Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants
Abstract
:1. Introduction
2. Results
2.1. Traits of Plant Architecture and Nitrogen Use Efficiency
2.2. Gas Exchange, Photochemical Efficiency of Chlorophyll, and Leaf Pigments Measurements
3. Discussion
3.1. The Effect of Nitrogen Deprivation on Photosynthesis, Maximum Efficiency of PSII, Leaf Pigments, and Its Impact on the Growth of Popcorn Genotypes
3.2. The Mechanisms Underlying the Efficient Use of N in Popcorn Genotypes
3.3. What Is the Best Strategy for Conducting Popcorn Breeding to Increase the Nitrogen Use Efficiency?
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Leaf Pigments
4.3. Chlorophyll Fluorescence Measurements
4.4. Measurements of Leaf Gas Exchange
4.5. Morphological Traits
4.6. Root System Analysis
4.7. Concentration of N
4.8. Efficiency in the Use of Nitrogen and Components
4.9. Heterosis Estimation
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, R.; Gao, J.; Li, Y.; Yu, S.; Wang, Z. Heterosis for Nitrogen Use Efficiency of Maize Hybrids Enhanced over Decades in China. Agriculture 2022, 12, 764. [Google Scholar] [CrossRef]
- Duvick, D.N. Heterosis: Feeding People and Protecting Natural Resources. In Genetics and Exploitation of Heterosis in Crops; ASA, CSSA: Madison, WI, USA, 2015; pp. 19–29. [Google Scholar]
- FAO Food and Agricultural Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 18 June 2022).
- Kist, B.B.; Carvalho, C.; Beling, R.R. Anuário Brasileiro Do Milho 2021; ENDEREÇO: Santa Cruz do Sul, Brazil, 2021. [Google Scholar]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Modi, P.; Dave, A.; Vijapura, A.; Patel, D.; Patel, M. Effect of Abiotic Stress on Crops. In Sustainable Crop Production; IntechOpen: London, UK, 2020. [Google Scholar]
- Santos, T.d.O.; Junior, A.T.D.A.; Bispo, R.B.; de Lima, V.J.; Kamphorst, S.H.; Leite, J.T.; Júnior, D.R.d.S.; Santos, P.H.A.D.; de Oliveira, U.A.; Schmitt, K.F.M.; et al. Phenotyping Latin American Open-Pollinated Varieties of Popcorn for Environments with Low Water Availability. Plants 2021, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of Nitrogen in Agriculture and Environment: Agronomic, Eco-Physiological and Molecular Approaches to Improve Nitrogen Use Efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Zuffo, L.T.; Luz, L.S.; Destro, V.; Silva, M.E.J.; Rodrigues, M.C.; Lara, L.M.; de Faria, S.V.; DeLima, R.O. Assessing Genotypic Variation for Nitrogen Use Efficiency and Associated Traits in Brazilian Maize Hybrids Grown under Low and High Nitrogen Inputs. Euphytica 2021, 217, 71. [Google Scholar] [CrossRef]
- Quan, X.; Zeng, J.; Chen, G.; Zhang, G. Transcriptomic Analysis Reveals Adaptive Strategies to Chronic Low Nitrogen in Tibetan Wild Barley. BMC Plant Biol. 2019, 19, 68. [Google Scholar] [CrossRef]
