xu, L.; Li, M.; Zhang, J.; He, N. Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecol. Lett. 2022, 25, 1442–1457. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yang, K.; Zhang, J.; Wang, M.; Wang, L.; Xian, J. Effects of succession stages and altitudinal gradient on leaf surface area and biomass allocation of typical plants in the subalpine of Eastern Tibetan Plateau. Glob. Ecol. Conserv. 2021, 27, e01590. [Google Scholar] [CrossRef]
- Freschet, G.T.; Violle, C.; Bourget, M.Y.; Scherer-Lorenzen, M.; Fort, F. Allocation, morphology, physiology, architecture: The multiple facets of plant above- and below-ground responses to resource stress. New Phytol. 2018, 219, 1338–1352. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Niklas, K.J.; Sun, J.; Wang, Z.; Zhong, Q.; Hu, D.; Cheng, D. A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. J. Ecol. 2022, 110, 248–261. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G.; Wu, X.; Niklas, K.J.; Yang, Z.; Sun, S. Linkage between species traits and plant phenology in an alpine meadow. Oecologia 2021, 195, 409–419. [Google Scholar] [CrossRef]
- Warton, D.I.; Wright, I.J.; Falster, D.S.; Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 2006, 81, 259–291. [Google Scholar] [CrossRef]
- Ashby, B.; Watkins, E.; Lourenço, J.; Gupta, S.; Foster, K.R. Competing species leave many potential niches unfilled. Nat. Ecol. Evol. 2017, 1, 1495–1501. [Google Scholar] [CrossRef]
- Chmura, D.J.; Guzicka, M.; Rożkowski, R.; Chałupka, W. Allometry varies among related families of Norway spruce. Ann. For. Sci. 2017, 74, 36. [Google Scholar] [CrossRef]
- Poorter, L.; Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 2006, 87, 1733–1743. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- He, N.; Liu, C.; Piao, S.; Sack, L.; Xu, L.; Luo, Y.; He, J.; Han, X.; Zhou, G.; Zhou, X.; et al. Ecosystem traits linking functional traits to macroecology. Trends Ecol. Evol. 2019, 34, 200–210. [Google Scholar] [CrossRef]
- Yang, K.; Chen, G.; Xian, J.; Yu, X.; Wang, L. Scaling relationship between leaf mass and leaf area: A case study using six alpine Rhododendron species in the Eastern Tibetan Plateau. Glob. Ecol. Conserv. 2021, 30, e01754. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Wang, H.; Wang, R.; Harrison, S.P.; Prentice, I.C. Leaf morphological traits as adaptations to multiple climate gradients. J. Ecol. 2022, 110, 1344–1355. [Google Scholar] [CrossRef]
- Lasky, J.R.; Uriarte, M.; Boukili, V.K.; Chazdon, R.L. Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proc. Natl. Acad. Sci. USA 2014, 111, 5616–5621. [Google Scholar] [CrossRef]
- Poorter, L.; Craven, D.; Jakovac, C.C.; Sande, M.T.v.d.; Amissah, L.; Bongers, F.; Chazdon, R.L.; Farrior, C.E.; Kambach, S.; Meave, J.A.; et al. Multidimensional tropical forest recovery. Science 2021, 374, 1370–1376. [Google Scholar] [CrossRef]
- Bin, Y.; Li, Y.; Russo, S.E.; Cao, H.; Ni, Y.; Ye, W.; Lian, J. Leaf trait expression varies with tree size and ecological strategy in a subtropical forest. Funct. Ecol. 2022, 36, 1010–1022. [Google Scholar] [CrossRef]
