Grading Criteria of Anthurium DUS Quantitative Characteristics by Multiple Comparison
Abstract
:1. Introduction
2. Results
2.1. Analysis of Variation in Quantitative Characteristics of Anthurium
2.2. Test of Normality of Quantitative Characteristics
2.3. Correlation Analysis Results of the Quantitative Characteristics
2.4. Quantitative Characteristic Grading Criteria of Anthurium set by Three Methods
2.5. Effectiveness of Two Grading Criteria Set by Two SD Method and Multiple Comparison Method
3. Conclusions and Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.3. Data Analysis
4.3.1. Describe Statistics and Variability of Quantitative Characteristics
4.3.2. Test for Normality of Quantitative Characteristics
4.3.3. Correlation Analysis of the Quantitative Characteristics
4.3.4. Quantitative Characteristic Grading
Author Contributions
Funding
Conflicts of Interest
References
- Buanec, B.L. Protection of plant-related innovations: Evolution and current discussion. World Pat. Inf. 2006, 28, 50–62. [Google Scholar] [CrossRef]
- Jamali, S.H.; Cockram, J.; Hickey, L.T. Insights on deployment of DNA markers in plant variety protection and registration. Theor. Appl. Genet. 2019, 132, 1911–1929. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, F.L.; Yao, M.Z.; Lu, B.; Yang, K.; Du, Y.Y. Preparation of the UPOV guidelines for the conduct of tests for distinctness, uniformity and stability-tea plant [Camellia sinensis (L.). Kuntze]. Agric. Sci. China 2008, 7, 224–231. [Google Scholar] [CrossRef]
- International Union for the Protection of New Varieties of Plants. General Introduction to the Examination of Distinctness, Uniformity and Stability and the Development of Harmonized Descriptions of New Varieties of Plants (TG 1/3). Available online: https://www.upov.int/export/sites/upov/resource/en/tg_1_3.pdf (accessed on 8 June 2023).
- Wu, Q.C.; Zhang, D.J.; Zhang, Q.; Zang, D.K. Development of DUS test guidelines for new varieties of Viburnum L. J. For. Res. 2019, 30, 2313–2320. [Google Scholar] [CrossRef]
- International Union for the Protection of New Varieties of Plants. Glossary of Terms Used in UPOV Documents (TGP/14). Available online: https://www.upov.int/edocs/tgpdocs/en/tgp_14.pdf (accessed on 17 March 2023).
- Furones-Pérez, P.; Fernández-López, J. Usefulness of 13 morphological and phenological characteristics of sweet chestnut (Castanea sativa Mill.) for use in the DUS test. Euphytica 2009, 167, 1–21. [Google Scholar] [CrossRef]
- International Union for the Protection of New Varieties of Plants. Development of Test Guidelines (TGP/7). Available online: https://www.upov.int/edocs/tgpdocs/en/tgp_7.pdf (accessed on 23 March 2023).
- Liu, Y.F.; Zhang, J.H.; Lv, B.; Yang, X.H.; Li, Y.G.; Wang, Y.; Wang, J.M.; Zhang, H.; Guan, J.J. Statistic analysis on quantitative characteristics for developing the DUS test guideline of Ranunculus asiaticus L. J. Integr. Agric. 2013, 12, 971–978. [Google Scholar] [CrossRef]
- Zhong, H.F.; Chen, J.F.; Chen, Y.H.; Qiu, S.X.; Huang, M.L. Variation and probability grading of main quantitative traits of Phalaenopsis germplasm resources. Chin. J. Trop. Crops 2020, 41, 1117–1123. [Google Scholar] [CrossRef]
- Gelman, A. Scaling regression inputs by dividing by two standard deviations. Statist. Med. 2008, 27, 2865–2873. [Google Scholar] [CrossRef]
- Williams, L.J.; Abdi, H. Fisher’s least significant difference (LSD) test. In Encyclopedia of Research Design; Salkind, N., Ed.; Sage: Thousand Oaks, CA, USA, 2010; pp. 1–6. [Google Scholar]
- Chakrabarty, S.K.; Choudhury, D.R. DUS testing for plant variety protection: Some researchable issues. Indian J. Genet. Plant Breed. 2019, 79, 320–325. [Google Scholar] [CrossRef]
- Mondal, B.; Singh, S.P.; Joshi, D.C. DUS characterization of rice (Oryza sativa L.) using morphological descriptors and quality parameters. Outlook Agric. 2014, 43, 131–137. [Google Scholar] [CrossRef]
- International Union for the Protection of New Varieties of Plants. Examining Distinctness (TGP/9). Available online: https://www.upov.int/edocs/tgpdocs/en/tgp_9.pdf (accessed on 23 March 2023).
