Soybean Root Transcriptomics: Insights into Sucrose Signaling at the Crossroads of Nutrient Deficiency and Biotic Stress Responses
Abstract
:1. Introduction
2. Results
2.1. RNA-Seq to Assess Short-Term Responses to Sucrose Resulted in 260 Million Paired-End Reads
2.2. Short-Term Sucrose Exposure Changes the Expression of Hundreds of Genes
2.3. Genes Involved in Auxin-Mediated Responses and Nutrient Assimilation Are among the Most Highly Upregulated Genes in Response to Sucrose
2.4. Gene Ontology Analysis Reveals High Proportions of Transcription Factors and Internal Signaling in Response to Sucrose
2.5. GO Enrichment Indicates Involvement of ROS and Ca2+ Signaling in Responses to Sucrose
3. Discussion
3.1. RNA-Seq to Unravel the Regulatory Network in Response to Sucrose
3.2. ROS and Ca2+ Signaling Act Downstream of Sucrose
3.3. Sucrose Activates Plant Hormone Signaling
3.4. Sucrose May Mediate Crosstalk between Biotic and Abiotic Stresses
4. Materials and Methods
4.1. Seed Germination, Treatments, and Harvest
4.2. RNA Isolation and Quality Check
4.3. cDNA Library Preparation and RNA-Sequencing
4.4. RNA-Seq Data Analysis
4.5. Differential Expression Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press Inc.: San Diego, CA, USA, 1995. [Google Scholar]
- Mo, X.; Liu, G.; Zhang, Z.; Lu, X.; Liang, C.; Tian, J. Mechanisms Underlying Soybean Response to Phosphorus Deficiency through Integration of Omics Analysis. Int. J. Mol. Sci. 2022, 23, 4592. [Google Scholar] [CrossRef] [PubMed]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. N. Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef] [PubMed]
- Dobbels, A.A.; Lorenz, A.J. Soybean iron deficiency chlorosis high throughput phenotyping using an unmanned aircraft system. Plant Methods 2019, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Merry, R.; Dobbels, A.A.; Sadok, W.; Naeve, S.; Stupar, R.M.; Lorenz, A.J. Iron deficiency in soybean. Crop Sci. 2022, 62, 36–52. [Google Scholar] [CrossRef]
- Naeve, S.L. Iron deficiency chlorosis in soybean. Agron. J. 2006, 98, 1575–1581. [Google Scholar] [CrossRef]
- Yoon, J.; Cho, L.H.; Tun, W.; Jeon, J.S.; An, G. Sucrose signaling in higher plants. Plant Sci. 2021, 302, 110703. [Google Scholar] [CrossRef]
- Pontis, H.G. On the scent of the riddle of sucrose. Trends Biochem. Sci. 1978, 3, 137–139. [Google Scholar] [CrossRef]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef]
- Ruan, Y.L. Signaling role of sucrose metabolism in development. Mol. Plant 2012, 5, 763–765. [Google Scholar] [CrossRef]
- Tognetti, J.A.; Pontis, H.G.; Martinez-Noel, G.M. Sucrose signaling in plants: A world yet to be explored. Plant Signal. Behav. 2013, 8, e23316. [Google Scholar] [CrossRef]
- Wind, J.; Smeekens, S.; Hanson, J. Sucrose: Metabolite and signaling molecule. Phytochemistry 2010, 71, 1610–1614. [Google Scholar] [CrossRef]
- Hammond, J.P.; White, P.J. Sugar signaling in root responses to low phosphorus availability. Plant Physiol. 2011, 156, 1033–1040. [Google Scholar] [CrossRef]
- Hammond, J.; White, P. Sucrose transport in the phloem: Integrating root responses to phosphorus starvation. J. Exp. Bot. 2008, 59, 93–109. [Google Scholar] [CrossRef]
- Lin, X.Y.; Ye, Y.Q.; Fan, S.K.; Jin, C.W.; Zheng, S.J. Increased Sucrose Accumulation Regulates Iron-Deficiency Responses by Promoting Auxin Signaling in Arabidopsis Plants. Plant Physiol. 2016, 170, 907–920. [Google Scholar] [CrossRef]
