Radial Increment of Beech (Fagus sylvatica L.) Is under a Strong Impact of Climate in the Continental Biogeographical Region of Croatia
Abstract
:1. Introduction
- (1)
- to analyze the long-term growth response of beech to climate;
- (2)
- to identify extreme drought events that have negatively impacted the radial increment of beech;
- (3)
- to determine whether there are significant differences in the growth response of beech trees between the alpine and continental biogeographical regions of Croatia under changing climate conditions.
2. Results
2.1. Radial Increment in the Alpine and Continental Biogeographical Regions of Croatia
2.2. General Response of Radial Increment to Climate
2.3. Temporal Stability of the Climate Signal and Spatial Outreach of the Climate Signal in Beech Tree Rings
2.4. Response of the Radial Increment of Beech in Extreme Years
3. Discussion
4. Materials and Methods
4.1. Research Plots
4.2. Sample Collection and Tree-Ring Width Analysis
4.3. Meteorological Data
4.4. Statistical Data Processing
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Precipitation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Plot no. | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | |
20 | A | −0.09 | −0.14 | 0.02 | 0.09 | −0.17 | 0.12 | 0.07 | −0.07 | −0.02 |
21 | A | −0.03 | 0.03 | 0.15 | −0.09 | −0.13 | 0.20 | 0.19 | 0.11 | 0.05 |
22 | A | −0.19 | −0.13 | 0.02 | 0.00 | 0.17 | 0.29 | 0.21 | 0.28 | −0.30 |
23 | A | −0.10 | −0.22 | 0.13 | 0.11 | −0.07 | 0.28 | 0.11 | 0.03 | −0.19 |
24 | A | 0.03 | 0.12 | 0.19 | −0.12 | 0.07 | 0.33 | 0.17 | 0.20 | −0.18 |
25 | A | −0.14 | −0.04 | 0.00 | −0.01 | 0.01 | 0.21 | 0.32 | 0.25 | −0.11 |
26 | A | −0.09 | −0.02 | 0.03 | 0.00 | 0.05 | 0.34 | 0.10 | 0.33 | −0.01 |
31 | A | −0.05 | 0.05 | −0.08 | 0.06 | 0.20 | 0.13 | 0.19 | 0.25 | −0.01 |
38 | C | −0.06 | 0.22 | 0.08 | 0.20 | 0.47 | 0.48 | 0.39 | 0.37 | −0.19 |
47 | C | −0.15 | 0.09 | −0.16 | 0.16 | 0.27 | 0.12 | 0.27 | 0.20 | −0.24 |
59 | C | −0.12 | 0.14 | 0.08 | −0.04 | 0.32 | 0.44 | 0.22 | 0.36 | −0.24 |
60 | C | 0.02 | 0.23 | −0.08 | 0.21 | 0.46 | 0.27 | 0.30 | 0.61 | −0.03 |
69 | C | 0.02 | 0.29 | 0.24 | 0.18 | 0.48 | 0.37 | 0.49 | 0.43 | −0.13 |
71 | C | −0.09 | 0.07 | 0.10 | 0.10 | 0.25 | 0.30 | 0.30 | 0.22 | −0.18 |
72 | C | −0.07 | 0.16 | 0.19 | 0.20 | 0.31 | 0.20 | 0.28 | 0.19 | −0.14 |
80 | C | 0.08 | 0.33 | 0.17 | 0.14 | 0.33 | 0.33 | 0.24 | 0.16 | 0.08 |
88 | C | 0.13 | 0.09 | 0.28 | 0.25 | 0.32 | 0.47 | 0.23 | 0.29 | −0.04 |
94 | C | 0.08 | 0.18 | 0.05 | 0.10 | 0.27 | 0.23 | 0.06 | 0.20 | 0.12 |
97 | C | 0.07 | 0.26 | 0.00 | 0.19 | 0.15 | 0.02 | 0.16 | 0.28 | −0.08 |
106 | C | 0.02 | 0.08 | 0.14 | 0.30 | 0.38 | 0.43 | 0.29 | 0.27 | −0.10 |
120 | C | 0.07 | 0.17 | 0.06 | 0.00 | 0.21 | 0.42 | 0.05 | 0.08 | −0.09 |
125 | C | 0.05 | 0.19 | −0.07 | 0.19 | 0.34 | 0.20 | 0.01 | 0.32 | 0.03 |
