Characterization of CcTFL1 Governing Plant Architecture in Pigeon pea (Cajanus cajan (L.) Millsp.)
Abstract
:1. Introduction
2. Results
2.1. PCR Amplification and Allelic Characterization of CcTFL1
2.2. Validation of InDel
2.3. Protein Modeling and Structural Comparison
2.4. Sequence Motif Discovery
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Phenotyping
4.2. Primer Designing and PCR Amplification
4.3. Sequencing and Characterization of CcTFL1
4.4. Validation of Allelic Variation
4.5. Protein Homology Modeling and Motif Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mula, M.G.; Saxena, K.B. Lifting the Level of Awareness on Pigeonpea—A Global Perspective; International Crops Research Institute for the Semi-Arid Tropics: Hyderabad, India, 2010; ISBN 9789290665359. [Google Scholar]
- Liu, B.; Watanabe, S.; Uchiyama, T.; Kong, F.; Kanazawa, A.; Xia, Z.; Nagamatsu, A.; Arai, M.; Yamada, T.; Kitamura, K.; et al. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 2010, 153, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Hanzawa, Y.; Money, T.; Bradley, D. A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. USA 2005, 102, 7748–7753. [Google Scholar] [CrossRef] [PubMed]
- Wickland, D.P.; Hanzawa, Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: Functional evolution and molecular mechanisms. Mol. Plant 2015, 8, 983–997. [Google Scholar] [CrossRef] [PubMed]
- Koinange, E.M.K.; Singh, P.; Gept, P. Genetic control of the domestication syndrome in common bean. Crop Sci. 1996, 36, 1037–1045. [Google Scholar] [CrossRef]
- Ramtekey, V.; Bhuriya, A.; Ayer, D.; Parekh, V.; Modha, K.; Kale, B.; Vadodariya, G.; Patel, R. Molecular tagging of photoperiod responsive flowering in Indian bean [Lablab purpureus (L.) Sweet]. Indian J. Genet. Plant Breed. 2019, 79, 264–269. [Google Scholar] [CrossRef]
- Modha, K.; Kale, B.; Borwal, D.; Ramtekey, V.; Arpit, B. Inheritance pattern of photoperiod responsive flowering, growth habit and flower colour in Indian bean [Lablab purpureus (L.) Sweet.]. Electron. J. Plant Breed. 2019, 10, 297. [Google Scholar] [CrossRef]
- Ahn, J.H.; Miller, D.; Winter, V.J.; Banfield, M.J.; Lee, J.H.; Yoo, S.Y.; Henz, S.R.; Brady, R.L.; Weigel, D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 2006, 25, 605–614. [Google Scholar] [CrossRef]
- Kapoor, R.K.; Gupta, S.C. Inheritance of growth habit in pigeonpea. Crop. Sci. 1991, 31, 1456–1459. [Google Scholar] [CrossRef]
- Bradley, D.; Ratcliffe, O.; Vincent, C.; Carpenter, R.; Coen, E. Inflorescence commitment and architecture in Arabidopsis. Science 1997, 275, 80–83. [Google Scholar] [CrossRef]
- Pnueli, L.; Gutfinger, T.; Hareven, D.; Ben-Naim, O.; Ron, N.; Adir, N.; Lifschitz, E. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 2001, 13, 2687–2702. [Google Scholar] [CrossRef]
- Benlloch, R.; Berbel, A.; Ali, L.; Gohari, G.; Millán, T.; Madueño, F. Genetic control of inflorescence architecture in legumes. Front. Plant Sci. 2015, 6, 543. [Google Scholar] [CrossRef]
- Foucher, F.; Morin, J.; Courtiade, J.; Cadioux, S.; Ellis, N.; Banfield, M.J.; Rameau, C. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 2003, 15, 2742–2754. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.; Velasco, D.; Gepts, P. Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus Vulgaris). J. Hered. 2008, 99, 283–291. [Google Scholar] [CrossRef]
- Hanano, S.; Goto, K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 2011, 23, 3172–3184. [Google Scholar] [CrossRef]