- Thibaud, M.C.; Arrighi, J.F.; Bayle, V.; Chiarenza, S.; Creff, A.; Bustos, R.; Paz-Ares, J.; Poirier, Y.; Nussaume, L. Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J. 2010, 64, 775–789. [Google Scholar] [CrossRef]
- Shen, J.; Li, H.; Neumann, G.; Zhang, F. Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Sci. 2005, 168, 837–845. [Google Scholar] [CrossRef]
- Shane, M.; De Vos, M.; De Roock, S.; Lambers, H. Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant Cell Environ. 2003, 26, 265–273. [Google Scholar] [CrossRef]
- Liu, J.; Vance, C.P. Crucial roles of sucrose and microRNA399 in systemic signaling of P deficiency: A tale of two team players? Plant Signal. Behav. 2010, 5, 1556–1560. [Google Scholar] [CrossRef]
- Wawrzynska, A.; Piotrowska, J.; Apodiakou, A.; Bruckner, F.; Hoefgen, R.; Sirko, A. The SLIM1 transcription factor affects sugar signaling during sulfur deficiency in Arabidopsis. J. Exp. Bot. 2022, 73, 7362–7379. [Google Scholar] [CrossRef]
- Lei, M.; Liu, D. Sucrose regulates plant responses to deficiencies in multiple nutrients. Plant Signal. Behav. 2011, 6, 1247–1249. [Google Scholar] [CrossRef]
- Ruffel, S. Nutrient-related Long-Distance Signals: Common players and possible crosstalk. Plant Cell Physiol. 2018, 59, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Hammond, J.; White, P.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Teng, S.; Keurentjes, J.; Bentsink, L.; Koornneef, M.; Smeekens, S. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol. 2005, 139, 1840–1852. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, S.; Boles, E.; Hellmann, H.; Barker, L.; Patrick, J.W.; Frommer, W.B.; Ward, J.M. The dual function of sugar carriers. Transport and sugar sensing. Plant Cell 1999, 11, 707–726. [Google Scholar] [CrossRef]
- Cao, P.; Zhao, Y.; Wu, F.; Xin, D.; Liu, C.; Wu, X.; Lv, J.; Chen, Q.; Qi, Z. Multi-Omics Techniques for Soybean Molecular Breeding. Int. J. Mol. Sci. 2022, 23, 4994. [Google Scholar] [CrossRef]
- Kohlhase, D.R.; McCabe, C.E.; Singh, A.K.; O’Rourke, J.A.; Graham, M.A. Comparing Early Transcriptomic Responses of 18 Soybean (Glycine max) Genotypes to Iron Stress. Int. J. Mol. Sci. 2021, 22, 11643. [Google Scholar] [CrossRef]
- Mai, H.J.; Pateyron, S.; Bauer, P. Iron homeostasis in Arabidopsis thaliana: Transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks. BMC Plant Biol. 2016, 16, 211. [Google Scholar] [CrossRef]
- O’Rourke, J.A.; Graham, M.A. Gene Expression Responses to Sequential Nutrient Deficiency Stresses in Soybean. Int. J. Mol. Sci. 2021, 22, 1252. [Google Scholar] [CrossRef]
- Moran Lauter, A.N.; Rutter, L.; Cook, D.; O’Rourke, J.A.; Graham, M.A. Examining Short-Term Responses to a Long-Term Problem: RNA-Seq Analyses of Iron Deficiency Chlorosis Tolerant Soybean. Int. J. Mol. Sci. 2020, 21, 3591. [Google Scholar] [CrossRef]
- Wang, S.; Sun, S.; Guo, R.; Liao, W.; Shou, H. Transcriptomic Profiling of Fe-Responsive lncRNAs and Their Regulatory Mechanism in Rice. Genes 2021, 12, 567. [Google Scholar] [CrossRef]
- O’Rourke, J.A.; McCabe, C.E.; Graham, M.A. Dynamic gene expression changes in response to micronutrient, macronutrient, and multiple stress exposures in soybean. Funct. Integr. Genom. 2020, 20, 321–341. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, J.; Ludewig, U.; Neumann, G. A re-assessment of sucrose signaling involved in cluster-root formation and function in phosphate-deficient white lupin (Lupinus albus). Physiol. Plant. 2015, 154, 407–419. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef]