128 | C | 0.02 | 0.26 | −0.08 | 0.14 | 0.25 | 0.20 | 0.18 | 0.46 | −0.15 |
131 | C | −0.07 | 0.10 | −0.06 | 0.19 | 0.29 | 0.38 | 0.15 | 0.25 | −0.24 |
139 | C | −0.01 | 0.15 | −0.08 | 0.27 | 0.19 | 0.35 | 0.20 | 0.27 | −0.15 |
Temperature | ||||||||||
Plot no. | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | |
20 | A | 0.12 | 0.17 | 0.19 | −0.06 | 0.26 | −0.07 | −0.09 | 0.08 | −0.14 |
21 | A | 0.33 | 0.05 | 0.02 | 0.00 | 0.14 | −0.09 | −0.15 | −0.07 | 0.06 |
22 | A | 0.01 | 0.01 | 0.06 | 0.02 | −0.19 | −0.19 | −0.24 | −0.34 | 0.07 |
23 | A | −0.01 | −0.10 | −0.01 | −0.22 | 0.02 | −0.19 | −0.25 | −0.11 | 0.08 |
24 | A | 0.15 | 0.10 | −0.07 | 0.05 | −0.04 | −0.18 | −0.15 | −0.19 | 0.04 |
25 | A | 0.10 | 0.13 | −0.06 | −0.12 | 0.01 | −0.14 | −0.20 | −0.21 | −0.10 |
26 | A | 0.01 | 0.05 | −0.07 | −0.20 | 0.01 | −0.24 | −0.22 | −0.30 | −0.14 |
31 | A | −0.02 | −0.01 | −0.05 | 0.08 | −0.04 | −0.05 | −0.10 | −0.08 | 0.00 |
38 | C | 0.18 | 0.04 | 0.09 | 0.04 | −0.13 | −0.31 | −0.12 | −0.20 | 0.16 |
47 | C | 0.10 | 0.16 | 0.06 | 0.00 | −0.08 | −0.13 | 0.07 | −0.24 | 0.18 |
59 | C | 0.16 | −0.05 | 0.06 | −0.02 | −0.05 | −0.18 | −0.14 | −0.27 | 0.16 |
60 | C | 0.23 | −0.01 | 0.00 | 0.05 | −0.22 | −0.27 | −0.11 | −0.35 | 0.03 |
69 | C | 0.28 | 0.11 | −0.05 | 0.02 | −0.29 | −0.39 | −0.20 | −0.33 | 0.09 |
71 | C | 0.19 | −0.06 | −0.12 | 0.02 | −0.16 | −0.27 | −0.21 | −0.20 | 0.22 |
72 | C | 0.02 | −0.19 | 0.06 | 0.02 | −0.24 | −0.25 | −0.16 | −0.13 | 0.20 |
80 | C | 0.26 | −0.01 | 0.13 | −0.05 | −0.16 | −0.29 | −0.21 | −0.24 | 0.09 |
88 | C | 0.20 | 0.11 | 0.10 | −0.01 | −0.13 | −0.31 | −0.23 | −0.23 | 0.09 |
94 | C | 0.11 | 0.19 | 0.04 | 0.08 | −0.22 | −0.25 | −0.02 | −0.09 | 0.13 |
97 | C | 0.05 | −0.18 | −0.11 | −0.03 | −0.28 | −0.26 | −0.10 | −0.22 | 0.13 |
106 | C | 0.03 | 0.00 | 0.00 | −0.22 | −0.28 | −0.35 | −0.22 | −0.34 | 0.20 |
120 | C | 0.13 | 0.04 | 0.08 | −0.20 | −0.13 | −0.25 | −0.18 | −0.21 | 0.21 |
125 | C | 0.16 | 0.03 | 0.09 | −0.22 | −0.21 | −0.23 | −0.10 | −0.24 | −0.06 |
128 | C | 0.05 | 0.01 | 0.08 | −0.09 | −0.17 | −0.29 | −0.21 | −0.32 | 0.07 |
131 | C | −0.07 | −0.09 | −0.10 | −0.31 | −0.15 | −0.29 | −0.22 | −0.27 | 0.09 |
139 | C | −0.15 | −0.13 | −0.01 | −0.16 | −0.23 | −0.35 | −0.33 | −0.30 | 0.23 |
SPEI−3 | ||||||||||
Plot no. | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | |
20 | A | −0.07 | −0.03 | −0.06 | −0.02 | −0.01 | −0.04 | −0.03 | 0.01 | 0.06 |
21 | A | −0.25 | −0.30 | −0.17 | −0.14 | −0.08 | −0.09 | −0.07 | −0.03 | −0.02 |
22 | A | 0.16 | −0.19 | −0.24 | −0.13 | −0.12 | −0.07 | −0.03 | 0.07 | 0.06 |
23 | A | 0.19 | −0.05 | −0.13 | 0.00 | 0.02 | 0.03 | −0.03 | −0.01 | −0.01 |
24 | A | 0.10 | −0.03 | −0.06 | −0.01 | 0.00 | 0.07 | 0.08 | 0.14 | 0.10 |
25 | A | 0.00 | −0.06 | −0.10 | −0.08 | −0.10 | −0.05 | −0.04 | −0.03 | −0.05 |