- Mascia, M.; Sega, D.; Zamboni, A.; Varanini, Z. Nitrogen Starvation Differentially Influences Transcriptional and Uptake Rate Profiles in Roots of Two Maize Inbred Lines with Different NUE. Int. J. Mol. Sci. 2019, 20, 4856. [Google Scholar] [CrossRef]
- Gan, H.; Jiao, Y.; Jia, J.; Wang, X.; Li, H.; Shi, W.; Peng, C.; Polle, A.; Luo, Z.-B. Phosphorus and Nitrogen Physiology of Two Contrasting Poplar Genotypes When Exposed to Phosphorus and/or Nitrogen Starvation. Tree Physiol. 2016, 36, 22–38. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 6th ed.; Sinauer Associates: Sunderland, MA, USA, 2016. [Google Scholar]
- Abubakar, A.W.; Manga, A.A.; Kamara, A.Y.; Tofa, A.I. Physiological Evaluations of Maize Hybrids under Low Nitrogen. Adv. Agric. 2019, 2019, 1–6. [Google Scholar] [CrossRef]
- Ludemann, C.I.; Hijbeek, R.; van Loon, M.P.; Murrell, T.S.; Dobermann, A.; van Ittersum, M.K. Estimating Maize Harvest Index and Nitrogen Concentrations in Grain and Residue Using Globally Available Data. Field Crop. Res. 2022, 284, 108578. [Google Scholar] [CrossRef]
- D’Andrea, K.E.; Parco, M.; Maddonni, G.Á. Maize Prolificacy under Contrasting Plant Densities and N Supplies: II. Growth per Plant, Biomass Partitioning to Apical and Sub-Apical Ears during the Critical Period and Kernel Setting. Field Crop. Res. 2022, 284, 108557. [Google Scholar] [CrossRef]
- Hammad, H.M.; Chawla, M.S.; Jawad, R.; Alhuqail, A.; Bakhat, H.F.; Farhad, W.; Khan, F.; Mubeen, M.; Shah, A.N.; Liu, K.; et al. Evaluating the Impact of Nitrogen Application on Growth and Productivity of Maize Under Control Conditions. Front. Plant Sci. 2022, 13, 885479. [Google Scholar] [CrossRef]
- Wu, Y.-W.; Li, Q.; Jin, R.; Chen, W.; Liu, X.-L.; Kong, F.-L.; Ke, Y.-P.; Shi, H.-C.; Yuan, J.-C. Effect of Low-Nitrogen Stress on Photosynthesis and Chlorophyll Fluorescence Characteristics of Maize Cultivars with Different Low-Nitrogen Tolerances. J. Integr. Agric. 2019, 18, 1246–1256. [Google Scholar] [CrossRef]
- Jiang, L.; Ball, G.; Hodgman, C.; Coules, A.; Zhao, H.; Lu, C. Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen. Genes 2018, 9, 151. [Google Scholar] [CrossRef]
- Li, W.; Xiang, F.; Zhong, M.; Zhou, L.; Liu, H.; Li, S.; Wang, X. Transcriptome and Metabolite Analysis Identifies Nitrogen Utilization Genes in Tea Plant (Camellia Sinensis). Sci. Rep. 2017, 7, 1693. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for Keeping the Food System within Environmental Limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Serna-Saldivar, S.O. Popcorn and Other Puffed Grains. In Snack Foods: Processing, Innovation, and Nutritional Aspects; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781003129066. [Google Scholar]
- Getahun, B.B.; Tiruneh, M.A.; Aliche, E.; Malossetti, M.; Visser, R.G.; van der Linden, C.G. Genotype-by-Environment Interaction for Quantitative Trait Loci Affecting Nitrogen Use Efficiency and Associated Traits in Potato. Potato Res. 2022, 65, 777–807. [Google Scholar] [CrossRef]
