The Impact of Nitrogen on the Yield Formation of Artemisia dubia Wall: Efficiency and Assessment of Energy Parameters
Abstract
:1. Introduction
2. Results
2.1. Meteorological Conditions
2.2. Artemisia dubia Yield Parameters, DM Yield and NUE
2.3. Cultivation Technology Energetical Analysis
2.4. Energy Value and Elemental Content
3. Materials and Methods
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaughan, A. EU Raises Renewable Energy Targets to 32% by 2030. The Guardian, 14 June 2018. [Google Scholar]
- Fernando, A.N.; Duarte, M.P.; Almeida, J.; Boléo, S.; Mendes, B. Environmental impact assessment of energy crops cultivation in Europe. Biofuels Bioprod. Bioref. 2010, 4, 594–604. [Google Scholar] [CrossRef]
- Fernando, A.L.; Duarte, M.P.; Vatsanidou, A.; Alexopoulou, E. Environmental aspects of fiber crops cultivation and use. Ind. Crops Prod. 2015, 68, 105–115. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass Part, I. Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Jasiulewicz, M. Possibility of Liquid Bio-Fuels, Electric and Heat Energy Production from Biomass in Polish Agriculture. Pol. J. Environ. Stud. 2010, 19, 479–483. [Google Scholar]
- Huxley, A. The New RHS Dictionary of Gardening; Macmillan Press: London, UK, 1992; p. 3000. [Google Scholar]
- Ashraf, M.; Hayat, M.Q.; Jabeen, S.; Shaheen, N.; Khan, M.A.; Yasmin, G. Artemisia L. species recognized by the local community of the northern areas of Pakistan as folk therapeutic plants. J. Med. Plants Res. 2010, 4, 112–119. [Google Scholar]
- Huang, Z.S.; Pei, Y.H.; Liu, C.M.; Lin, S.; Tang, J.; Huang, D.S.; Zhang, W.D. Highly oxygenated guaianolides from Artemisia dubia. Planta Med. 2010, 76, 1710–1716. [Google Scholar] [CrossRef]
- Liang, J.Y.; Guo, S.S.; Zhang, W.J.; Geng, Z.F.; Deng, Z.W.; Du, S.S.; Zhang, J. Fumigant and repellent activities of essential oil extracted from Artemisia dubia and its main compounds against two stored product pests. Nat. Prod. Res. 2018, 32, 1234–1238. [Google Scholar] [CrossRef]
- Qasem, J.R.; Foy, C.L. Weed allelopathy, its ecological impacts and future prospects: A review. J. Crop Prod. 2001, 4, 43–119. [Google Scholar] [CrossRef]
- Singh, A.P.; Bista, M.S. Flowering Plants of Nepal: (Phanerogams); Ministry of Forests & Soil Conservation, Department of Plant Resources, Botanical Society of Nepal: Kathmandu, Nepal, 2001; p. 3999.
- Mallik, B.B.D.; Acharya, B.D.; Saquib, M.; Chettri, M.K. Allelopathic effect of Artemisia dubia extracts on seed germination and seedling growth of some weeds and winter crops. Int. J. Ecol. 2014, 21, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Moraes-Cerdeira, R.M.; Krans, J.V.; McChesney, J.D.; Pereira, A.M.; Franca, S.C. Cotton fiber as a substitute for agar support in tissue culture. Hort. Sci. 1995, 30, 1082–1083. [Google Scholar] [CrossRef] [Green Version]
- Cumplido-Marin, L.; Graves, A.R.; Burgess, P.J.; Morhart, C.; Paris, P.; Jablonowski, N.D.; Facciotto, G.; Bury, M.; Martens, R.; Nahm, M. Two novel energy crops: Sida hermaphrodita (L.) Rusby and Silphium perfoliatum L.—State of knowledge. Agronomy 2020, 10, 928. [Google Scholar] [CrossRef]
- Gojon, A. Nitrogen nutrition in plants: Rapid progress and new challenges. J. Exp. Bot. 2017, 68, 2457–2462. [Google Scholar] [CrossRef] [Green Version]
- Titova, J.; Bakšienė, E. The influence of sewage sludge compost on the growth of energy plants mugwort (Artemisia dubia Wall.) and Virginia fanpetals (Sida hermaphrodita (L.) Rusby). Agric. Sci. 2015, 22, 155–162. (In Lithuanian) [Google Scholar]