- Frazee, A.C.; Pertea, G.; Jaffe, A.E.; Langmead, B.; Salzberg, S.L.; Leek, J.T. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 2015, 33, 243–246. [Google Scholar] [CrossRef]
- Bouzroud, S.; Gouiaa, S.; Hu, N.; Bernadac, A.; Mila, I.; Bendaou, N.; Smouni, A.; Bouzayen, M.; Zouine, M. Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS ONE 2018, 13, e0193517. [Google Scholar] [CrossRef]
- Murphy, A.S.; Hoogner, K.R.; Peer, W.A.; Taiz, L. Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol. 2002, 128, 935–950. [Google Scholar] [CrossRef]
- Lee, O.R.; Cho, H.T. Cytoplasm localization of aminopeptidase M1 and its functional activity in root hair cells and BY-2 cells. Mol. Biol. Rep. 2012, 39, 10211–10218. [Google Scholar] [CrossRef]
- Kherraz, K.; Kherraz, K.; Kameli, A. Homology modeling of Ferredoxin-nitrite reductase from Arabidopsis thaliana. Bioinformation 2011, 6, 115–119. [Google Scholar] [CrossRef]
- Mazarei, M.; Lennon, K.A.; Puthoff, D.P.; Rodermel, S.R.; Baum, T.J. Expression of an Arabidopsis phosphoglycerate mutase homologue is localized to apical meristems, regulated by hormones, and induced by sedentary plant-parasitic nematodes. Plant Mol. Biol. 2003, 53, 513–530. [Google Scholar] [CrossRef] [PubMed]
- Takano, A.; Kakehi, J.; Takahashi, T. Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol. 2012, 53, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Yariuchi, Y.; Okamoto, T.; Noutoshi, Y.; Takahashi, T. Responses of Polyamine-Metabolic Genes to Polyamines and Plant Stress Hormones in Arabidopsis Seedlings. Cells 2021, 10, 3283. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Cuenca, M.R.; Iglesias, D.J.; Talon, M.; Abadia, J.; Lopez-Millan, A.F.; Primo-Millo, E.; Legaz, F. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf]. Tree Physiol. 2013, 33, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Tamadaddi, C.; Verma, A.K.; Zambare, V.; Vairagkar, A.; Diwan, D.; Sahi, C. J-like protein family of Arabidopsis thaliana: The enigmatic cousins of J-domain proteins. Plant Cell Rep. 2022, 41, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Waszczak, C.; Carmody, M.; Kangasjarvi, J. Reactive Oxygen Species in Plant Signaling. Annu. Rev. Plant Biol. 2018, 69, 209–236. [Google Scholar] [CrossRef]
- Kidwai, M.; Ahmad, I.Z.; Chakrabarty, D. Class III peroxidase: An indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep. 2020, 39, 1381–1393. [Google Scholar] [CrossRef]
- Fichman, Y.; Mittler, R. Rapid systemic signaling during abiotic and biotic stresses: Is the ROS wave master of all trades? Plant J. Cell Mol. Biol. 2020, 102, 887–896. [Google Scholar] [CrossRef]
- Cosio, C.; Dunand, C. Specific functions of individual class III peroxidase genes. J. Exp. Bot. 2009, 60, 391–408. [Google Scholar] [CrossRef]
- Drerup, M.M.; Schlucking, K.; Hashimoto, K.; Manishankar, P.; Steinhorst, L.; Kuchitsu, K.; Kudla, J. The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol. Plant 2013, 6, 559–569. [Google Scholar] [CrossRef]
- Steinhorst, L.; Kudla, J. Signaling in cells and organisms—Calcium holds the line. Curr. Opin. Plant Biol. 2014, 22, 14–21. [Google Scholar] [CrossRef]