- Torres, L.G.; Rodrigues, M.C.; Lima, N.L.; Trindade, T.F.H.; Silva, F.F.; Azevedo, C.F.; DeLima, R.O. Multi-Trait Multi-Environment Bayesian Model Reveals G x E Interaction for Nitrogen Use Efficiency Components in Tropical Maize. PLoS ONE 2018, 13, e0199492. [Google Scholar] [CrossRef]
- Dos Santos, A.; Júnior, A.T.D.A.; Kurosawa, R.D.N.F.; Gerhardt, I.F.S.; Neto, R.F. GGE Biplot Projection in Discriminating the Efficiency of Popcorn Lines to Use Nitrogen. Ciência E Agrotecnologia 2017, 41, 22–31. [Google Scholar] [CrossRef]
- dos Santos, A.; Júnior, A.T.D.A.; Fritsche-Neto, R.; Kamphorst, S.H.; Ferreira, F.R.A.; Amaral, J.F.T.D.; Vivas, J.M.S.; Santos, P.H.A.D.; de Lima, V.J.; Khan, S.; et al. Relative Importance of Gene Effects for Nitrogen-Use Efficiency in Popcorn. PLoS ONE 2019, 14, e0222726. [Google Scholar] [CrossRef]
- Khan, S.; Júnior, A.T.D.A.; Ferreira, F.R.A.; Kamphorst, S.H.; Gonçalves, G.M.B.; Freitas, M.S.M.; Silveira, V.; Filho, G.A.d.S.; Amaral, J.F.T.D.; Smith, R.E.B.; et al. Limited Nitrogen and Plant Growth Stages Discriminate Well Nitrogen Use, Uptake and Utilization Efficiency in Popcorn. Plants 2020, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Pinto, V.B.; Júnior, A.T.D.A.; Gonçalves, G.M.B.; Corrêa, C.C.G.; Ferreira, F.R.A.; de Souza, G.A.R.; Campostrini, E.; Freitas, M.S.M.; Vieira, M.E.; et al. Revealing the Differential Protein Profiles behind the Nitrogen Use Efficiency in Popcorn (Zea Mays Var. Everta). Sci. Rep. 2022, 12, 1521. [Google Scholar] [CrossRef]
- de Lima, V.J.; Júnior, A.T.D.A.; Kamphorst, S.H.; Bispo, R.B.; Leite, J.T.; Santos, T.d.O.; Schmitt, K.F.M.; Chaves, M.M.; de Oliveira, U.A.; Santos, P.H.A.D.; et al. Combined Dominance and Additive Gene Effects in Trait Inheritance of Drought-Stressed and Full Irrigated Popcorn. Agronomy 2019, 9, 782. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Carena, M.J.; Miranda Filho, J.B. Quantitative Genetics in Maize Breeding, 1st ed.; Verlag: Berlin, Germany, 2010. [Google Scholar]
- Cruz, C.D.; Carneiro, P.C.S.; Ragazzi, A.J. Modelos Biométricos Aplicados Ao Melhoramento Genético, 1st ed.; Editora UFV: Viçosa, Brazil, 2014; Volume 2. [Google Scholar]
- Gallais, A.; Coque, M.; Le Gouis, J.; Prioul, J.L.; Hirel, B.; Quilléré, I. Estimating the Proportion of Nitrogen Remobilization and of Postsilking Nitrogen Uptake Allocated to Maize Kernels by Nitrogen-15 Labeling. Crop Sci. 2007, 47, 685–691. [Google Scholar] [CrossRef]
- Ning, P.; Fritschi, F.B.; Li, C. Temporal Dynamics of Post-Silking Nitrogen Fluxes and Their Effects on Grain Yield in Maize under Low to High Nitrogen Inputs. Field Crop. Res. 2017, 204, 249–259. [Google Scholar] [CrossRef]
- de Oliveira Silva, A.; Camberato, J.J.; Coram, T.; Filley, T.; Vyn, T.J. Applicability of a “Multi-Stage Pulse Labeling” 15N Approach to Phenotype N Dynamics in Maize Plant Components during the Growing Season. Front. Plant Sci. 2017, 8, 1360. [Google Scholar] [CrossRef]