26 | A | −0.03 | −0.06 | −0.03 | −0.01 | −0.01 | 0.00 | −0.11 | 0.11 | −0.04 |
31 | A | 0.12 | 0.02 | −0.01 | 0.12 | 0.23 | 0.35 | 0.27 | 0.16 | −0.03 |
38 | C | 0.15 | −0.05 | −0.05 | 0.06 | 0.08 | 0.11 | −0.09 | −0.06 | −0.16 |
47 | C | 0.02 | −0.27 | −0.29 | −0.19 | −0.14 | −0.06 | −0.03 | 0.02 | 0.01 |
59 | C | 0.19 | −0.09 | −0.06 | −0.13 | −0.06 | −0.04 | −0.09 | −0.07 | −0.12 |
60 | C | 0.11 | −0.15 | −0.12 | −0.10 | −0.12 | −0.04 | −0.06 | 0.02 | −0.09 |
69 | C | −0.07 | −0.08 | −0.10 | −0.04 | −0.06 | 0.00 | −0.05 | 0.02 | −0.06 |
71 | C | −0.05 | −0.26 | −0.13 | −0.06 | −0.02 | −0.03 | −0.10 | −0.05 | −0.10 |
72 | C | 0.15 | −0.13 | −0.15 | −0.01 | 0.16 | 0.19 | 0.10 | 0.06 | −0.02 |
80 | C | −0.01 | −0.35 | −0.28 | −0.16 | −0.03 | −0.03 | −0.11 | −0.12 | −0.12 |
88 | C | −0.17 | −0.25 | −0.27 | −0.23 | −0.14 | −0.08 | −0.03 | −0.02 | −0.08 |
94 | C | −0.06 | −0.05 | 0.03 | 0.09 | 0.06 | 0.08 | 0.05 | 0.12 | 0.03 |
97 | C | −0.08 | −0.13 | −0.15 | −0.10 | −0.06 | −0.03 | −0.01 | 0.03 | −0.03 |
106 | C | −0.22 | −0.32 | −0.27 | −0.17 | −0.17 | −0.17 | −0.15 | −0.02 | 0.00 |
120 | C | 0.06 | 0.20 | 0.13 | 0.09 | 0.14 | 0.39 | 0.46 | 0.44 | 0.15 |
125 | C | −0.04 | 0.06 | 0.00 | 0.09 | 0.24 | 0.41 | 0.35 | 0.39 | 0.31 |
128 | C | −0.04 | 0.03 | 0.03 | 0.09 | 0.18 | 0.39 | 0.48 | 0.55 | 0.36 |
131 | C | −0.12 | 0.00 | 0.00 | 0.19 | 0.26 | 0.50 | 0.49 | 0.51 | 0.22 |
139 | C | 0.09 | 0.10 | 0.08 | 0.15 | 0.21 | 0.39 | 0.48 | 0.49 | 0.29 |
ID Plot | Number of Sampled Trees | Longitude | Latitude | Altitude (m) | Slope Gradient (°) | Exposure | Stand Age | Average Diameter (cm) | AVERAGE Height (m) | Stand Structure | European Forest Type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
20 | A | 5 | 14°55′ | 45°16′ | 1055 | 7 | SW | 69 | 28 | 21 | Uneven-aged | Mountainous beech forest |
21 | A | 19 | 14°52′ | 45°10′ | 885 | 10 | NW | 54 | 24 | 16 | Uneven-aged | Mountainous beech forest |
22 | A | 11 | 15°04′ | 45°26′ | 614 | 10 | E | 100 | 29 | 22 | Uneven-aged | Mountainous beech forest |
23 | A | 6 | 15°05′ | 45°18′ | 637 | 7 | SE | 101 | 28 | 24 | Uneven-aged | Mountainous beech forest |
24 | A | 24 | 15°05′ | 45°10′ | 623 | 30 | SW | 73 | 36 | 24 | Uneven-aged | Beech forest |
25 | A | 24 | 15°05′ | 45°01′ | 681 | 20 | N | 77 | 26 | 20 | Uneven-aged | Beech forest |
26 | A | 24 | 15°05′ | 44°52′ | 829 | 30 | NE | 93 | 29 | 21 | Uneven-aged | Beech forest |
31 | A | 23 | 15°14′ | 45°18′ | 433 | 10 | SE | 64 | 20 | 18 | Even-aged | Beech forest |
47 | C | 19 | 16°06′ | 45°44′ | 440 | 30 | SW | 30 | 21 | 17 | Even-aged | Beech forest |
71 | C | 24 | 16°06′ | 45°18′ | 205 | 45 | N | 77 | 26 | 18 | Even-aged | Mesophytic deciduous forest |
72 | C | 24 | 17°33′ | 45°09′ | 452 | 35 | NE | 59 | 23 | 23 | Even-aged | Beech forest |