- Ikram, S.; Chardon, F. Plant Quantitative Traits; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Maia, C.Y.; Soares, N.S.; Castro, A.C.R.; Queirós, J.R.A.D.; Bordallo, P.D.N. Genetic divergence of anthurium affine germplasm using morphoagronomic and molecular descriptors. Rev. Cienc. Agron. 2020, 51, e20197068. [Google Scholar] [CrossRef]
- Şen, E.Y.; Düzgören, B.; Karabıyık, Ş.; Yalcin-Mendi, N.Y. Anthurium breeding by classical and biotechnological methods. In Agricultural Practices and Sustainable Management in Türkiye; IKSAD Publishing House: Golbasi, Turkey, 2022; pp. 121–136. [Google Scholar]
- Shen, L.; Shen, Y.L.; Yu, H. Production and application of Anthurium andraeanum based on industrialization development. Hans J. Agric. Sci. 2022, 12, 439–447. [Google Scholar] [CrossRef]
- Du, Q.X.; Liu, P.F.; Qing, J.; Wei, Y.X.; Du, H.Y. Variation and probability grading of main quantitative traits of male flowers for Eucommia ulmoides germplasm. J. Beijing For. Univ. 2016, 38, 42–49. [Google Scholar] [CrossRef]
- Ito, P.K. 7 Robustness of ANOVA and MANOVA test procedures. Handb. Stat. 1980, 1, 199–236. [Google Scholar] [CrossRef]
- Elibox, W.; Umaharan, P. A Study of morphophysiological descriptors of cultivated Anthurium andraeanum Hort. HortScience 2012, 47, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
- Shiva, K.N.; Nair, S.A. Correlation and path coefficient analysis in anthurium. India J. Hortic. 2008, 65, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Henshaw, J.M.; Zemel, Y. A unified measure of linear and nonlinear selection on quantitative traits. Methods Ecol. Evol. 2017, 8, 604–614. [Google Scholar] [CrossRef] [Green Version]
- Kamemoto, H.; Kuehnle, A.R. Breeding Anthuriums in Hawaii; Univ. Hawaii Press: Honolulu, HI, USA, 1996. [Google Scholar]
- Islam, M.S.; Mehraj, H.; Roni, M.Z.K.; Shahrin, S.; Jamaluddin, A.F.M. Varietal study of anthurium (Anthurium andraeanum) as a cut flower in banglandesh. J. Bangladesh Acad. Sci. 2013, 31, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Dufour, L.; Guérin, V. Growth, developmental features and flower production of Anthurium andreanum Lind. in tropical conditions. Sci. Hortic. 2003, 98, 25–35. [Google Scholar] [CrossRef]
- Roy, P.; Dash, A.K.; Subudhi, H.N.; Rao, R.N.; Rao, G. Molecular and morphological characterization of Indian rice hybrids. Aust. J. Crop Sci. 2014, 8, 1607–1614. [Google Scholar]
- Barnette, J.J.; Mclean, J.E. The tukey honestly significant difference produce and its control of the type I error-rate. In Annual Meeting of the Mid-South Educational Research Association; ERIC: New Orleans, LA, USA, 1998. [Google Scholar]
- Liu, Y.; Yang, X.; Zhang, J.; Guan, J.; Wang, J.; Zhang, H. Distinctness determination of DUS test on some quantitative characteristics of rice. In Information Technology and Agricultural Engineering; Zhu, E., Sambath, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 943–951. [Google Scholar] [CrossRef]
- Lee, K.D.; In, J.; Lee, S. Standard deviation and standard error of the mean. Korean J. Anesthesiol. 2015, 68, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Midway, S.; Robertson, M.; Flinn, S.; Kaller, M. Comparing multiple comparisons: Practical guidance for choosing the best multiple comparisons test. PeerJ 2020, 8, e10387. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.L. Current status of multiple comparisons of means in designed experiments. J. Dairy Sci. 1973, 56, 973–977. [Google Scholar] [CrossRef]
- Nanda, A.; Mohapatra, B.B.; Mahapatra, A.P.K.; Mahapatra, A.P.K.; Mahapatra, A.P.K. Multiple comparison test by Tukey’s honestly significant difference (HSD): Do the confident level control type I error. IJAMS 2021, 6, 59–65. [Google Scholar] [CrossRef]
- Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability—Anthurium. NY/T 2557—2014; China Agriculture Press: Beijing, China, 2014.