- Nasielski, J.; Earl, H.; Deen, B. Luxury Vegetative Nitrogen Uptake in Maize Buffers Grain Yield Under Post-Silking Water and Nitrogen Stress: A Mechanistic Understanding. Front. Plant Sci. 2019, 10, 318. [Google Scholar] [CrossRef]
- Bhadmus, O.A.; Badu-Apraku, B.; Adeyemo, O.A.; Agre, P.A.; Queen, O.N.; Ogunkanmi, A.L. Genome-Wide Association Analysis Reveals Genetic Architecture and Candidate Genes Associated with Grain Yield and Other Traits under Low Soil Nitrogen in Early-Maturing White Quality Protein Maize Inbred Lines. Genes 2022, 13, 826. [Google Scholar] [CrossRef]
- Khan, A.; Wang, Z.; Xu, K.; Li, L.; He, L.; Hu, H.; Wang, G. Validation of an Enzyme-Driven Model Explaining Photosynthetic Rate Responses to Limited Nitrogen in Crop Plants. Front. Plant Sci. 2020, 11, 533341. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Y. The Physiological Response of Photosynthesis to Nitrogen Deficiency. Plant Physiol. Biochem. 2021, 158, 76–82. [Google Scholar] [CrossRef]
- Urban, A.; Rogowski, P.; Wasilewska-Dębowska, W.; Romanowska, E. Understanding Maize Response to Nitrogen Limitation in Different Light Conditions for the Improvement of Photosynthesis. Plants 2021, 10, 1932. [Google Scholar] [CrossRef]
- Buchert, F.; Scholz, M.; Hippler, M. Electron Transfer via Cytochrome b 6 f Complex Displays Sensitivity to Antimycin A upon STT7 Kinase Activation. Biochem. J. 2022, 479, 111–127. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Liu, J. Proteomic Analysis of Hydrogen Production in Chlorella Pyrenoidosa under Nitrogen Deprivation. Algal Res. 2021, 53, 102143. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Pons, T.L.; Groeneveld, H.W.; Nunes, M.A. Photosynthetic Responses of Coffea Arabica Leaves to a Short-Term High Light Exposure in Relation to N Availability. Physiol. Plant 1997, 101, 229–239. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, J.; Zhang, Q.; Li, L.; Kuang, T. Modification of Photosystem II Photochemistry in Nitrogen Deficient Maize and Wheat Plants. J. Plant Physiol. 2001, 158, 1423–1430. [Google Scholar] [CrossRef]
- Grassi, G.; Colom, M.R.; Minotta, G. Effects of Nutrient Supply on Photosynthetic Acclimation and Photoinhibition of One-Year-Old Foliage of Picea abies. Physiol. Plant 2001, 111, 245–254. [Google Scholar] [CrossRef]
- Khamis, S.; Lamaze, T.; Lemoine, Y.; Foyer, C. Adaptation of the Photosynthetic Apparatus in Maize Leaves as a Result of Nitrogen Limitation. Plant Physiol. 1990, 94, 1436–1443. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Chen, P.-A.; Zhuang, B.-W. The Stomatal Conductance and Fv/Fm as the Indicators of Stress Tolerance of Avocado Seedlings under Short-Term Waterlogging. Agronomy 2022, 12, 1084. [Google Scholar] [CrossRef]