125 | C | 15 | 17°45′ | 45°44′ | 185 | 12 | NW | 118 | 35 | 33 | Even-aged | Beech forest |
131 | C | 13 | 14°53′ | 45°27′ | 532 | 45 | NW | 85 | 27 | 23 | Even-aged | Mesophytic deciduous forest |
38 | C | 8 | 15°30′ | 45°44′ | 423 | 20 | S | 35 | 15 | 14 | Even-aged | Beech forest |
59 | C | 6 | 15°54′ | 45°53′ | 690 | 17 | SW | 50 | 28 | 22 | Even-aged | Mesophytic deciduous forest |
60 | C | 18 | 15°54′ | 45°35′ | 181 | 11 | E | 49 | 20 | 20 | Even-aged | Mesophytic deciduous forest |
69 | C | 9 | 16°07′ | 45°53′ | 177 | 0 | SW | 70 | 32 | 23 | Even-aged | Mesophytic deciduous forest |
80 | C | 17 | 16°18′ | 45°01′ | 244 | 20 | W | 70 | 24 | 22 | Even-aged | Beech forest |
88 | C | 11 | 16°31′ | 46°10′ | 475 | 30 | N | 96 | 43 | 30 | Even-aged | Mesophytic deciduous forest |
94 | C | 15 | 16°43′ | 46°10′ | 268 | 37 | NE | 101 | 37 | 25 | Even-aged | Beech forest |
97 | C | 13 | 16°44′ | 45°35′ | 349 | 65 | W | 81 | 26 | 22 | Even-aged | Mesophytic deciduous forest |
106 | C | 6 | 16°57′ | 45°53′ | 199 | 6 | NW | 98 | 33 | 29 | Even-aged | Beech forest |
120 | C | 21 | 17°21′ | 45°36′ | 403 | 22 | NW | 117 | 29 | 26 | Even-aged | Mesophytic deciduous forest |
128 | C | 18 | 17°33′ | 45°18′ | 358 | 3 | E | 98 | 31 | 29 | Even-aged | Beech forest |
139 | C | 16 | 18°10′ | 45°27′ | 152 | 9 | NW | 54 | 26 | 24 | Even-aged | Mesophytic deciduous forest |
References
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H. The Regional Impacts of Climate Change: An Assessment of Vulnerability. In A Special Report of the Intergovernmental Panel on Climate Change Working Group II; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Tecshe, M. In Die Fichte II/2–Krankheiten.Schaden; Verl. Paul Parey: Berlin, Germany, 1989; pp. 346–384. [Google Scholar]
- Saxe, H. Triggering and predisposing factors in the “Red” decline syndrome of Norway spruce (Picea abies). Trees 1993, 8, 39–48. [Google Scholar] [CrossRef]
- Modrzynski, J. Defoliation of older Norway spruce (Picea abies/L./Karst.) stands in the Polish Sudety and Carpathian mountains. For. Ecol. Manag. 2003, 181, 289–299. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y.V.B., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Branković, Č.; Patarčić, M.; Güttler, I.; Srnec, L. Near-future climate change over Europe with focus on Croatia in an ensemble of regional climate model simulations. Clim. Res. 2012, 52, 227–251. [Google Scholar] [CrossRef] [Green Version]
- Zierl, B. A simulation study to analyse the relations between crown condition and drought in Switzerland. For. Ecol. Manag. 2004, 188, 25–38. [Google Scholar] [CrossRef]
- EEA. Water Scarcity and Drought Events in Europe during the Last Decade. Available online: https://www.eea.europa.eu/data-and-maps/figures/main-drought-events-in-europe (accessed on 29 December 2017).