- Mir, R.R.; Kudapa, H.; Srikanth, S.; Saxena, R.K.; Sharma, A.; Azam, S.; Saxena, K.; Varma Penmetsa, R.; Varshney, R.K. Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor. Appl. Genet. 2014, 127, 2663–2678. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.K.; Obala, J.; Sinjushin, A.; Kumar, C.V.S.; Saxena, K.B.; Varshney, R.K. Characterization and mapping of Dt1 locus which co-segregates with CcTFL1 for growth habit in pigeonpea. Theor. Appl. Genet. 2017, 130, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Iwata, H.; Gaston, A.; Remay, A.; Thouroude, T.; Jeauffre, J.; Kawamura, K.; Oyant, L.H.-S.; Araki, T.; Denoyes, B.; Foucher, F. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J. 2012, 69, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Wei, K.Y.; Smolke, C.D. Synthetic biology: Advancing the design of diverse genetic systems. Annu. Rev. Chem. Biomol. Eng. 2013, 4, 69–102. [Google Scholar] [CrossRef]
- Shannon, S.; Meeks-Wagner, D.R. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 1991, 3, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Repinski, S.L.; Kwak, M.; Gepts, P. The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor. Appl. Genet. 2012, 124, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Kaldate, S.; Patel, A.; Modha, K.; Parekh, V.; Kale, B.; Vadodariya, G.; Patel, R. Allelic characterization and protein structure analysis reveals the involvement of splice site mutation for growth habit differences in Lablab purpureus (L.) Sweet. J. Genet. Eng. Biotechnol. 2021, 19, 34. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Wang, X.; Lee, R.; Li, Y.; Specht, J.E.; Nelson, R.L.; McClean, P.E.; Qiu, L.; Ma, J. Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. USA 2010, 107, 8563–8568. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; He, X.-H.; Yu, H.-X.; Mo, X.; Fan, Y.; Fan, Z.-Y.; Xie, X.-J.; Liu, Y.; Luo, C. Overexpression of four MiTFL1 genes from mango delays the flowering time in transgenic Arabidopsis. BMC Plant Biol. 2021, 21, 407. [Google Scholar] [CrossRef]
- Dhanasekar, P.; Reddy, K.S. A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Mol. Genet. Genom. 2015, 290, 55–65. [Google Scholar] [CrossRef]
- Kishimoto, A.; Nishiyama, K.; Nakanishi, H.; Uratsuji, Y.; Nomura, H.; Takeyama, Y.; Nishizuka, Y. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3′:5′-monophosphate-dependent protein kinase. J. Biol. Chem. 1985, 260, 12492–12499. [Google Scholar] [CrossRef] [PubMed]
- Simeunovic, A.; Mair, A.; Wurzinger, B.; Teige, M. Know where your clients are: Subcellular localization and targets of calcium-dependent protein kinases. J. Exp. Bot. 2016, 67, 3855–3872. [Google Scholar] [CrossRef]
- Xi, L.; Zhang, Z.; Herold, S.; Kassem, S.; Wu, X.N.; Schulze, W.X. Phosphorylation site motifs in plant protein kinases and their substrates. Methods Mol. Biol. 2021, 2358, 1–16. [Google Scholar] [CrossRef]
- Kawamoto, N.; Sasabe, M.; Endo, M.; Machida, Y.; Araki, T. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation. Sci. Rep. 2015, 5, 8341. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Y.; Jiang, Y.; Wu, B.; Miao, Y. Phosphorylation of WHIRLY1 by CIPK14 shifts its localization and dual functions in Arabidopsis. Mol. Plant 2017, 10, 749–763. [Google Scholar] [CrossRef]
- Goretti, D.; Silvestre, M.; Collani, S.; Langenecker, T.; Méndez, C.; Madueño, F.; Schmid, M. TERMINAL FLOWER1 functions as a mobile transcriptional cofactor in the shoot apical meristem. Plant Physiol. 2020, 182, 2081–2095. [Google Scholar] [CrossRef]