- Kadžiulienė, Ž; Tilvikienė, V.; Liaudanskienė, I.; Pociene, L.; Černiauskienė, Ž.; Zvicevicius, E.; Raila, A. Artemisia dubia growth, yield and biomass characteristics for combustion. Zemdirb.-Agric. 2017, 104, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Slepetys, J.; Kadziuliene, Z.; Sarunaite, L.; Tilvikiene, V.; Kryzeviciene, A. Biomass potential of plants grown for bioenergy production. In Growing and Processing Technologies of Energy Crops, Proceedings of the International Scientific Conference Renewable Energy and Energy Efficiency, Jelgava, Latvia, 28–30 May 2012; Latvia Agricultural University: Jelgava, Latvia, 28–30 May 2012. [Google Scholar]
- Tilvikiene, V.; Kadziuliene, Z.; Raila, A.; Zvicevicius, E.; Liaudanskiene, I.; Volkaviciute, Z.; Pociene, L. Artemisia dubia Wall.–A Novel Energy Crop for Temperate Climate Zone in Europe. In Proceedings of the 23rd European Biomass Conference and Exhibition, Vienna, Austria, 1–4 June 2015. [Google Scholar]
- Shortall, O.K. “Marginal land” for energy crops: Exploring definitions and embedded assumptions. Energy Policy 2013, 62, 19–27. [Google Scholar] [CrossRef]
- Cronin, J.; Zabel, F.; Dessens, O.; Anandarajah, G. Land suitability for energy crops under scenarios of climate change and land-use. GCB Bioenergy 2020, 12, 648–665. [Google Scholar] [CrossRef]
- Karcauskiene, D.; Repsiene, R. Long-term manuring and liming effect on moraine loam soil fertility. Agron. Res. 2009, 7, 300–304. [Google Scholar]
- Zvicevičius, E.; Raila, A.; Čiplienė, A.; Černiauskienė, Ž.; Kadžiulienė, Ž.; Tilvikienė, V. Effects of moisture and pressure on densification process of raw material from Artemisia dubia Wall. Renew. Energ. 2018, 119, 185–192. [Google Scholar] [CrossRef]
- Hülsbergen, K.J.; Feil, B.; Biermann, S.; Rathke, G.W.; Kalk, W.D.; Diepenbrock, W. A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agric. Ecosyst. Environ. 2001, 86, 303–321. [Google Scholar] [CrossRef]
- Jasinskas, A.; Scholz, V. Evaluation of Technologies of Plant Biomass Harvesting and Preparation for Fuel: Coursebook; Raudondvaris, Lithuania, 2008; p. 74. (In Lithuanian) [Google Scholar]
- Jasinskas, A.; Streikus, D.; Vonžodas, T. Fibrous hemp (Felina 32, USO 31, Finola) and fibrous nettle processing and usage of pressed biofuel for energy purposes. Renew. Energ. 2020, 149, 11–21. [Google Scholar] [CrossRef]
- Shahin, S.; Jafari, A.; Mobli, H.; Rafiee, S.; Karimi, M. Effect of farm size on energy ratio for wheat production: A case study from Ardabil province of Iran. Am.-Eurasian J. Agric. Environ. Sci. 2008, 3, 604–608. [Google Scholar]
- WRB. World Reference Base for Soil Resources; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014; pp. 187–189. [Google Scholar]
- Gan, Y.; Malhi, S.S.; Brandt, S.; Katepa-Mupondwa, F.; Stevenson, C. Nitrogen use efficiency and nitrogen uptake of juncea canola under diverse environments. Agron. J. 2008, 100, 285–295. [Google Scholar] [CrossRef]
- Vares, V.; Kask, U.; Muiste, P.; Pihu, T.; Soosaar, S. Manual for Biofuel Users; Tallinn University of Technology: Tallinn, Estonia, 2005; p. 178. [Google Scholar]
- Green, M.B. Energy in pesticide manufacture, distribution and use. Energy World Agric. 1987, 2, 165–177. [Google Scholar]
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirbyste 2017, 104, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Mockeviciene, I.; Repsiene, R.; Amaleviciute-Volunge, K.; Karcauskiene, D.; Slepetiene, A.; Lepane, V. Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil. Arch. Agron. Soil Sci. 2022, 68, 1192–1204. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Skuodienė, R.; Repšienė, R. The investigation of three potential energy crops: Common mugwort, cup plant and Virginia mallow on Western Lithuania’s Albeluvisol. Appl. Ecol. Environ. Res. 2017, 15, 611–620. [Google Scholar] [CrossRef]