- Spinoni, J.; Antofie, T.; Barbosa, P.; Bihari, Z.; Lakatos, M.; Szalai, S.; Szentimrey, T.; Vogt, J. An overview of drought events in the Carpathian Region in 1961–2010. Adv. Sci. Res. 2013, 10, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P. The Climate of the Mediterranean Region; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M.; et al. The Mediterranean climate: An overview of the main characteristics and issues. Dev. Earth Environ. Sci. 2006, 4, 1–26. [Google Scholar] [CrossRef]
- Ognjenović, M.; Seletković, I.; Marušić, M.; Jonard, M.; Rautio, P.; Timmermann, V.; Tadić, M.P.; Lanšćak, M.; Ugarković, D.; Potočić, N. The Effect of Environmental Factors on the Nutrition of European Beech (Fagus sylvatica L.) Varies with Defoliation. Plants 2023, 12, 168. [Google Scholar] [CrossRef]
- Ognjenović, M.; Seletković, I.; Potočić, N.; Marušić, M.; Tadić, M.P.; Jonard, M.; Rautio, P.; Timmermann, V.; Lovreškov, L.; Ugarković, D. Defoliation Change of European Beech (Fagus sylvatica L.) Depends on Previous Year Drought. Plants 2022, 11, 730. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change 2007, 81, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Lehtonen, I.; Ruosteenoja, K.; Jylhä, K. Projected changes in European extreme precipitation indices on the basis of global and regional climate model ensembles. Int. J. Climatol. 2014, 34, 1208–1222. [Google Scholar] [CrossRef]
- Prislan, P.; Čufar, K.; De Luis, M.; Gričar, J. Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. Tree Physiol. 2018, 38, 186–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poljanec, A.; Ficko, A.; Boncina, A. Spatiotemporal dynamic of European beech (Fagus sylvatica L.) in Slovenia, 1970–2005. For. Ecol. Manag. 2010, 259, 2183–2190. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK; New York, NY, USA; San Francisco, CA, USA, 1976; p. 567. [Google Scholar]
- Ognjenović, M.; Levanič, T.; Potočić, N.; Ugarković, D.; Indir, K.; Seletković, I. Interrelations of various tree vitality indicators and their reaction to climatic conditions on a European beech (Fagus sylvatica L.) plot. Šumarski List 2020, 144, 351–365. [Google Scholar] [CrossRef]
- Dobbertin, M.; Neumann, M.; Schroeck, H.-W. Tree Growth Measurements in Long-Term Forest Monitoring in Europe. Dev. Environ. Sci. 2013, 12, 183–204. [Google Scholar] [CrossRef]
- Spiecker, H.; Mielikäinen, K.; Köhl, M.; Skovsgaard, J.P. (Eds.) Growth Trends in European Forests: Studies from 12 Countries; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1–6. [Google Scholar]
- Seidling, W.; Ziche, D.; Beck, W. Climate responses and interrelations of stem increment and crown transparency in Norway spruce, Scots pine, and common beech. For. Ecol. Manag. 2012, 284, 196–204. [Google Scholar] [CrossRef]
- Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. Eur. J. For. Res. 2005, 124, 319–333. [Google Scholar] [CrossRef]
- Gutiérrez, E. Dendroecological study of Fagus silvatica L. in the Montseny mountains (Spain). Acta Oecologica 1988, 9, 8. [Google Scholar]
- Jump, A.S.; Hunt, J.M.; Peñuelas, J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob. Change Biol. 2006, 12, 2163–2174. [Google Scholar] [CrossRef] [Green Version]
- Etzold, S.; Waldner, P.; Thimonier, A.; Schmitt, M.; Dobbertin, M. Tree growth in Swiss forests between 1995 and 2010 in relation to climate and stand conditions: Recent disturbances matter. For. Ecol. Manag. 2014, 311, 41–55. [Google Scholar] [CrossRef]
- Zimmermann, J.; Hauck, M.; Dulamsuren, C.; Leuschner, C. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 2015, 18, 560–572. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Kopp, G.; Ruff, M.; Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 2016, 31, 673–686. [Google Scholar] [CrossRef]
- Seletković, Z.; Tikvić, I.; Prpić, B. The Ecological Constitution of Common Beech. In Common Beech in (Fagus sylvatica L.) in Croatia; Matić, S., Ed.; Academy of Forest Science: Zagreb, Croatia, 2003. [Google Scholar]
- Tinner, W.; Lotter, A. Holocene expansion of Fagus sylvatica and Abies alba in Central Europe: Where are we after eight decades of debate? Quat. Sci. Rev. 2006, 25, 526–549. [Google Scholar] [CrossRef]
- Geßler, A.; Keitel, C.; Kreuzwieser, J.; Matyssek, R.; Seiler, W.; Rennenberg, H. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 2007, 21, 1–11. [Google Scholar] [CrossRef]
- Hacket-Pain, A.J.; Cavin, L.; Friend, A.D.; Jump, A.S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. For. Res. 2016, 135, 897–909. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, A.; Biondi, F.; Čufar, K.; De Luis, M.; Grabner, M.; Maugeri, M.; Presutti Saba, E.; Schirone, B.; Piovesan, G. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: Spatial and altitudinal climatic signals identified through a tree-ring network. J. Biogeogr. 2007, 34, 1873–1892. [Google Scholar] [CrossRef]
- Martinez del Castillo, E.; Longares, L.A.; Gričar, J.; Prislan, P.; Gil-Pelegrín, E.; Čufar, K.; de Luis, M. Living on the Edge: Contrasted Wood-Formation Dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean Conditions. Front. Plant Sci. 2016, 7, 370. [Google Scholar] [CrossRef] [Green Version]
