Effect of Calcium Foliar Spray Technique on Mechanical Properties of Strawberries
Abstract
:1. Introduction
2. Results
2.1. Degree of Coverage of Sprayed Surfaces
2.2. Deposition of the Spray Liquid
2.3. Characteristics of the Research Material
2.4. Destructive Tests
2.5. Measurements of Surface Pressure
3. Discussion
4. Materials and Methods
4.1. Experimental Set-Up
4.2. Degree of Coverage of Sprayed Surfaces
4.3. Deposition of the Sprayed Liquid
4.4. Laboratory Evaluation of Mechanical Properties
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agricultural Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 24 January 2023).
- Trejo-Téllez, L.I.; Gómez-Merino, F.C. Nutrient Management in Strawberry: Effects on Yield, Quality and Plant Health. In Strawberries: Cultivation, Antioxidant Properties and Health Benefits; 2014 Nova Science Publishers, Inc.: Hauppauge, NY, USA.
- Xu, M.; Liu, M.; Si, L.; Ma, Q.; Sun, T.; Wang, J.; Chen, K.; Wang, X.; Wu, L. Spraying High Concentrations of Chelated Zinc Enhances Zinc Biofortification in Wheat Grain. J. Sci. Food Agric. 2022, 102, 3590–3598. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, C.; Tian, X.; Liu, Q. Zinc Concentration and Bioavailability of Chinese Steamed Bread Prepared from Foliar Zinc-Biofortified Wheat Grain. J. Sci. Food Agric. 2023, 3, 4221–4233. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Z.; Zhou, J.; Zhou, D.; Chen, B.; Huang, L.; Zhang, Z.; Liu, X. Effects of a Foliar Spray of Selenite or Selenate at Different Growth Stages on Selenium Distribution and Quality of Blueberries. J. Sci. Food Agric. 2018, 98, 4700–4706. [Google Scholar] [CrossRef] [PubMed]
- Creech, C.F.; Henry, R.S.; Hewitt, A.J.; Kruger, G.R. Herbicide Spray Penetration into Corn and Soybean Canopies Using Air-Induction Nozzles and a Drift Control Adjuvant. In Weed Technology; Cambridge University Press: Cambridge, UK, 2018; Volume 32. [Google Scholar] [CrossRef]
- Xun, L.; Garcia-Ruiz, F.; Fabregas, F.X.; Gil, E. Pesticide Dose Based on Canopy Characteristics in Apple Trees: Reducing Environmental Risk by Reducing the Amount of Pesticide While Maintaining Pest and Disease Control Efficacy. Sci. Total Environ. 2022, 826, 154204. [Google Scholar] [CrossRef] [PubMed]
- Szwedziak, K.; Niedbała, G.; Grzywacz, Ż.; Winiarski, P.; Doležal, P. The Use of Air Induction Nozzles for Application of Fertilizing Preparations Containing Beneficial Microorganisms. Agriculture 2020, 10, 303. [Google Scholar] [CrossRef]
- Neupane, J.; Maja, J.M.; Miller, G.; Marshall, M.; Cutulle, M.; Greene, J.; Luo, J.; Barnes, E. The Next Generation of Cotton Defoliation Sprayer. AgriEngineering 2023, 5, 29. [Google Scholar] [CrossRef]
- Cieniawska, B.; Pentos, K. Average Degree of Coverage and Coverage Unevenness Coefficient as Parameters for Spraying Quality Assessment. Agriculture 2021, 11, 151. [Google Scholar] [CrossRef]
- Wu, Q.; Hua, D.; Zheng, X.; Zhang, K.; Zhang, Z.; Wan, Y.; Zhou, X.; Zhang, Y. Assessing Pesticide Residue and Spray Deposition in Greenhouse Eggplant Canopies to Improve Residue Analysis. J. Agric. Food Chem. 2020, 68, 11920–11927. [Google Scholar] [CrossRef]
- Lipiński, A.J.; Lipiński, S. Binarizing Water Sensitive Papers—How to Assess the Coverage Area Properly? Crop Prot. 2020, 127, 104949. [Google Scholar] [CrossRef]
- European Commission, 2020, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System COM, 2020, 381 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 29 May 2023).