- Osnas, J.L.D.; Katabuchi, M.; Kitajima, K.; Wright, S.J.; Reich, P.B.; Bael, S.A.V.; Kraft, N.J.B.; Samaniego, M.J.; Pacala, S.W.; Lichstein, J.W. Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proc. Natl. Acad. Sci. USA 2018, 115, 5480–5485. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Cronn, R.; Liston, A.; Ashman, T.-L. Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. New Phytol. 2019, 221, 2286–2297. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Li, Y.; Liu, C.; Xu, L.; Li, M.; Zhang, J.; He, J.; Tang, Z.; Han, X.; Ye, Q.; et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. Trends Ecol. Evol. 2020, 35, 908–918. [Google Scholar] [CrossRef] [PubMed]
- Denslow, J.S.; Schultz, J.C.; Vitousek, P.M.; Strain, B.R. Growth responses of tropical shrubs to treefall gap environments. Ecology 1990, 71, 165–179. [Google Scholar] [CrossRef]
- Kishore, K.; Rupa, T.R.; Samant, D. Influence of shade intensity on growth, biomass allocation, yield and quality of pineapple in mango-based intercropping system. Sci. Hortic. 2021, 278, 109868. [Google Scholar] [CrossRef]
- Ren, S.; Ali, A.; Liu, H.; Yuan, Z.; Yang, Q.; Shen, G.; Zhou, S.; Wang, X. Response of community diversity and productivity to canopy gap disturbance in subtropical forests. For. Ecol. Manag. 2021, 502, 119740. [Google Scholar] [CrossRef]
- Wei, F.; Swaisgood, R.; Hu, Y.; Nie, Y.; Yan, L.; Zhang, Z.; Qi, D.; Zhu, L. Progress in the ecology and conservation of giant pandas. Conserv. Biol. 2015, 29, 1497–1507. [Google Scholar] [CrossRef]
- Shi, J.Y.; Zhang, Y.X.; Zhou, D.Q.; Ma, L.S.; Yao, J. Qiongzhuea Hsueh et TP Yi. In Illustrated Flora of Bambusoideae in China; Shi, J., Zhang, Y., Zhou, D., Ma, L., Yao, J., Eds.; Springer: Singapore, 2020; pp. 555–572. [Google Scholar]
- Taylor, A.H.; Qin, Z. Structure and composition of selectively cut and uncut Abies-Tsuga forest in Wolong Natural Reserve and implications for Panda conservation in China. Biol. Conserv. 1989, 47, 83–108. [Google Scholar] [CrossRef]
- Negishi, Y.; Eto, Y.; Hishita, M.; Negishi, S.; Suzuki, M.; Masaka, K.; Seiwa, K. Role of thinning intensity in creating mixed hardwood and conifer forests within a Cryptomeria japonica conifer plantation: A 14-year study. For. Ecol. Manag. 2020, 468, 118184. [Google Scholar] [CrossRef]
- Gong, Z. Chinese Soil Taxonomy: Theory, Method and Practice; Science Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
- Fu, M.; Pan, H.; Song, X.; Dai, Q.; Qi, D.; Ran, J.; Hou, R.; Yang, X.; Gu, X.; Yang, B.; et al. Back-and-forth shifts in habitat selection by giant pandas over the past two decades in the Daxiangling Mountains, southwestern China. J. Nat. Conserv. 2022, 66, 126129. [Google Scholar] [CrossRef]
- Shi, J.Y.; Zhang, Y.X.; Zhou, D.Q.; Ma, L.S.; Yao, J. Morphology of Bamboos. In Illustrated Flora of Bambusoideae in China; Shi, J., Zhang, Y., Zhou, D., Ma, L., Yao, J., Eds.; Springer: Singapore, 2020; pp. 1–18. [Google Scholar]