- Čater, M.; Levanič, T. Beech and silver fir’s response along the Balkan’s latitudinal gradient. Sci. Rep. 2019, 9, 16269. [Google Scholar] [CrossRef] [Green Version]
- Martinez del Castillo, E.; Zang, C.S.; Buras, A.; Hacket-Pain, A.; Esper, J.; Serrano-Notivoli, R.; Hartl, C.; Weigel, R.; Klesse, S.; Resco de Dios, V.; et al. Climate-change-driven growth decline of European beech forests. Commun. Biol. 2022, 5, 163. [Google Scholar] [CrossRef] [PubMed]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Cvitan, L.; Hojsak, T.; Kozarić, T.; Likso, T.; Mikec, K.; Mikuš Jurković, P.; Mokorić, M.; Perčec Tadić, M.; Plačko-Vršnak, D.; Renko, T.; et al. Climate Monitoring and Assessment for 2021; Meteorological and Hydrological Service: Zagreb, Croatia, 2023; p. 71. [Google Scholar]
- Bréda, N.; Badeau, V. Forest tree responses to extreme drought and some biotic events: Towards a selection according to hazard tolerance? Comptes Rendus Geosci. 2008, 340, 651–662. [Google Scholar] [CrossRef]
- Primicia, I.; Camarero, J.J.; Janda, P.; Čada, V.; Morrissey, R.C.; Trotsiuk, V.; Bače, R.; Teodosiu, M.; Svoboda, M. Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For. Ecol. Manag. 2015, 354, 77–86. [Google Scholar] [CrossRef]
- Rohner, B.; Kumar, S.; Liechti, K.; Gessler, A.; Ferretti, M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Indic. 2021, 120, 106903. [Google Scholar] [CrossRef]
- Czúcz, B.; Gálhidy, L.; Mátyás, C. Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann. For. Sci. 2011, 68, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Piovesan, G.; Biondi, F.; Bernabei, M.; Di Filippo, A.; Schirone, B. Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecologica 2005, 27, 197–210. [Google Scholar] [CrossRef]
- Piovesan, G.; Biondi, F.; Filippo, A.D.; Alessandrini, A.; Maugeri, M. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob. Change Biol. 2008, 14, 1265–1281. [Google Scholar] [CrossRef]
- Brang, P.E. Sanasilva-Bericht 1997. Zustand und Gefahrdung des Schweizer Waldes—eine Zwischenbilanz nach 15 Jahren Waldschadenforschung; Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft: Birmensdorf, Switzerland, 1998; p. 102. [Google Scholar]
- Cherubini, P.; Battipaglia, G.; Innes, J.L. Tree Vitality and Forest Health: Can Tree-Ring Stable Isotopes Be Used as Indicators? Curr. For. Rep. 2021, 7, 69–80. [Google Scholar] [CrossRef]
- Cindrić, K.; Pasarić, Z.; Gajić-Čapka, M. Spatial and temporal analysis of dry spells in Croatia. Theor. Appl. Climatol. 2010, 102, 171–184. [Google Scholar] [CrossRef]
- Pilaš, I.; Medved, I.; Medak, J.; Perčec Tadić, M.; Medak, D. Ecological, Typological Properties and Photosynthetic Activity (FAPAR) of Common Beech (Fagus sylvatica L.) Ecosystems in Croatia. SEEFOR–South-East Eropean For. 2016, 7, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Kramer, K.; Degen, B.; Buschbom, J.; Hickler, T.; Thuiller, W.; Sykes, M.T.; de Winter, W. Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. For. Ecol. Manag. 2010, 259, 2213–2222. [Google Scholar] [CrossRef]
- Mihajlović, D. Monitoring the 2003–2004 meteorological drought over Pannonian part of Croatia. Int. J. Climatol. 2006, 26, 2213–2225. [Google Scholar] [CrossRef]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef] [Green Version]
- Gajić-Čapka, M.; Perčec Tadić, M.; Patarčić, M. Digitalna godišnja oborinska karta Hrvatske. Hrvat. Meteorološki Čas. 2003, 38, 21–33. [Google Scholar]
- Zaninović, K.; Srnec, L.; Perčec Tadić, M. Digitalna godišnja temperaturna karta Hrvatske. Hrvat. Meteorološki Čas. 2004, 39, 51–58. [Google Scholar]
- Tikvić, I.; Seletković, Z.; Ugarković, D.; Posavec, S.; Španjol, Ž. Dieback of Silver Fir (Abies alba Mill.) on Northern Velebit (Croatia). Period. Biol. 2008, 110, 137–143. [Google Scholar]
- Kolář, T.; Čermák, P.; Trnka, M.; Žid, T.; Rybníček, M. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric. For. Meteorol. 2017, 239, 24–33. [Google Scholar] [CrossRef]
- Eichhorn, J.; Roskams, P.; Potočić, N.; Timmermann, V.; Ferretti, M.; Mues, V.; Szepesi, A.; Durrant, D.; Seletković, I.; Schroeck, H.-W.; et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. In Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests; UNECE ICP Forests Programme Coordinating Centre, Ed.; Thünen Institute of Forest Ecosystems: Eberswalde, Germany, 2016; p. 54. [Google Scholar]
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating, 2nd ed.; The University of Arizona Press: Tucson, AZ, USA, 1968; p. 73. [Google Scholar]
- Levanič, T. ATRICS–A new system for image acquisition in dendrochronology. Tree-Ring Res. 2007, 63, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Peters, K. The smoothing spline: A new approach to standardizing forest interior tree- ring width series for dendroclimatic studies. Tree-Ring Bull. 1981, 41, 45–54. [Google Scholar]
- Cook, E.R. Time Series Analysis Approach to Tree Ring Standardization. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1985. [Google Scholar]
- Bunn, A.G. A dendrochronology program library in R (dplR). Dendrochronologia 2008, 26, 115–124. [Google Scholar] [CrossRef]
- R-Core-Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019.