- Mattila, H.; Valev, D.; Mishra, K.; Havurinne, V.; Virtanen, O.; Antinluoma, M.; Tyystjärvi, E. Differences in Susceptibility to Photoinhibition Do Not Determinegrowth Rate under Moderate Light in Batch or Turbidostat-a Studywith Five Green Algae. Photosynthetica 2022, 60, 10–20. [Google Scholar] [CrossRef]
- White, S.; Anandraj, A.; Bux, F. PAM Fluorometry as a Tool to Assess Microalgal Nutrient Stress and Monitor Cellular Neutral Lipids. Bioresour. Technol. 2011, 102, 1675–1682. [Google Scholar] [CrossRef]
- Ramanna, L.; Guldhe, A.; Rawat, I.; Bux, F. The Optimization of Biomass and Lipid Yields of Chlorella Sorokiniana When Using Wastewater Supplemented with Different Nitrogen Sources. Bioresour. Technol. 2014, 168, 127–135. [Google Scholar] [CrossRef]
- Farooq, W.; Naqvi, S.R.; Sajid, M.; Shrivastav, A.; Kumar, K. Monitoring Lipids Profile, CO2 Fixation, and Water Recyclability for the Economic Viability of Microalgae Chlorella Vulgaris Cultivation at Different Initial Nitrogen. J. Biotechnol. 2022, 345, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Fan, R.; Sun, G.; Sun, T.; Fan, Y.; Bai, S.; Guo, S.; Huang, S.; Liu, J.; Zhang, H.; et al. Flavonoids Improve Drought Tolerance of Maize Seedlings by Regulating the Homeostasis of Reactive Oxygen Species. Plant Soil 2021, 461, 389–405. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional Roles of Flavonoids in Photoprotection: New Evidence, Lessons from the Past. Plant Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef]
- Nascimento, L.B.d.S.; Tattini, M. Beyond Photoprotection: The Multifarious Roles of Flavonoids in Plant Terrestrialization. Int. J. Mol. Sci. 2022, 23, 5284. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wu, F.; Li, Y.; Qian, Y.; Pan, X.; Li, F.; Wang, Y.; Wu, Z.; Fu, C.; Lin, H.; et al. NtMYB4 and NtCHS1 Are Critical Factors in the Regulation of Flavonoid Biosynthesis and Are Involved in Salinity Responsiveness. Front. Plant Sci. 2019, 10, 178. [Google Scholar] [CrossRef]
- Tripathi, D.; Nam, A.; Oldenburg, D.J.; Bendich, A.J. Reactive Oxygen Species, Antioxidant Agents, and DNA Damage in Developing Maize Mitochondria and Plastids. Front. Plant Sci. 2020, 11, 596. [Google Scholar] [CrossRef]
- Kumari, A.; Singh Bhinda, M.; Sharma, S.; Kumar Chitara, M.; Debnath, A.; Maharana, C.; Parihar, M.; Sharma, B. ROS Regulation Mechanism for Mitigation of Abiotic Stress in Plants; IntechOpen: London, UK, 2022. [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Can Less Yield More? Is Reducing Nutrient Input into the Environment Compatible with Maintaining Crop Production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef]
- Rodrigues, M.C.; Rezende, W.M.; Silva, M.E.J.; Faria, S.V.; Zuffo, L.T.; Galvão, J.C.C.; DeLima, R.O. Genotypic Variation and Relationships among Nitrogen-Use Efficiency and Agronomic Traits in Tropical Maize Inbred Lines. Genet. Mol. Res. 2017, 16, gmr16039757. [Google Scholar] [CrossRef]