- Bakshi, P.; Jasrotia, A.; Wali, V.K.; Sharma, A.; Bakshi, M. Influence of Pre-Harvest Application of Calcium and Micro-Nutrients on Growth, Yield, Quality and Shelf-Life of Strawberry Cv Chandler. Indian, J. Agric. Sci. 2013, 83, 831–835. [Google Scholar]
- Vance, A.J.; Jones, P.; Strik, B.C. Foliar Calcium Applications Do Not Improve Quality or Shelf Life of Strawberry, Raspberry, Blackberry, or Blueberry Fruit. HortScience 2017, 52, 382–387. [Google Scholar] [CrossRef]
- Ansar; Nazaruddin; Azis, A.D. New Frozen Product Development from Strawberries (Fragaria Ananassa Duch.). Heliyon 2020, 6, e05118. [Google Scholar] [CrossRef]
- Nagata, M.; Shrestha, B.P.; Gejima, Y. Study on Quality Estimation for Strawberry Using Color and NIR Image Processing. IFAC Proc. Vol. 2001, 34, 233–237. [Google Scholar] [CrossRef]
- Kelly, K.; Madden, R.; Emond, J.P.; do Nascimento Nunes, M.C. A Novel Approach to Determine the Impact Level of Each Step along the Supply Chain on Strawberry Quality. Postharvest Biol. Technol. 2019, 147, 78–88. [Google Scholar] [CrossRef]
- La Scalia, G.; Aiello, G.; Miceli, A.; Nasca, A.; Alfonzo, A.; Settanni, L. Effect of Vibration on the Quality of Strawberry Fruits Caused by Simulated Transport. J. Food Process Eng. 2016, 39, 140–156. [Google Scholar] [CrossRef]
- Li, Z.; Thomas, C. Quantitative Evaluation of Mechanical Damage to Fresh Fruits. Trends Food Sci. Technol. 2014, 35, 138–150. [Google Scholar] [CrossRef]
- Hernández-Muñoz, P.; Almenar, E.; Valle, V.D.; Velez, D.; Gavara, R. Effect of Chitosan Coating Combined with Postharvest Calcium Treatment on Strawberry (Fragaria × Ananassa) Quality during Refrigerated Storage. Food Chem. 2008, 110, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Amoriello, T.; Ciccoritti, R.; Carbone, K. Vibrational Spectroscopy as a Green Technology for Predicting Nutraceutical Properties and Antiradical Potential of Early-to-Late Apricot Genotypes. Postharvest Biol. Technol. 2019, 155, 156–166. [Google Scholar] [CrossRef]
- Li, B.; Lecourt, J.; Bishop, G. Advances in Non-Destructive Early Assessment of Fruit Ripeness towards Defining Optimal Time of Harvest and Yield Prediction—A Review. Plants 2018, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoriello, T.; Ciccoritti, R.; Ferrante, P. Prediction of Strawberries’ Quality Parameters Using Artificial Neural Networks. Agronomy 2022, 12, 963. [Google Scholar] [CrossRef]
- Ortiz Araque, L.C.; Ortiz, C.M.; Darré, M.; Rodoni, L.M.; Civello, P.M.; Vicente, A.R. Role of UV-C Irradiation Scheme on Cell Wall Disassembly and Surface Mechanical Properties in Strawberry Fruit. Postharvest Biol. Technol. 2019, 150, 122–128. [Google Scholar] [CrossRef]
- Lammerskitten, A.; Wiktor, A.; Mykhailyk, V.; Samborska, K.; Gondek, E.; Witrowa-Rajchert, D.; Toepfl, S.; Parniakov, O. Pulsed Electric Field Pre-Treatment Improves Microstructure and Crunchiness of Freeze-Dried Plant Materials: Case of Strawberry. LWT 2020, 134, 110266. [Google Scholar] [CrossRef]