- Cook, E.R.; Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 1997, 7, 361–370. [Google Scholar] [CrossRef]
- Cook, E.R.; Holmes, R.L. Program ARSTAN—Chronology Development with Statistical Analysis (User’s Manual for Program ARSTAN); Laboratory of Tree-Ring Research, University of Arizona: Tucson, AZ, USA, 1999; p. 18. [Google Scholar]
- Trouet, V.; Van Oldenborgh, G.J. KNMI Climate Explorer: A web-based research tool for high-resolution paleoclimatology. Tree-Ring Res. 2013, 69, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Van Oldenborgh, G.J. KNMI Climate Explorer; Koninklijk Netherlands Meteorologisch Institut (KNMI): De Bilt, Netherlands, 1999. [Google Scholar]
- Hofstra, N.; Haylock, M.; New, M.; Jones, P.D. Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2013, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Penzar, B.; Makjanić, B. Osnovna Statistička Obrada Podataka u Klimatologiji; Sveučilišna Naklada Liber: Zagreb, Croatia, 1980; p. 163. [Google Scholar]
- Zang, C.; Biondi, F. treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- Schweingruber, F.H.; Eckstein, D.; Serre Bachet, F.; Braker, O.U. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 1990, 8, 9–38. [Google Scholar]
- Walther, H. Die Klimadiagramme als Mittel zur Beurteilung der Klimaverhältnisse für ökologische, vegetationskundliche und landwirtschaftliche Zwecke. Ber. Der Dtsch. Bot. Ges. 1955, 68, 8. [Google Scholar]
Alpine Biogeographical Region | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plot no. | Precipitation | Temperature | ||||||||||||||||
J | F | M | A | M | J | J | A | S | J | F | M | A | M | J | J | A | S | |
20 | + | − | − | |||||||||||||||
21 | − | |||||||||||||||||
22 | + | + | ||||||||||||||||
23 | − | |||||||||||||||||
24 | + | + | ||||||||||||||||
25 | + | + | − | |||||||||||||||
26 | + | + | − | − | ||||||||||||||
31 | + | |||||||||||||||||
Continental biogeographical region | ||||||||||||||||||
38 | + | + | + | + | + | |||||||||||||
47 | + | + | + | − | ||||||||||||||
59 | + | + | + | + | ||||||||||||||
60 | + | + | + | + | + | − | ||||||||||||
69 | + | + | + | + | + | + | − | − | − | |||||||||
71 | No response detected | |||||||||||||||||
72 | + | − | ||||||||||||||||
80 | + | + | + | − | ||||||||||||||
88 | + | + | + | − | ||||||||||||||
94 | + | − | − | |||||||||||||||
97 | + | + | + | − | − | − | + | |||||||||||
106 | + | + | + | + | + | − | − | − | ||||||||||
120 | + | − | − | |||||||||||||||
125 | + | + | − | − | ||||||||||||||
128 | + | + | − | − | ||||||||||||||
131 | + | + | + | − | − | |||||||||||||
139 | + | + | + | − | − | − | − | − | + |
Years | Alpine region–months | Year | Percentiles | Classification | ||||||||||
I | II | III | IV | V | VI | VII | VIII | IX | ˂2 | extremely cold | ||||
Negative | 1988 | 98 | 69 | 42 | 52 | 67 | 29 | 98 | 86 | 51 | 85 | 2–9 | very cold | |
pointer years | 1991 | 68 | 19 | 94 | 20 | 1 | 74 | 98 | 88 | 92 | 55 | 9–25 | cold | |
2000 | 39 | 81 | 80 | 99 | 97 | 100 | 55 | 100 | 76 | 100 | 25–75 | normal | ||
2009 | 38 | 51 | 65 | 98 | 99 | 83 | 97 | 99 | 88 | 99 | 75–91 | warm | ||
2013 | 75 | 33 | 22 | 90 | 51 | 87 | 99 | 98 | 55 | 96 | 91–98 | very warm | ||
Positive | 1989 | 80 | 88 | 95 | 83 | 39 | 9 | 63 | 62 | 51 | 93 | >98 | extremely warm | |