- International Union for the Protection of New Varieties of Plants. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability Anthurium (TG/86/5 Corr.). Available online: https://www.upov.int/edocs/tgdocs/en/tg086_05_corr.pdf (accessed on 23 March 2023).
- Brown, C.E. Coefficient of Variation. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–157. [Google Scholar] [CrossRef]
- Yap, W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81, 2141–2155. [Google Scholar] [CrossRef]
- Jaccard, J.; Becker, M.A.; Wood, G. Pairwise multiple comparison Procedures: A Review. Psychol. Bull. 1984, 96, 589–596. [Google Scholar] [CrossRef]
Characteristic | Minimum | Maximum | Mean | Median | Average SD | Intra-Variety CV |
---|---|---|---|---|---|---|
Plant size (cm) | 22.95 | 67.175 | 39.99 | 39.34 | 2.87 | 7.18 |
Leaf blade length (cm) | 10.36 | 38.53 | 19.95 | 18.84 | 1.44 | 7.22 |
Leaf blade width (cm) | 5.25 | 22.08 | 11.58 | 11.09 | 0.90 | 7.77 |
Petiole length (cm) | 7.59 | 49.21 | 21.86 | 19.65 | 2.21 | 10.11 |
Peduncle length (cm) | 13.40 | 61.72 | 31.08 | 28.97 | 2.98 | 9.59 |
Peduncle thickness (mm) | 2.08 | 6.93 | 3.91 | 3.82 | 0.38 | 9.72 |
Spathe size (cm) | 4.46 | 16.29 | 9.23 | 9.32 | 0.83 | 8.99 |
Spadix length (cm) | 2.13 | 9.55 | 4.37 | 4.17 | 0.40 | 9.15 |
Spadix thickness at the middle (mm) | 3.71 | 10.30 | 6.32 | 6.35 | 0.44 | 6.96 |
Characteristic | Absolute Extreme Difference | Positive Difference | Negative Difference | K-S Value | Sigma Value |
---|---|---|---|---|---|
Plant size | 0.078 | 0.078 | −0.035 | 0.078 | 0.001 |
Leaf blade length | 0.098 | 0.098 | −0.063 | 0.098 | 0.000 |
Leaf blade width | 0.081 | 0.081 | −0.043 | 0.081 | 0.000 |
Petiole length | 0.152 | 0.152 | −0.082 | 0.152 | 0.000 |
Peduncle length | 0.099 | 0.099 | −0.054 | 0.099 | 0.000 |
Peduncle thickness | 0.065 | 0.065 | −0.035 | 0.065 | 0.013 |
Spathe size | 0.034 | 0.034 | −0.032 | 0.034 | 0.200 |
Spadix length | 0.116 | 0.116 | −0.067 | 0.116 | 0.000 |
Spadix thickness at the middle | 0.044 | 0.044 | −0.029 | 0.044 | 0.200 |
Plant Size | Leaf Blade Length | Leaf Blade Width | Petiole Length | Peduncle Length | Peduncle Thickness | Spathe Size | Spadix Length | |
---|---|---|---|---|---|---|---|---|
Plant size | 1 | |||||||
Leaf blade length | 0.760 ** | 1 | ||||||