- Mancini, M.; Mazzoni, L.; Gagliardi, F.; Balducci, F.; Duca, D.; Toscano, G.; Mezzetti, B.; Capocasa, F. Application of the Non-Destructive NIR Technique for the Evaluation of Strawberry Fruits Quality Parameters. Foods 2020, 9, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, X.; Li, Z.; Zude-Sasse, M.; Tchuenbou-Magaia, F.; Yang, Y. Characterization of Textural Failure Mechanics of Strawberry Fruit. J. Food Eng. 2020, 282, 110016. [Google Scholar] [CrossRef]
- Sugino, N.; Watanabe, T.; Nakamura, N.; Kitazawa, H. Electrical and Mechanical Analysis to Evaluate the Cultivar Difference in Strawberries with Respect to Their Bruising Sensitivities and Mass Loss Acceleration. Postharvest Biol. Technol. 2021, 175, 111489. [Google Scholar] [CrossRef]
- Clément, A.; Dorais, M.; Vernon, M. Nondestructive Measurement of Fresh Tomato Lycopene Content and Other Physicochemical Characteristics Using Visible NIR Spectroscopy. J. Agric. Food Chem. 2008, 56, 9813–9818. [Google Scholar] [CrossRef]
- Mazzoni, L.; Alvarez Suarez, J.M.; Giampieri, F.; Gasparrini, M.; Forbes Hernandez, T.Y.; Mezzetti, B. Evaluation of Strawberry (Fragaria × Ananassa Duch.) “Alba” Sensorial and Nutritional Quality, and Its in Vitro Effects against Human Breast Cancer Cells Viability. In VIII International Strawberry Symposium; ISHS Acta Horticulturae 1156: Quebec City, QC, Canada, 2017; Volume 1156. [Google Scholar] [CrossRef]
- Lanauskas, J.; Uselis, N.; Valiuskaite, A.; Viskelis, P. Effect of Foliar and Soil Applied Fertilizers on Strawberry Healthiness, Yield and Berry Quality. Agron. Res. 2006, 4, 247–250. [Google Scholar]
- Komarnicki, P.; Kuta, Ł. Evaluation of Picker Discomfort and Its Impact on Maintaining Strawberry Picking Quality. Appl. Sci. 2021, 11, 1836. [Google Scholar] [CrossRef]
- An, X.; Liu, H.; Fadiji, T.; Li, Z.; Dimitrovski, D. Prediction of the Temperature Sensitivity of Strawberry Drop Damage Using Dynamic Finite Element Method. Postharvest Biol. Technol. 2022, 190, 111939. [Google Scholar] [CrossRef]
- Contigiani, E.V.; Jaramillo-Sánchez, G.; Castro, M.A.; Gómez, P.L.; Alzamora, S.M. Postharvest Quality of Strawberry Fruit (Fragaria × Ananassa Duch Cv. Albion) as Affected by Ozone Washing: Fungal Spoilage, Mechanical Properties, and Structure. Food Bioprocess Technol. 2018, 11, 1639–1650. [Google Scholar] [CrossRef]
- Chaves, V.C.; Calvete, E.; Reginatto, F.H. Quality Properties and Antioxidant Activity of Seven Strawberry (Fragaria x Ananassa Duch) Cultivars. Sci. Hortic. 2017, 225, 293–298. [Google Scholar] [CrossRef]
- Azodanlou, R.; Darbellay, C.; Luisier, J.L.; Villettaz, J.C.; Amado, R. Quality Assessment of Strawberries (Fragaria Species). J. Agric. Food Chem. 2003, 51, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, R.E.; Hart, W.E.; Hayes, R.M.; Mueller, T.C. Effect of Venturi-Type Nozzles and Application Volume on Postemergence Herbicide Efficacy 1. Weed Technol. 2001, 15, 75–80. [Google Scholar] [CrossRef]
- Ferguson, J.C.; Hewitt, A.J.; O’Donnell, C.C.; Kruger, G.R. Comparison of Water-Sensitive Paper, Kromekote and Mylar Collectors for Droplet Deposition with a Visible Fluorescent Dye Solution. J. Plant Prot. Res. 2020, 60, 98–105. [Google Scholar] [CrossRef]
- Sharpe, S.M.; Boyd, N.S.; Dittmar, P.J.; MacDonald, G.E.; Darnell, R.L.; Ferrell, J.A. Spray Penetration into a Strawberry Canopy as Affected by Canopy Structure, Nozzle Type, and Application Volume. In Weed Technology; Cambridge University Press: Cambridge, UK, 2018; Volume 32. [Google Scholar] [CrossRef]