- Myers, R.J.; Fichman, Y.; Zandalinas, S.I.; Mittler, R. Jasmonic acid and salicylic acid modulate systemic reactive oxygen species signaling during stress responses. Plant Physiol. 2023, 191, 862–873. [Google Scholar] [CrossRef]
- Bouain, N.; Krouk, G.; Lacombe, B.; Rouached, H. Getting to the Root of Plant Mineral Nutrition: Combinatorial Nutrient Stresses Reveal Emergent Properties. Trends Plant Sci. 2019, 24, 542–552. [Google Scholar] [CrossRef]
- Mendoza-Cozatl, D.G.; Gokul, A.; Carelse, M.F.; Jobe, T.O.; Long, T.A.; Keyster, M. Keep talking: Crosstalk between iron and sulfur networks fine-tunes growth and development to promote survival under iron limitation. J. Exp. Bot. 2019, 70, 4197–4210. [Google Scholar] [CrossRef]
- Courbet, G.; Gallardo, K.; Vigani, G.; Brunel-Muguet, S.; Trouverie, J.; Salon, C.; Ourry, A. Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants. J. Exp. Bot. 2019, 70, 4183–4196. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The water-culture method for growing plants without soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Leggett, J.E. Growth and nutrient uptake by soybean plants in nutrient solutions of graded concentrations. Plant Physiol. 1971, 48, 457–460. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Brown, A.V.; Conners, S.I.; Huang, W.; Wilkey, A.P.; Grant, D.; Weeks, N.T.; Cannon, S.B.; Graham, M.A.; Nelson, R.T. A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2021, 49, D1496–D1501. [Google Scholar] [CrossRef]
- Grant, D.; Nelson, R.T.; Cannon, S.B.; Shoemaker, R.C. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2010, 38, D843–D846. [Google Scholar] [CrossRef] [PubMed]
cDNA Library, Biological Replicate (Rep) | Number of Paired Sequences (in Millions) | Overall Mapping Alignment Rate |
---|---|---|
Control (t0), rep 1 | 24.9 | 94.96% |
Control (t0), rep 2 | 26.5 | 89.61% |
Control (t0), rep 3 | 40.6 | 93.34% |
20 min sucrose (t20), rep 1 | 24.2 | 92.29% |
20 min sucrose (t20), rep 2 | 47.3 | 91.00% |
20 min sucrose (t20), rep 3 | 33.1 | 93.34% |
40 min sucrose (t40), rep 1 | 19.5 | 87.91% |
40 min sucrose (t40), rep 2 | 26.7 | 81.77% |
40 min sucrose (t40), rep 3 | 16.9 | 80.44% |
Annotation/ G. max ID (if Available) | Description | t20 | t40 | ||
---|---|---|---|---|---|
Log2FC | p-Value | Log2FC | p-Value | ||
auxin response factor 9 (ARF9)/transcriptional regulator | potential mediators of auxin signaling in response to biotic and abiotic stress [38] | 4.3 | 0.007 | 4.7 | 6.92 × 10−5 |
aminopeptidase M1/ GLYMA.04G053300 | metallopeptidase, involved in polar auxin transport [39] and root hair development [40] | 4.2 | 0.003 | 4.0 | 0.015 |
ferredoxin-A/ GLYMA.05G168400 | in roots, part of nitrogen assimilation via ferredoxin-nitrite reductase (NiR) [41] | 4.2 | 0.00002 | 3.5 | 6.76 × 10−6 |
phosphoglycerate mutase 1 | enzyme of glycolysis, induced by sucrose and auxin [42] | 4 | 0.00016 | 4.4 | 0.014 |
RESPONSE TO LOW SULFUR 3/GLYMA.04G225500 | function still unknown; possible transcriptional regulator involved in plant responses to environmental challenges [20] | 3.7 | 0.041 | 2.6 | 0.023 |
LOC100305767/ GLYMA.08G158100 | uncharacterized | 3.6 | 0.043 | 4.6 | 0.014 |
thermospermine synthase ACAULIS5/ GLYMA.14G099200 | involved in the synthesis of thermospermine, which may act as a plant growth regulator [43]; some thermospermine synthases are regulated by plant stress hormones [44] | 3.6 | 0.020 | 3.9 | 0.005 |