Leaf blade width | 0.765 ** | 0.876 ** | 1 | |||||
Petiole length | 0.820 ** | 0.829 ** | 0.780 ** | 1 | ||||
Peduncle length | 0.808 ** | 0.797 ** | 0.764 ** | 0.893 ** | 1 | |||
Peduncle thickness | 0.713 ** | 0.718 ** | 0.753 ** | 0.684 ** | 0.686 ** | 1 | ||
Spathe size | 0.516 ** | 0.601 ** | 0.634 ** | 0.484 ** | 0.535 ** | 0.639 ** | 1 | |
Spadix length | 0.772 ** | 0.827 ** | 0.796 ** | 0.812 ** | 0.793 ** | 0.744 ** | 0.627 ** | 1 |
Spadix thickness at the middle | 0.548 ** | 0.612 ** | 0.629 ** | 0.546 ** | 0.520 ** | 0.703 ** | 0.537 ** | 0.603 ** |
Characteristic | Multiple Comparison Method | Two SD Method | Two LSD0.05 Method |
---|---|---|---|
Plant size (cm) | 6.60–7.00 | 5.70 | 5.60 |
Leaf blade length (cm) | 3.20–3.90 | 2.90 | 2.70 |
Leaf blade width (cm) | 2.10–2.50 | 1.80 | 1.80 |
Petiole length (cm) | 5.00–5.90 | 4.40 | 4.30 |
Peduncle length (cm) | 7.10–7.60 | 5.90 | 5.80 |
Peduncle thickness (mm) | 0.86–1.03 | 0.75 | 0.70 |
Spathe size (cm) | 2.49–2.60 | 1.70 | 2.00 |
Spadix length (cm) | 0.90–1.00 | 0.80 | 0.77 |
Spadix thickness at the middle (mm) | 1.00–1.10 | 0.87 | 0.84 |
Note | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
plant size (cm) | 19.0 | 26.0 | 32.9 | 39.6 | 46.4 | 53.0 | 60.0 | 67.0 | 74.0 |
13.5 | 19.2 | 25.0 | 30.7 | 36.5 | 42.2 | 48.0 | 53.7 | 59.5 | |
leaf blade length (cm) | 13.1 | 16.3 | 19.6 | 23.1 | 26.6 | 30.5 | 34.0 | 37.5 | 41.0 |
11.6 | 14.5 | 17.4 | 20.3 | 23.1 | 26.0 | 28.9 | 31.8 | 38.7 | |
leaf blade width (cm) | 4.1 | 6.2 | 8.5 | 10.7 | 12.9 | 15.1 | 17.5 | 19.6 | 22.1 |
6.6 | 8.4 | 10.2 | 12.0 | 13.8 | 15.6 | 17.4 | 19.2 | 22.1 | |
petiole length (cm) | 7.1 | 12.2 | 17.4 | 23.0 | 28.0 | 33.1 | 38.3 | 43.4 | 49.3 |
8.6 | 13.0 | 17.4 | 21.9 | 26.3 | 30.7 | 35.1 | 39.6 | 49.3 | |
peduncle length (cm) | 9.5 | 16.5 | 24.3 | 31.3 | 38.3 | 45.3 | 53.0 | 62.0 | 69.0 |
14.1 | 20.0 | 26.0 | 31.9 | 37.9 | 43.9 | 49.8 | 55.8 | 61.8 | |
peduncle thickness (mm) | 1.5 | 2.4 | 3.26 | 4.12 | 5.0 | 5.9 | 6.93 | 7.83 | 8.73 |
1.9 | 2.7 | 3.4 | 4.2 | 4.9 | 5.7 | 6.4 | 7.2 | 7.9 | |
spathe size (cm) | 1.2 | 3.7 | 6.2 | 8.71 | 11.2 | 13.7 | 16.3 | 18.8 | 21.3 |
5.1 | 6.8 | 8.5 | 10.2 | 11.8 | 13.5 | 15.1 | 16.8 | 18.4 | |
spadix length (cm) | 1.96 | 2.86 | 3.8 | 4.8 | 5.7 | 6.7 | 7.7 | 8.7 | 9.7 |
2.2 | 3.0 | 3.8 | 4.6 | 5.4 | 6.2 | 7 | 7.8 | 8.6 | |