- Wójcik, P.; Lewandowski, M. Effect of Calcium and Boron Sprays on Yield and Quality of “Elsanta” Strawberry. J. Plant Nutr. 2003, 26, 671–682. [Google Scholar] [CrossRef]
- Ismail, S.A.A.; Ganzour, S.K. Efficiency of Foliar Spraying with Moringa Leaves Extract and Potassium Nitrate on Yield and Quality of Strawberry in Sandy Soil. Int. J. Agric. Stat. Sci. 2021, 17, 383–398. [Google Scholar]
- Hassan, A.H. Effect of different natural potassium fertilizer rates and microbial inoculants as well as foliar spray of calcium on growth and yield of strawberry plants grown under organic fertilizer systems. Middle East J. Appl. Sci. 2016, 6, 1038–1053. [Google Scholar]
- Hamail, A.; Hamada, M.; El-Awady, A.; Salim, M. Effect of foliar spray with some plants extracts and different calcium sources on productivity and quilty of strawberry fruits. I. Vegetative growth, productivity and fruit quality. J. Product. Dev. 2018, 23, 653–667. [Google Scholar] [CrossRef]
- Hussein, S.A.; Al-Doori, M.F. The Effect of Spraying with Calcium, Boron and Benzyl Adenine on the Quantity and Quality of Yield for Strawberry Plants (Fragaria Ananassa Duch) CV. Rubygem. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Volume 910 Fourth International Conference for Agricultural and Sustainability Sciences, Babil, Iraq, 4–5 October 2021. [Google Scholar] [CrossRef]
- Mohamed, M.H.M.; Petropoulos, S.A.; Ali, M.M.E. The Application of Nitrogen Fertilization and Foliar Spraying with Calcium and Boron Affects Growth Aspects, Chemical Composition, Productivity and Fruit Quality of Strawberry Plants. Horticulturae 2021, 7, 257. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, R.R.; Tyagi, S.K. Pre-Harvest Foliar Application of Calcium and Boron Influences Physiological Disorders, Fruit Yield and Quality of Strawberry (Fragaria × Ananassa Duch.). Sci. Hortic. 2007, 112, 215–220. [Google Scholar] [CrossRef]
- Sidhu, R.S.; Singh, N.P.; Singh, S.; Rakesh, S. Foliar nutrition with calcium nitrate in strawberries (Fragaria × ananassa Duch.): Effect on fruit quality and yield. Indian J. Ecol. 2020, 47, 87–91. [Google Scholar]
- Wei, Y.; Shao, X.; Wei, Y.; Xu, F.; Wang, H. Effect of Preharvest Application of Tea Tree Oil on Strawberry Fruit Quality Parameters and Possible Disease Resistance Mechanisms. Sci. Hortic. 2018, 241, 18–28. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andreotti, C. Foliar Applications of Biostimulants Promote Growth, Yield and Fruit Quality of Strawberry Plants Grown under Nutrient Limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Bhaskara Reddy, M.V.; Belkacemi, K.; Corcuff, R.; Castaigne, F.; Arul, J. Effect of Pre-Harvest Chitosan Sprays on Post-Harvest Infection by Botrytis Cinerea Quality of Strawberry Fruit. Postharvest Biol. Technol. 2000, 20, 39–51. [Google Scholar] [CrossRef]
- Muley, A.B.; Singhal, R.S. Extension of Postharvest Shelf Life of Strawberries (Fragaria Ananassa) Using a Coating of Chitosan-Whey Protein Isolate Conjugate. Food Chem. 2020, 329, 127213. [Google Scholar] [CrossRef]