- Menz, J.; Range, T.; Trini, J.; Ludewig, U.; Neuhäuser, B. Molecular Basis of Differential Nitrogen Use Efficiencies and Nitrogen Source Preferences in Contrasting Arabidopsis Accessions. Sci. Rep. 2018, 8, 3373. [Google Scholar] [CrossRef]
- Mundim, G.; Viana, J.; DeLima, R.; Almeida, V. Early Evaluation of Popcorn Hybrids for Vegetative Use Efficiencyof Nitrogen and Phosphorus and Secondary Traits. Maydica 2014, 59, 321–328. [Google Scholar]
- Almeida, V.C.; Viana, J.M.S.; Risso, L.A.; Ribeiro, C.; DeLima, R.O. Generation Mean Analysis for Nitrogen and Phosphorus Uptake, Utilization, and Translocation Indexes at Vegetative Stage in Tropical Popcorn. Euphytica 2018, 214, 103. [Google Scholar] [CrossRef]
- Hirel, B.; Le Gouis, J.; Ney, B.; Gallais, A. The Challenge of Improving Nitrogen Use Efficiency in Crop Plants: Towards a More Central Role for Genetic Variability and Quantitative Genetics within Integrated Approaches. J. Exp. Bot. 2007, 58, 2369–2387. [Google Scholar] [CrossRef]
- Mu, X.; Chen, Q.; Chen, F.; Yuan, L.; Mi, G. Within-Leaf Nitrogen Allocation in Adaptation to Low Nitrogen Supply in Maize during Grain-Filling Stage. Front. Plant Sci. 2016, 7, 699. [Google Scholar] [CrossRef]
- Weitzman, J.N.; Brooks, J.R.; Compton, J.E.; Faulkner, B.R.; Mayer, P.M.; Peachey, R.E.; Rugh, W.D.; Coulombe, R.A.; Hatteberg, B.; Hutchins, S.R. Deep Soil Nitrogen Storage Slows Nitrate Leaching through the Vadose Zone. Agric. Ecosyst. Environ. 2022, 332, 107949. [Google Scholar] [CrossRef]
- Lynch, J.P. Steep, Cheap and Deep: An Ideotype to Optimize Water and N Acquisition by Maize Root Systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef]
- Worku, M.; Bänziger, M.; Erley, G.S.; Friesen, D.; Diallo, A.O.; Horst, W.J. Nitrogen Uptake and Utilization in Contrasting Nitrogen Efficient Tropical Maize Hybrids. Crop Sci. 2007, 47, 519–528. [Google Scholar] [CrossRef]
- Granato, I.S.C.; Fritsche-Neto, R.; Resende, M.D.V.; Silva, F.F. Effects of Using Phenotypic Means and Genotypic Values in GGE Biplot Analyses on Genotype by Environment Studies on Tropical Maize (Zea mays). Genet. Mol. Res. 2016, 15, gmr15048747. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, B.-L.; Yu, X.; Gao, J.; Sun, J.; Su, Z.; Yu, S. Physiological Basis of Heterosis for Nitrogen Use Efficiency of Maize. Sci. Rep. 2019, 9, 18708. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, H.; Zhao, P.; Zhang, Z.; Liang, W.; Tian, Z.; Zheng, Y. Mining of Candidate Maize Genes for Nitrogen Use Efficiency by Integrating Gene Expression and QTL Data. Plant Mol. Biol. Rep. 2012, 30, 297–308. [Google Scholar] [CrossRef]
- Elazab, A.; Serret, M.D.; Araus, J.L. Interactive Effect of Water and Nitrogen Regimes on Plant Growth, Root Traits and Water Status of Old and Modern Durum Wheat Genotypes. Planta 2016, 244, 125–144. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Association of Official Analytical Chemists-AOAC. Official Methods of Analysis, 15th ed.; AOAC: Arlington, TX, USA, 1990. [Google Scholar]