- Guo, J.; Zhao, C.; Zhang, L.; Han, Y.; Cao, R.; Liu, Y.; Sun, S. Water table decline alters arthropod community structure by shifting plant communities and leaf nutrients in a Tibetan peatland. Sci. Total Environ. 2022, 814, 151944. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Li, S.; Lü, X.; Wang, X.; Han, X. Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Sci. Rep. 2017, 7, 10780. [Google Scholar] [CrossRef]
- Gorsuch, P.A.; Pandey, S.; Atkin, O.K. Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant Cell Environ. 2010, 33, 244–258. [Google Scholar] [CrossRef]
- Li, Y.; Zou, D.; Shrestha, N.; Xu, X.; Wang, Q.; Jia, W.; Wang, Z. Spatiotemporal variation in leaf size and shape in response to climate. J. Plant Ecol. 2019, 13, 87–96. [Google Scholar] [CrossRef]
- Carter, T.A.; Fornwalt, P.J.; Dwire, K.A.; Laughlin, D.C. Understory plant community responses to widespread spruce mortality in a subalpine forest. J. Veg. Sci. 2022, 33, e13109. [Google Scholar] [CrossRef]
- Sample, R.D.; Boggess, C.M.; Brooke, J.M.; Jenkins, M.A. Stump sprouting performance of common tree species in the midstory of hardwood forests in Indiana. For. Sci. 2022, 68, 440–446. [Google Scholar] [CrossRef]
- Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 2010, 25, 693–714. [Google Scholar] [CrossRef]
- Chen, K.; Hu, K.; Xi, F.; Wang, H.; Kohnen, M.V.; Gao, P.; Liao, J.; Wei, W.; Liu, X.; Zhang, H.; et al. High-efficient and transient transformation of Moso bamboo (Phyllostachys edulis) and Ma bamboo (Dendrocalamus latiflorus Munro). J. Plant Biol. 2023, 66, 75–86. [Google Scholar] [CrossRef]
- Zhai, W.; Wang, Y.; Luan, J.; Liu, S. Effects of nitrogen addition on clonal integration between mother and daughter ramets of Moso bamboo: A 13C-CO2 pulse labeling study. J. Plant Ecol. 2022, 15, 756–770. [Google Scholar] [CrossRef]
- Hao, X.; Jia, J.; Mi, J.; Yang, S.; Khattak, A.M.; Zheng, L.; Gao, W.; Wang, M. An optimization model of light intensity and nitrogen concentration coupled with yield and quality. Plant Growth Regul. 2020, 92, 319–331. [Google Scholar] [CrossRef]
- Baard, P. Managing climate change: A view from deep Ecology. Ethics Environ. 2015, 20, 23–44. [Google Scholar] [CrossRef]
- Fadrique, B.; Baraloto, C.; Bravo-Avila, C.H.; Feeley, K.J. Bamboo climatic tolerances are decoupled from leaf functional traits across an Andean elevation gradient. Oikos 2022, 22, e09229. [Google Scholar] [CrossRef]
- He, N.; Liu, C.; Tian, M.; Li, M.; Yang, H.; Yu, G.; Guo, D.; Smith, M.D.; Yu, Q.; Hou, J. Variation in leaf anatomical traits from tropical to cold-temperate forests and linkage to ecosystem functions. Funct. Ecol. 2018, 32, 10–19. [Google Scholar] [CrossRef]
- Yang, K.; Chen, G.; Xian, J.; Chen, W. Varying relationship between vascular plant leaf area and leaf biomass along an elevational gradient on the eastern Qinghai-Tibet Plateau. Front. Plant Sci. 2022, 13, 824461. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, Y.; Li, B.; Xi, N.; Chen, Y.; He, D.; Feng, J.; Chu, C. Species abundance is jointly determined by functional traits and negative density dependence in a subtropical forest in southern China. J. Plant Ecol. 2021, 14, 491–503. [Google Scholar] [CrossRef]