- Akter Mukta, J.; Rahman, M.; As Sabir, A.; Gupta, D.R.; Surovy, M.Z.; Rahman, M.; Islam, M.T. Chitosan and Plant Probiotics Application Enhance Growth and Yield of Strawberry. Biocatal. Agric. Biotechnol. 2017, 11, 9–18. [Google Scholar] [CrossRef]
- Ferreira, M.D.; Sargent, S.A.; Brecht, J.K.; Chandler, C.K. Strawberry Bruising Sensitivity Depends on the Type of Force Applied, Cooling Method, and Pulp Temperature. HortScience 2009, 44, 1953–1956. [Google Scholar] [CrossRef] [Green Version]
- Duarte-Molina, F.; Gómez, P.L.; Castro, M.A.; Alzamora, S.M. Storage Quality of Strawberry Fruit Treated by Pulsed Light: Fungal Decay, Water Loss and Mechanical Properties. Innov. Food Sci. Emerg. Technol. 2016, 34, 267–274. [Google Scholar] [CrossRef]
Date of Fertilization | Factor | F | p |
---|---|---|---|
30.05 | Pressure | 39.78 | <0.005 |
Driving speed | 3.26 | 0.043 | |
Surface | 77.71 | <0.005 | |
6.06 | Pressure | 4.3 | 0.016 |
Driving speed | 22.3 | <0.005 | |
Surface | 142.4 | <0.005 | |
14.06 | Pressure | 33.7 | <0.005 |
Driving speed | 100.5 | <0.005 | |
Surface | 526.6 | <0.005 | |
22.06 | Pressure | 19.8 | <0.005 |
Driving speed | 49 | <0.005 | |
Surface | 388 | <0.005 |
Number of Groups | Spray Parameters | Mass (g) | Diameter (mm) | Homogeneity Groups |
---|---|---|---|---|
1 | v5; p0.2; XR | 8.48 ± 0.49 | 25.51 ± 1.13 | xxx |
2 | v5; p0.2; AIXR | 9.83 ± 1.67 | 26.68 ± 1.21 | (-) |
3 | v5; p0.4; XR | 8.98 ± 0.92 | 25.77 ± 1.27 | xxx |
4 | v5; p0.4; AIXR | 9.85 ± 1.14 | 26.48 ± 1.68 | (-) |
5 | v10; p0.2; XR | 10.5 ± 0.9 | 27.51 ± 1.82 | (-) |
6 | v10; p0.2; AIXR | 11.53 ± 1.13 | 28.78 ± 1.36 | (-) |
7 | v10; p0.4; XR | 12.74 ± 2.14 | 29.77 ± 1.81 | (-) |
8 | v10; p0.4; AIXR | 9.81 ± 0.8 | 26.38 ± 1.15 | (-) |
9 | CONTROL | 10.22 ± 1.37 | 27.11 ± 1.49 | |
MEAN | 10.22 ± 1.17 | 27.11 ± 1.44 |
Name of Nozzle | Name of Manufacturer | Type of Nozzle | Size of Nozzle | Spray Angle | Flow Rate at Pressure 200 kPa (L/min) | Flow Rate at Pressure 400 kPa (L/min) |
---|---|---|---|---|---|---|
XR | TeeJet, Spraying Systems Co. | Standard | 03 | 110° | 0.96 | 1.36 |
AIXR | TeeJet, Spraying Systems Co. | Air induction | 03 | 110° | 0.96 | 1.36 |
Day | Temperature (°C) | Wind Speed (m/s) | Air Humidity (%) |
---|---|---|---|
30 May 2022 | 17 | 2 | 77 |
6 June 2022 | 21 | 0.5–0.6 | 65 |
14 June 2022 | 23 | 0.5–0.6 | 62 |
22 June 2022 | 23 | 0.3 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieniawska, B.; Komarnicki, P.; Samelski, M.; Barć, M. Effect of Calcium Foliar Spray Technique on Mechanical Properties of Strawberries. Plants 2023, 12, 2390. https://doi.org/10.3390/plants12132390
Cieniawska B, Komarnicki P, Samelski M, Barć M. Effect of Calcium Foliar Spray Technique on Mechanical Properties of Strawberries. Plants. 2023; 12(13):2390. https://doi.org/10.3390/plants12132390
Chicago/Turabian StyleCieniawska, Beata, Piotr Komarnicki, Maciej Samelski, and Marek Barć. 2023. "Effect of Calcium Foliar Spray Technique on Mechanical Properties of Strawberries" Plants 12, no. 13: 2390. https://doi.org/10.3390/plants12132390
APA StyleCieniawska, B., Komarnicki, P., Samelski, M., & Barć, M. (2023). Effect of Calcium Foliar Spray Technique on Mechanical Properties of Strawberries. Plants, 12(13), 2390. https://doi.org/10.3390/plants12132390