- Cruz, C.D. GENES-a Software Package for Analysis in Experimental Statistics and Quantitative Genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing 2023; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: http://www.R-project.org/ (accessed on 27 May 2023).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
Trait | Joint Analysis | High N Condition | Low N Condition | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | N | G × N | Lines | C1 | Hybrids | C2 | C3 | H% | Lines | C1 | Hybrids | C2 | C3 | H% | |
PH | ** | ** | ** | 28.28 ± 3.30 | ** | 31.48 ± 4.60 | ** | ** | 14.5 | 24.80 ± 3.01 | ** | 29.09 ± 4.62 | ** | ** | 18.8 |
SD | ** | ** | ** | 10.42 ± 1.57 | ** | 10.52 ± 1.64 | ns | ** | 6.9 | 6.42 ± 1.06 | ** | 7.17 ± 0.91 | ** | ** | 12.5 |
LA | ** | ** | ** | 233.37 ± 22.23 | ** | 226.62 ± 49.22 | ** | ** | −2.2 | 160.29 ± 21.92 | ** | 172.02 ± 25.03 | ** | ** | 1.2 |
LDM | ** | ** | ** | 4.27 ± 1.00 | ** | 3.77 ± 1.23 | ** | ** | −8.9 | 1.47 ± 0.53 | ** | 1.57 ± 0.53 | ** | ** | 13.2 |
SDM | ** | ** | ** | 2.55 ± 0.57 | ** | 2.49 ± 1.07 | ** | ** | −0.9 | 0.96 ± 0.34 | ** | 1.21 ± 0.44 | ** | ** | 39.2 |
STDM | ** | ** | ** | 6.82 ± 1.57 | ** | 6.29± 2.21 | ** | ** | −5.2 | 2.43 ± 0.85 | ** | 2.78 ± 0.92 | ** | ** | 23.2 |
RDM | ** | ** | ** | 1.03 ± 0.42 | ** | 1.06 ± 0.35 | ** | ** | 23.7 | 0.54 ± 0.05 | ** | 0.77 ± 0.25 | ** | ** | 49.4 |
LNC | ** | ** | ** | 25.55 ± 1.39 | ** | 28.51 ± 3.86 | ** | ** | 17.1 | 17.23 ± 3.72 | ** | 18.15 ± 2.64 | ** | ** | 1.1 |
SNC | ** | ** | ** | 22.75 ± 1.51 | ** | 24.62 ± 5.03 | ** | ** | 15.0 | 14.90 ± 1.62 | ** | 13.19 ± 1.42 | ** | ** | −11.3 |
RNC | ** | ** | ** | 13.23 ± 0.26 | ns | 12.41 ± 2.45 | ** | ** | −1.4 | 10.26 ± 0.68 | ** | 8.99 ± 0.90 | ** | ** | −18.1 |
STNC | ** | ** | ** | 48.30 ± 2.30 | ** | 53.13 ± 8.55 | ** | ** | 16.1 | 32.13 ± 2.42 | ** | 31.34 ± 3.40 | ** | ** | −6.7 |
PNC | ** | ** | ** | 61.53 ± 2.39 | ** | 65.54 ± 10.79 | ** | ** | 12.3 | 42.39 ± 2.05 | ** | 40.33 ± 4.01 | ** | ** | −9.6 |
NUE | ** | ** | ** | 124.15 ± 28.51 | ** | 114.50 ± 40.27 | ** | ** | 14.0 | 448.45 ± 156.98 | ** | 514.19 ± 169.78 | ** | ** | 23.2 |
NUpE_cR | ** | ** | ** | 1.12 ± 0.04 | ** | 1.19 ± 0.20 | ** | ** | 12.3 | 7.84 ± 0.38 | ** | 7.45 ± 0.74 | ** | ** | −9.6 |
NUpE_sR | ** | ** | ** | 0.88 ± 0.04 | ** | 0.97 ± 0.16 | ** | ** | 16.1 | 5.94 ± 0.45 | ** | 5.79 ± 0.63 | ** | ** | −6.7 |
NUtE_cR | ** | ** | ** | 142.41 ± 37.59 | ** | 118.71 ± 41.83 | ** | ** | 1.1 | 75.52 ±26.39 | ** | 89.74 ± 33.16 | ** | ** | 33.4 |
NUtE_sR | ** | ** | ** | 111.53 ± 28.56 | ** | 96.43 ± 34.13 | ** | ** | 4.6 | 57.28 ± 20.20 | ** | 69.59 ± 25.48 | ** | ** | 36.3 |
NTrE | ** | ** | ** | 0.78 ± 0.01 | ** | 0.81 ± 0.01 | ** | ** | 3.4 | 0.76 ± 0.02 | ** | 0.78 ± 0.02 | ** | ** | 3.1 |