Dicarboxylate carrier 1, transporter of organic acids | may shuttle malate between the cytosol and mitochondria; induced in Fe-deficient roots [45] | 3.5 | 0.049 | 5.1 | 0.012 |
J domain-containing protein/ GLYMA.08G074200 | co-chaperones of Hsp70s (heat-shock proteins), likely involved in growth, development, and stress response [46] | 3.2 | 0.045 | 4.3 | 0.014 |
RESPONSE TO LOW SULFUR 3/ GLYMA.06G139300 | function still unknown; possible transcriptional regulator involved in plant responses to environmental challenges [20] | 3.2 | 0.049 | 2.0 | 0.013 |
Annotation | G. max ID (if Available) | t20 | t40 | ||
---|---|---|---|---|---|
log2FC | p-Value | log2FC | p-Value | ||
MYB14 | GLYMA.06G300200 | 3.8 | 0.099 | 6.3 | 0.018 |
WRKY41 | GLYMA.05G215900 | 4.6 | 0.054 | 5.7 | 0.007 |
MYB30 | GLYMA.06G300100 | 2.4 | 0.112 | 5.6 | 0.034 |
WRKY33 | GLYMA.03G042700 | 3.2 | 0.076 | 5.1 | 0.003 |
MYB30 | GLYMA.12G104800 | 2.4 | 0.114 | 4.6 | 0.015 |
WRKY SUSIBA2 | 2.4 | 0.103 | 4.5 | 0.002 | |
ERF 13 | GLYMA.03G111700 | 1.2 | 0.116 | 4.1 | 0.045 |
MYB13 | GLYMA.12G104600 | 1.3 | 0.118 | 4.1 | 0.045 |
ERF098-like | GLYMA.10G036600 | 1.3 | 0.179 | 3.9 | 0.00003 |
WRKY40 | GLYMA.07G023300 | 2.1 | 0.073 | 3.7 | 0.017 |
GO Term | Expressed GO | Expected Expression | Genome GO Count | Corrected p-Value * |
---|---|---|---|---|
response to chitin | 183 | 51 | 1135 | 4 × 10−50 |
respiratory burst involved in defense response | 91 | 19 | 420 | 1.8 × 10−34 |
regulation of plant-type hypersensitive response | 122 | 46 | 1019 | 7 × 10−21 |
protein targeting the membrane | 122 | 46 | 1020 | 7.6 × 10−21 |
salicylic acid-mediated signaling pathway | 76 | 21 | 458 | 7.9 × 10−21 |
negative regulation of programmed cell death | 82 | 24 | 525 | 8.4 × 10−21 |
intracellular signal transduction | 76 | 22 | 479 | 1.3 × 10−19 |
response to wounding | 119 | 46 | 1031 | 5.1 × 10−19 |
negative regulation of the defense response | 97 | 34 | 766 | 5 × 10−18 |
MAPK cascade | 78 | 26 | 575 | 5.6 × 10−16 |
ethylene biosynthetic process | 50 | 12 | 270 | 2.7 × 10−15 |
jasmonic acid-mediated signaling pathway | 94 | 36 | 800 | 3 × 10−15 |
defense response to fungus | 104 | 42 | 941 | 4.7 × 10−15 |
systemic acquired resistance | 85 | 31 | 688 | 5.5 × 10−15 |
salicylic acid biosynthetic process | 79 | 29 | 653 | 2.56 × 10−13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nidumolu, L.C.M.; Lorilla, K.M.; Chakravarty, I.; Uhde-Stone, C. Soybean Root Transcriptomics: Insights into Sucrose Signaling at the Crossroads of Nutrient Deficiency and Biotic Stress Responses. Plants 2023, 12, 2117. https://doi.org/10.3390/plants12112117
Nidumolu LCM, Lorilla KM, Chakravarty I, Uhde-Stone C. Soybean Root Transcriptomics: Insights into Sucrose Signaling at the Crossroads of Nutrient Deficiency and Biotic Stress Responses. Plants. 2023; 12(11):2117. https://doi.org/10.3390/plants12112117
Chicago/Turabian StyleNidumolu, Leela Chandra Manozna, Kristina Mae Lorilla, Indrani Chakravarty, and Claudia Uhde-Stone. 2023. "Soybean Root Transcriptomics: Insights into Sucrose Signaling at the Crossroads of Nutrient Deficiency and Biotic Stress Responses" Plants 12, no. 11: 2117. https://doi.org/10.3390/plants12112117
APA StyleNidumolu, L. C. M., Lorilla, K. M., Chakravarty, I., & Uhde-Stone, C. (2023). Soybean Root Transcriptomics: Insights into Sucrose Signaling at the Crossroads of Nutrient Deficiency and Biotic Stress Responses. Plants, 12(11), 2117. https://doi.org/10.3390/plants12112117