- Kryževičienė, A.; Šarūnaitė, L.; Stukonis, V.; Dabkevičius, Z.; Kadžiulienė, Ž. Daugiamečių kiečių (Artemisia vulgaris L. ir Artemisia dubia Wall.) potencialo biokuro gamybai įvertinimas (Assessment of perennial mugwort (Artemisia vulgaris L. and Artemisia dubia Wall.) potential for biofuel production). Agric. Sci. 2010, 17, 32–40. (In Lithuanian) [Google Scholar]
- Černiauskienė, Ž.; Raila, A.J.; Zvicevičius, E.; Tilvikienė, V.; Jankauskienė, Z. Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops. Energies 2021, 14, 6380. [Google Scholar] [CrossRef]
Variable | Stem Height, cm | Number of Stems per m2 | Mass of one Stem, g | DM t ha−1 | NUE kg kg−1 |
---|---|---|---|---|---|
Factor A | * | ns | * | * | * |
Factor B | * | ns | * | * | ns |
Factor C | * | ns | * | * | * |
Interaction A × B | ns | ns | * | * | ns |
Interaction A × C | * | ns | * | * | * |
Interaction B × C | ns | ns | ns | ns | ns |
Interaction A × B × C | ns | ns | ns | ns | ns |
Herbicides, Fertilizers | The Amount Consumed for ha−1 | Energy Equivalent MJ kg−1 | Energy Value MJ ha−1 |
---|---|---|---|
Agil | 1.0 kg | 288 | 288 |
Roundup | 2.0 kg | 288 | 576 |
N | 90 kg 180 kg | 47.1 | 4239 8478 |
P2O5 | 60 kg | 15.8 | 948 |
K2O | 60 kg | 9.53 | 572 |
Total | 2384—10,862 |
Indicator | Energy Input, MJ ha−1 |
Energy Input, MJ ha − 1 | |
---|---|---|---|
Experiment Setup | Harvestable Year | ||
Direct energy expenses | 1516 | 4695–6096 | 6211–7612 |
Indirect energy expenses | 864 | 1520–9998 | 2384–10,862 |
Machinery energy consumption | 431 | 786–830 | 1217–1261 |
Human labour expenses | 5.2 | 13.9–14.7 | 19.1–19.9 |
Total energy expenses | 2816 | 7015–16,939 | 9831–19,755 |
Treatment | Energy Input GJ ha−1 | % Share of Fertilizers | Energy Output GJ ha−1 | EUE GJ ha−1 |
---|---|---|---|---|
Without nitrogen | 9.83 | 24.25 | 134.72 | 13.70 |
N90 | 14.80 | 44.77 | 164.08 | 11.08 |
N180 | 19.76 | 54.98 | 193.71 | 9.80 |
Parameter | First Cutting N0 | First Cutting N180 | Third Cutting N0 | Third Cutting N180 |
---|---|---|---|---|
Higher calorific value, MJ kg−1 | 19.12 ± 1.01 | 18.99 ± 0.30 | 19.40 ± 0.28 | 18.71 ± 0.25 |
Lower calorific value, MJ kg−1 | 17.92 ± 1.01 | 17.72 ± 0.30 | 18.14 ± 0.28 | 17.46 ± 0.25 |
C, % | 48.67 ± 0.20 | 47.34 ± 0.12 | 48.73 ± 0.11 | 49.36 ± 0.01 |
N, % | 1.22 ± 0.09 | 1.41 ± 0.13 | 0.68 ± 0.02 | 0.90 ± 0.01 |
H, % | 5.51 ± 0.01 | 5.79 ± 0.06 | 5.76 ± 0.02 | 5.73 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šiaudinis, G.; Jasinskas, A.; Karčauskienė, D.; Skuodienė, R.; Repšienė, R. The Impact of Nitrogen on the Yield Formation of Artemisia dubia Wall: Efficiency and Assessment of Energy Parameters. Plants 2023, 12, 2441. https://doi.org/10.3390/plants12132441
Šiaudinis G, Jasinskas A, Karčauskienė D, Skuodienė R, Repšienė R. The Impact of Nitrogen on the Yield Formation of Artemisia dubia Wall: Efficiency and Assessment of Energy Parameters. Plants. 2023; 12(13):2441. https://doi.org/10.3390/plants12132441
Chicago/Turabian StyleŠiaudinis, Gintaras, Algirdas Jasinskas, Danutė Karčauskienė, Regina Skuodienė, and Regina Repšienė. 2023. "The Impact of Nitrogen on the Yield Formation of Artemisia dubia Wall: Efficiency and Assessment of Energy Parameters" Plants 12, no. 13: 2441. https://doi.org/10.3390/plants12132441
APA StyleŠiaudinis, G., Jasinskas, A., Karčauskienė, D., Skuodienė, R., & Repšienė, R. (2023). The Impact of Nitrogen on the Yield Formation of Artemisia dubia Wall: Efficiency and Assessment of Energy Parameters. Plants, 12(13), 2441. https://doi.org/10.3390/plants12132441