pointer years | 2014 | 98 | 91 | 95 | 97 | 58 | 92 | 75 | 73 | 54 | 100 | |||
Continental region–months | ||||||||||||||
I | II | III | IV | V | VI | VII | VIII | IX | Year | |||||
Negative | 1988 | 97 | 76 | 43 | 31 | 61 | 32 | 96 | 88 | 56 | 77 | |||
pointer years | 1990 | 65 | 96 | 94 | 41 | 80 | 44 | 41 | 79 | 19 | 95 | |||
2000 | 42 | 83 | 71 | 99 | 87 | 97 | 58 | 100 | 59 | 100 | ||||
2003 | 42 | 7 | 68 | 53 | 100 | 100 | 99 | 100 | 51 | 99 | ||||
2012 | 88 | 7 | 94 | 87 | 83 | 100 | 100 | 100 | 95 | 100 | ||||
Positive | 1989 | 55 | 82 | 93 | 84 | 27 | 5 | 76 | 65 | 46 | 88 | |||
pointer years | 2014 | 98 | 88 | 96 | 93 | 49 | 91 | 88 | 71 | 57 | 100 | |||
Years | Alpine region–months | Year | Percentiles | Classification | ||||||||||
I | II | III | IV | V | VI | VII | VIII | IX | ˂2 | extremely dry | ||||
Negative | 1988 | 52 | 96 | 49 | 14 | 45 | 66 | 4 | 70 | 48 | 12 | 2–9 | very dry | |
pointer years | 1991 | 34 | 46 | 9 | 25 | 99 | 31 | 50 | 8 | 27 | 33 | 9–25 | dry | |
2000 | 5 | 13 | 44 | 7 | 12 | 4 | 93 | 3 | 49 | 15 | 25–75 | normal | ||
2009 | 71 | 73 | 91 | 67 | 7 | 47 | 36 | 13 | 13 | 46 | 75–91 | wet | ||
2013 | 98 | 98 | 99 | 7 | 91 | 6 | 5 | 27 | 86 | 90 | 91–98 | very wet | ||
Positive | 1989 | 3 | 82 | 52 | 95 | 98 | 86 | 85 | 99 | 37 | 100 | >98 | extremely wet | |
pointer years | 2014 | 98 | 100 | 16 | 96 | 65 | 55 | 97 | 95 | 89 | 100 | |||
Continental region–months | ||||||||||||||
I | II | III | IV | V | VI | VII | VIII | IX | Year | |||||
Negative | 1988 | 50 | 96 | 64 | 34 | 13 | 9 | 12 | 51 | 57 | 13 | |||
pointer years | 1990 | 24 | 24 | 29 | 42 | 13 | 57 | 15 | 13 | 94 | 22 | |||
2000 | 8 | 21 | 19 | 15 | 28 | 4 | 42 | 8 | 53 | 3 | ||||
2003 | 54 | 18 | 1 | 4 | 5 | 4 | 34 | 18 | 57 | 1 | ||||
2012 | 14 | 24 | 1 | 17 | 89 | 35 | 37 | 6 | 71 | 21 | ||||
Positive | 1989 | 7 | 31 | 40 | 51 | 93 | 46 | 51 | 95 | 41 | 29 | |||
pointer years | 2014 | 46 | 100 | 3 | 84 | 83 | 50 | 80 | 97 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levanič, T.; Ugarković, D.; Seletković, I.; Ognjenović, M.; Marušić, M.; Bogdanić, R.; Potočić, N. Radial Increment of Beech (Fagus sylvatica L.) Is under a Strong Impact of Climate in the Continental Biogeographical Region of Croatia. Plants 2023, 12, 2427. https://doi.org/10.3390/plants12132427
Levanič T, Ugarković D, Seletković I, Ognjenović M, Marušić M, Bogdanić R, Potočić N. Radial Increment of Beech (Fagus sylvatica L.) Is under a Strong Impact of Climate in the Continental Biogeographical Region of Croatia. Plants. 2023; 12(13):2427. https://doi.org/10.3390/plants12132427
Chicago/Turabian StyleLevanič, Tom, Damir Ugarković, Ivan Seletković, Mladen Ognjenović, Mia Marušić, Robert Bogdanić, and Nenad Potočić. 2023. "Radial Increment of Beech (Fagus sylvatica L.) Is under a Strong Impact of Climate in the Continental Biogeographical Region of Croatia" Plants 12, no. 13: 2427. https://doi.org/10.3390/plants12132427
APA StyleLevanič, T., Ugarković, D., Seletković, I., Ognjenović, M., Marušić, M., Bogdanić, R., & Potočić, N. (2023). Radial Increment of Beech (Fagus sylvatica L.) Is under a Strong Impact of Climate in the Continental Biogeographical Region of Croatia. Plants, 12(13), 2427. https://doi.org/10.3390/plants12132427