Trait | Joint Analysis | High N Condition | Low N Condition | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | N | G × N | Lines | C1 | Hybrids | C2 | C3 | H% | Lines | C1 | Hybrids | C2 | C3 | H% | |
A | ** | ** | ** | 23.65 ± 4.34 | ** | 26.15 ± 3.55 | ** | ** | 17.5 | 19.16 ± 3.54 | ** | 17.95 ± 2.88 | ** | ** | −1.4 |
gs | ** | ** | ** | 0.18 ± 0.05 | ** | 0.23 ± 0.05 | ** | ** | 33.9 | 0.16 ± 0.01 | ** | 0.13 ± 0.04 | ** | ** | −4.3 |
Ci | ** | ** | ** | 150.43 ± 22.90 | ** | 158.20 ± 17.77 | ** | ** | 2.6 | 141.46 ± 15.64 | ** | 134.68 ± 24.05 | ** | ** | 3.5 |
E | ** | ** | ** | 2.10 ± 0.39 | ** | 2.52 ± 0.56 | ** | ** | 28.4 | 2.11 ± 0.18 | ** | 1.91 ± 0.47 | ** | ** | −9.7 |
Ci/Ca | ** | ** | ** | 0.36 ± 0.09 | ** | 0.43 ± 0.05 | ** | ** | 21.9 | 0.34 ± 0.10 | ** | 0.37 ± 0.09 | ** | ** | 20.3 |
Fv/Fm | ** | ** | ** | 0.78 ± 0.01 | ** | 0.79 ± 0.08 | ns | ** | 1.1 | 0.79 ± 0.02 | * | 0.85 ± 0.15 | ** | ** | 10.1 |
Chl | ** | ** | ** | 30.65 ± 1.84 | ** | 30.06 ± 4.54 | ns | ** | 2.6 | 24.90 ± 2.47 | * | 22.37 ± 2.28 | ** | ** | −10.5 |
Flav | ** | ** | ** | 0.70 ± 0.07 | ns | 0.71 ± 0.13 | ns | ** | 9.9 | 0.74 ± 0.07 | ** | 0.78 ± 0.08 | ** | ** | 10.2 |
Anth | ns | ** | ns | 0.17 ± 0.01 | ** | 0.16 ± 0.02 | ** | ** | −2.7 | 0.21 ±0.01 | * | 0.23 ± 0.17 | ns | ns | 26.5 |
NBI | ** | ** | ** | 44.50 ± 5.68 | * | 43.07 ± 6.94 | ns | ** | −4.1 | 33.99 ±3.55 | ** | 28.67 ± 3.00 | ** | ** | −18.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, T.d.O.; Amaral Junior, A.T.d.; Bispo, R.B.; Bernado, W.d.P.; Simão, B.R.; de Lima, V.J.; Freitas, M.S.M.; Mora-Poblete, F.; Trindade, R.d.S.; Kamphorst, S.H.; et al. Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants. Plants 2023, 12, 2135. https://doi.org/10.3390/plants12112135
Santos TdO, Amaral Junior ATd, Bispo RB, Bernado WdP, Simão BR, de Lima VJ, Freitas MSM, Mora-Poblete F, Trindade RdS, Kamphorst SH, et al. Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants. Plants. 2023; 12(11):2135. https://doi.org/10.3390/plants12112135
Chicago/Turabian StyleSantos, Talles de Oliveira, Antônio Teixeira do Amaral Junior, Rosimeire Barboza Bispo, Wallace de Paula Bernado, Bruna Rohem Simão, Valter Jário de Lima, Marta Simone Mendonça Freitas, Freddy Mora-Poblete, Roberto dos Santos Trindade, Samuel Henrique Kamphorst, and et al. 2023. "Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants" Plants 12, no. 11: 2135. https://doi.org/10.3390/plants12112135
APA StyleSantos, T. d. O., Amaral Junior, A. T. d., Bispo, R. B., Bernado, W. d. P., Simão, B. R., de Lima, V. J., Freitas, M. S. M., Mora-Poblete, F., Trindade, R. d. S., Kamphorst, S. H., Pereira Rodrigues, W., Campostrini, E., Nicácio Viana, F., & Cruz, C. D. (2023). Exploring the Potential of Heterosis to Improve Nitrogen Use Efficiency in Popcorn Plants. Plants, 12(11), 2135. https://doi.org/10.3390/plants12112135