- Blondeel, H.; Perring, M.P.; Depauw, L.; De Lombaerde, E.; Landuyt, D.; De Frenne, P.; Verheyen, K. Light and warming drive forest understorey community development in different environments. Glob. Chang. Biol. 2020, 26, 1681–1696. [Google Scholar] [CrossRef]
- De Pauw, K.; Sanczuk, P.; Meeussen, C.; Depauw, L.; De Lombaerde, E.; Govaert, S.; Vanneste, T.; Brunet, J.; Cousins, S.A.O.; Gasperini, C.; et al. Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming. New Phytol. 2022, 233, 219–235. [Google Scholar] [CrossRef]
Variance Sources | Treatments | Age | Treatments × Age | |||
---|---|---|---|---|---|---|
F | P | F | P | F | P | |
Length | 28.504 | <0.001 | 15.933 | <0.001 | 46.012 | <0.001 |
Width | 12.201 | <0.001 | 34.696 | <0.001 | 17.197 | <0.001 |
Area | 18.653 | <0.001 | 39.326 | <0.001 | 43.575 | <0.001 |
Thickness | 2.394 | 0.069 | 30.578 | <0.001 | 26.949 | <0.001 |
Biomass | 12.174 | <0.001 | 0.611 | 0.435 | 64.173 | <0.001 |
SLA | 9.275 | <0.001 | 23.41 | <0.001 | 28.657 | <0.001 |
LSI | 20.03 | <0.001 | 10.95 | 0.001 | 4.2 | 0.006 |
Trade-Off | Year | Treatments | R2 | Slope (95% CI) | Intercept | Common Slope (95% CI) | Intercepts Shift in Elevation | Shifts along the Common Slope | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CS | CB | FC | CS | CB | FC | |||||||
Length vs. width | annual | CS | 0.494 ** | 0.910 ns (0.694, 1.195) | 0.934 (0.589, 1.279) | 0.874 (0.747, 1.021) | 1 | 1 | ||||
CB | 0.266 ** | 0.642 ** (0.463, 0.889) | 1.194 (0.926, 1.462) | ** | 1 | ** | 1 | |||||
FC | 0.291 ** | 0.844 ns (0.612, 1.162) | 1.020 (0.660, 1.381) | ns | ** | 1 | ** | ** | 1 | |||
BC | 0.342 ** | 1.125 ns (0.826, 1.533) | 0.564 (0.082, 1.046) | ** | ns | ** | ** | ** | ns | |||
perennial | CS | 0.392 ** | 0.660 ** (0.490, 0.888) | 1.230 (0.971, 1.490) | 0.743 (0.640, 0.863) | 1 | 1 | |||||
CB | 0.501 ** | 0.773 ns (0.590, 1.013) | 1.099 (0.820, 1.377) | ns | 1 | ns | 1 | |||||
FC | 0.073 ns | 0.657 *(0.456, 0.946) | 1.273 (0.971, 1.575) | ** | ns | 1 | * | ** | 1 | |||
BC | 0.434 ** | 0.858 ns (0.644, 1.143) | 0.95 (0.634, 1.266) | * | ** | ** | ** | ** | ns | |||
Biomass vs. area | annual | CS | 0.541 ** | 1.462 ** (1.128, 1.896) a | −3.026 (−3.584, −2.469) | |||||||
CB | 0.805 ** | 0.946 ns (0.798, 1.122) b | −2.319 (−2.499, −2.140) | |||||||||
FC | 0.764 ** | 1.125 ns (0.933, 1.356) ab | −2.528 (−2.812, −2.243) | |||||||||
BC | 0.843 ** | 1.002 ns (0.860, 1.168) b | −2.214 (−2.416, −2.013) | |||||||||
perennial | CS | 0.691 ** | 1.198 ns (0.967, 1.483) | −2.624 (−2.943, −2.306) | 1.014 (0.934, 1.100) | 1 | 1 | |||||
CB | 0.824 ** | 0.915 ns (0.778, 1.076) | −2.067 (−2.262, −1.873) | ** | 1 | ** | 1 | |||||
FC | 0.786 ** | 0.973 ns (0.814, 1.163) | −2.285 (−2.494, −2.077) | ** | ** | 1 | ns | ** | 1 | |||
BC | 0.893 ** | 1.041 ns (0.917, 1.181) | −2.197 (−2.35, −2.043) | ** | ns | ** | ns | ** | ns | |||