spadix thickness at the middle (mm) | 3.6 | 4.61 | 5.61 | 6.71 | 7.73 | 8.8 | 9.8 | 10.8 | 11.9 |
4.2 | 5.0 | 5.9 | 6.8 | 7.7 | 8.5 | 9.4 | 10.3 | 11.2 |
Variety Pair | With Same Note | With Same Note | Difference of One Note | Difference of One Note | Difference between Two Notes | Difference between Two Notes | Error Rate | Error Rate |
---|---|---|---|---|---|---|---|---|
Method | The SD Method (Criteria 1) | Multiple Comparison Method (Criteria 2) | The SD Method (Criteria 1) | Multiple Comparison Method (Criteria 2) | The SD Method (Criteria 1) | Multiple Comparison Method (Criteria 2) | The SD Method (Criteria 1) | Multiple Comparison Method (Criteria 2) |
Plant size (cm) | 2.61 | 0 | 52.61 | 58.41 | 99.75 | 100 | 0.25 | 0 |
Leaf blade length (cm) | 2.46 | 0 | 47.57 | 60.95 | 99.20 | 99.70 | 0.80 | 0.30 |
Leaf blade width (cm) | 0.94 | 0 | 37.82 | 51.53 | 98.34 | 100 | 1.66 | 0 |
Petiole length (cm) | 4.72 | 0 | 49.43 | 61.62 | 99.66 | 99.98 | 0.34 | 0.02 |
Peduncle length (cm) | 4.37 | 0 | 49.60 | 61.51 | 99.69 | 100 | 0.31 | 0 |
Peduncle thickness (mm) | 0.63 | 0 | 30.31 | 39.70 | 98.62 | 100 | 1.38 | 0 |
Spathe size (cm) | 2.97 | 0 | 32.60 | 53.95 | 81.75 | 100 | 18.24 | 0 |
Spadix length (cm) | 2.03 | 0 | 30.55 | 47.30 | 98.52 | 99.98 | 1.48 | 0.02 |
Spadix thickness at the middle (mm) | 3.09 | 0 | 44.20 | 54.60 | 97.24 | 100 | 2.76 | 0 |
Total | 23.84 | 27.22 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Y.; Ren, L.; Deng, S.; Li, S.; Zhang, Y.; Chen, H. Grading Criteria of Anthurium DUS Quantitative Characteristics by Multiple Comparison. Plants 2023, 12, 2417. https://doi.org/10.3390/plants12132417
Chu Y, Ren L, Deng S, Li S, Zhang Y, Chen H. Grading Criteria of Anthurium DUS Quantitative Characteristics by Multiple Comparison. Plants. 2023; 12(13):2417. https://doi.org/10.3390/plants12132417
Chicago/Turabian StyleChu, Yunxia, Li Ren, Shan Deng, Shouguo Li, Yiying Zhang, and Hairong Chen. 2023. "Grading Criteria of Anthurium DUS Quantitative Characteristics by Multiple Comparison" Plants 12, no. 13: 2417. https://doi.org/10.3390/plants12132417
APA StyleChu, Y., Ren, L., Deng, S., Li, S., Zhang, Y., & Chen, H. (2023). Grading Criteria of Anthurium DUS Quantitative Characteristics by Multiple Comparison. Plants, 12(13), 2417. https://doi.org/10.3390/plants12132417