- Taoka, K.; Ohki, I.; Tsuji, H.; Kojima, C.; Shimamoto, K. Structure and Function of florigen and the receptor complex. Trends Plant Sci. 2013, 18, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Hall, T.A. A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Lomsadze, A. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005, 33, 6494–6506. [Google Scholar] [CrossRef] [PubMed]
- Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006, 22, 195–201. [Google Scholar] [CrossRef]
- Benkert, P.; Tosatto, S.C.E.; Schwede, T. Global and local model quality estimation at CASP8 using the scoring functions QMEAN and QMEANclust. Proteins Struct. Funct. Bioinform. 2009, 77, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Gumienny, R.; Haas, J.; Schwede, T. QMEANDisCo—Distance constraints applied on model quality estimation. Bioinformatics 2020, 36, 1765–1771. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera:A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
Primer | Sequences | Reference |
---|---|---|
Z505F | 5′AGCTCACACTCCCTTTCACA3′ | Designed from accession NW017984051.1 |
Z506R | 5′GGCCACATGTGAGGATCAAT3′ | |
CcTFL1_f5b_F | 5′GCCTCTAATAGTGGGAAGAGTC3′ | [16] |
CcTFL1_f5a_R | 5′TTGATGTGATGAAAGGATGC3′ |
Genotype | Type, Range, and Length of the Exon | Sequence Length (bp) | ||||
---|---|---|---|---|---|---|
Initial | Internal | Internal | Terminal | |||
PADT 16 D | R | 106–225 | 429–490 | 998–1038 | 1134–1351 | 1387 |
L | 120 * | 62 | 41 | 218 | ||
ICPL 20340 D | R | 105–224 | 428–489 | 995–1035 | 1131–1348 | 1419 |
L | 120 * | 62 | 41 | 218 | ||
BDN 711 I | R | 34–234 | 438–499 | 1007–1047 | 1143–1360 | 1387 |
L | 201 * | 62 | 41 | 218 | ||
Vaishali I | R | 34–234 | 438–499 | 1007–1047 | 1143–1360 | 1387 |
L | 201 * | 62 | 41 | 218 | ||
GT 104 I | R | 35–235 | 439–500 | 1008–1048 | 1144–1361 | 1391 |
L | 201 * | 62 | 41 | 218 | ||
GT 105 I | R | 34–234 | 438–499 | 1007–1047 | 1143–1360 | 1388 |
L | 201 * | 62 | 41 | 218 | ||
C. scarabaeoides I | R | 45–245 | 454–515 | 1019–1059 | 1155–1372 | 1449 |
L | 201 * | 62 | 41 | 218 | ||
R. rothii I | R | 37–237 | 424-485 | 999–1039 | 1141–1358 | 1435 |
L | 201 * | 62 | 41 | 218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendapara, I.; Modha, K.; Patel, S.; Parekh, V.; Patel, R.; Chauhan, D.; Bardhan, K.; Siddiqui, M.H.; Alamri, S.; Rahman, M.A. Characterization of CcTFL1 Governing Plant Architecture in Pigeon pea (Cajanus cajan (L.) Millsp.). Plants 2023, 12, 2168. https://doi.org/10.3390/plants12112168
Mendapara I, Modha K, Patel S, Parekh V, Patel R, Chauhan D, Bardhan K, Siddiqui MH, Alamri S, Rahman MA. Characterization of CcTFL1 Governing Plant Architecture in Pigeon pea (Cajanus cajan (L.) Millsp.). Plants. 2023; 12(11):2168. https://doi.org/10.3390/plants12112168
Chicago/Turabian StyleMendapara, Isha, Kaushal Modha, Sunayan Patel, Vipulkumar Parekh, Ritesh Patel, Digvijay Chauhan, Kirti Bardhan, Manzer H. Siddiqui, Saud Alamri, and Md Atikur Rahman. 2023. "Characterization of CcTFL1 Governing Plant Architecture in Pigeon pea (Cajanus cajan (L.) Millsp.)" Plants 12, no. 11: 2168. https://doi.org/10.3390/plants12112168
APA StyleMendapara, I., Modha, K., Patel, S., Parekh, V., Patel, R., Chauhan, D., Bardhan, K., Siddiqui, M. H., Alamri, S., & Rahman, M. A. (2023). Characterization of CcTFL1 Governing Plant Architecture in Pigeon pea (Cajanus cajan (L.) Millsp.). Plants, 12(11), 2168. https://doi.org/10.3390/plants12112168