SLA vs. thickness | annual | CS | 0.547 ** | −1.035 ns (−1.339, −0.800) | 1.481 (1.252, 1.71) | −0.918 (−0.794, −1.064) | 1 | 1 | ||||
CB | 0.043 ns | −0.943 ns (−1.365, −0.651) | 1.265 (0.929, 1.601) | ** | 1 | ** | 1 | |||||
FC | 0.66 ** | −0.777 *(−0.972, −0.621) | 1.66 (1.502, 1.819) | ** | ** | 1 | ns | ** | 1 | |||
BC | 0.04 ns | −1.084 ns (−1.571, −0.748) | 1.47 (1.125, 1.816) | ns | ** | ** | ns | ** | ns | |||
perennial | CS | 0.713 ** | −0.958 ns (−1.176, −0.779) | 1.516 (1.337, 1.696) | −0.821 (−0.720, −0.932) | 1 | 1 | |||||
CB | 0.653 ** | −0.801 ns (−1.004, −0.638) | 1.544 (1.398, 1.689) | ** | 1 | ** | 1 | |||||
FC | 0.466 ** | −0.798 ns (−1.055, −0.604) | 1.685 (1.506, 1.865) | * | ** | 1 | ** | ** | 1 | |||
BC | 0.045 ns | −0.558 ** (−0.808, −0.386) | 1.74 (1.561, 1.92) | ** | ns | ** | ** | ** | ** |
Trade-Off | Treatments | Common Slope (95% CI) | Intercepts Shift in Elevation | Shifts along the Common Slope |
---|---|---|---|---|
Length vs. width | CS | 0.7866 (0.639, 0.966) | ** | ** |
CB | 0.717 (0.582, 0.882) | ** | ** | |
FC | 0.7568 (0.593, 0.963) | ns | ** | |
BC | 0.9725 (0.78691, 1.205) | ns | ** | |
Biomass vs. area | CS | 1.298 (1.099, 1.536) | ns | ** |
CB | 0.9297 (0.829, 1.044) | ** | ** | |
FC | 1.0422 (0.915, 1.188) | ** | ** | |
BC | 1.025 (0.931, 1.128) | ** | ** | |
SLA vs. thickness | CS | −0.9868 (−0.842, −1.15862) | ** | ** |
CB | −0.836 (−0.691, −1.016) | ** | ** | |
FC | −0.7853 (−0.661, −0.9337) | ** | ** |
Treatments | Canopy Tree | Average DBH (cm) | Canopy Coverage | Average Height (m) |
---|---|---|---|---|
CB | Betula and Litsea | 10.21 ± 1.73 a | About 55% | 15.44 ± 4.74 a |
CS | Picea asperata | 9.96 ± 1.88 a | About 50% | 14.78 ± 4.17 a |
FC | Betula and Litsea | 9.83 ± 1.72 a | About 95% | 14.48 ± 4.38 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, D.; Xian, J.; Chen, G.; Zhang, Y.; Qin, H.; Fu, X.; Lin, L.; Ai, Y.; Yang, Z.; Xu, X.; et al. Rapid Adaptation of Chimonobambusa opienensis Leaves to Crown–Thinning in Giant Panda Ecological Corridor, Niba Mountain. Plants 2023, 12, 2109. https://doi.org/10.3390/plants12112109
Fang D, Xian J, Chen G, Zhang Y, Qin H, Fu X, Lin L, Ai Y, Yang Z, Xu X, et al. Rapid Adaptation of Chimonobambusa opienensis Leaves to Crown–Thinning in Giant Panda Ecological Corridor, Niba Mountain. Plants. 2023; 12(11):2109. https://doi.org/10.3390/plants12112109
Chicago/Turabian StyleFang, Di, Junren Xian, Guopeng Chen, Yuanbin Zhang, Hantang Qin, Xin Fu, Liyang Lin, Yuxuan Ai, Zhanbiao Yang, Xiaoxun Xu, and et al. 2023. "Rapid Adaptation of Chimonobambusa opienensis Leaves to Crown–Thinning in Giant Panda Ecological Corridor, Niba Mountain" Plants 12, no. 11: 2109. https://doi.org/10.3390/plants12112109
APA StyleFang, D., Xian, J., Chen, G., Zhang, Y., Qin, H., Fu, X., Lin, L., Ai, Y., Yang, Z., Xu, X., Yang, Y., & Cheng, Z. (2023). Rapid Adaptation of Chimonobambusa opienensis Leaves to Crown–Thinning in Giant Panda Ecological Corridor, Niba Mountain. Plants, 12(11), 2109. https://doi.org/10.3390/plants12112109