Development of High-Quality Nuclei Isolation to Study Plant Root–Microbe Interaction for Single-Nuclei Transcriptomic Sequencing in Soybean
Abstract
:1. Introduction
2. Experimental Design
3. Materials and Equipment
3.1. Chemical and Stock Solutions
- PIPES (0.5 M, pH 6.0): Sigma-Aldrich Cat. No. P6757. For 50 mL, dissolve 7.56 g of 1,4-Piperazinediethanesulfonic acid in 30 mL sdH2O and adjust the volume to 50 mL. Adjust pH to 6.0 with Potassium Hydroxide (KOH) (see Note 1,2).
- EGTA (0.25 M, pH 6.0): Sigma-Aldrich Cat. No. 4100. For 50 mL, dissolve 4.76 g of Ethylene glycol bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid in 30 mL sdH2O and adjust the volume to 50 mL. Adjust pH to 6.0 with Hydrogen Chloride (HCl) (see Note 1,3).
- DTT (0.5 M): Sigma-Aldrich Cat. No. 3860. Dissolve 771.25 mg dithiothreitol in 8 mL of sdH2O and adjust the volume to 10 mL. Dispense into 1 mL aliquots and store in the dark at −20 °C (see Note 4).
- Hexylene Glycol: Sigma-Aldrich Cat. No. 68340.
- L-Lysine (1 M): Sigma-Aldrich Cat. No. 62840. For 50 mL, dissolve 7.31 g of L-Lysine in 30 mL sdH2O and adjust the volume to 50 mL (see Note 1,2).
- Liquid Nitrogen
- MACS BSA Stock Solution: Miltenyi Biotec Cat. No. 130-091-376. (see Note 4)
- Magnesium Chloride—Hexahydrate: Sigma-Aldrich Cat. No. M0250. For 50 mL, dissolve 5.08 g in 30 mL sdH2O and adjust the volume to 50 mL (see Note 1,3).
- Propidium Iodide: Sigma-Aldrich Cat. No. 537059. Dissolve 5 mg in 4 mL sdH2O and adjust the volume to 5 mL. Dispense into 20 μL aliquots and store in the dark at −20 °C.
- Nitrogen-free Hoagland media: BIO WORLD Cat. No. 30630038-5
- Percoll: Sigma-Aldrich Cat. No. P1644.
- PBS 1× Phosphate-Buffered Saline: Corning Cellgro Cat No. 21-040-CV.
- Protector RNAse inhibitor: Sigma-Aldrich Cat. No. 3335402001.
- Sodium Metabisulfite: Sigma-Aldrich Cat. No. S9000.
- Sodium Diethyldithiocarbamate—trihydrate: Sigma-Aldrich Cat. No. 228680.
3.2. Solutions and Media
3.3. Other Supplies and Equipment
- 50 mL conical centrifuge tubes [Thermo-scientific].
- 60 mm disposable Petri dishes [Fisherbrand].
- Cell strainer 10 μm [Pluriselect].
- Connector ring [Pluriselect].
- Fluorescent microscope with 40× lens [e.g., Invitrogen EVOS M5000].
- MACS SmartStrainers (30 μm, 70 μm, 100 μm) [Miltenyi Biotec].
- Microcentrifuge [e.g., Eppendorf 5424 R].
- Miracloth [Sigma-Aldrich].
- Mortar and pestle.
- Platform shaker [ex. Innova 2000].
- Premium 2.0 mL MCT graduated natural microcentrifuge tubes [Fisherbrand].
- Regular duty single edge razor blades.
- Regular pipette tips, 1000 μL, 200 μL, 10 μL.
- SKC, Inc. C-Chip™ Disposable Hemacytometers [Fisher-scientific].
- Small paintbrush.
- Swinging rotor centrifuge [e.g., Eppendorf 5910 R].
- Syringe.
- Wide bore pipette tips 1000 μL, 200 μL.
4. Detailed Procedure and Results
4.1. Nuclei Isolation
4.1.1. Tissue Homogenization and Filtration
- For frozen root or nodule tissue, take approx. 500 mg tissue and grind to a fine powder in a mortar and pestle using liquid nitrogen
- For fresh root or nodule tissue, place approx. 500 mg tissue in a 60 mm sterile Petri dish and finely chop with a razor blade in 500 μL of ice-cold NIB for 4–5 min (see Note 7, 8, 9).
- For the frozen tissue, transfer the powder to a 50 mL conical tube containing 5 mL of NIB and incubate for 10 min on ice shaking at a gentle RPM. For fresh tissue, add 4.5 mL NIB to the Petri dish and incubate for 5 min on ice shaking at a gentle RPM (see Note 9, 10).
- Slowly decant the lysate through one layer of miracloth followed by a 100 μm, 70 μm, and 30 μm cell strainer (see Note 11, 12).
- With a wide-bore tip, transfer the flowthrough to a new 50 mL tube with a 10 μm cell strainer. Negative pressure can be applied with the connector ring and syringe to aid filtering through the strainer (see Note 12).
4.1.2. Nuclei Washing
- Discard the supernatant and slowly resuspend the pellet in 1 mL ice cold WB with a wide-bore tip and transfer to a 2 mL microcentrifuge tube (see Note 9).
- Spin at 1000× g for 2 min at 4 °C.
- 3.
- Spin at 1000× g for 2 min at 4 °C. Discard the supernatant and resuspend in 1 mL of 10% percoll WB (see Note 9).
- 4.
- Repeat step 5.b. for a total of 3 washes. (see Note 9, 13)
- 5.
- Gently resuspend nodule nuclei pellet in 250 μL WB and proceed with assessment.
4.1.3. Notes and Critical Parameters
- These solutions can be stored at 4 °C for one month.
- Filter sterilize using a 0.22 µm syringe filter. Simple Pure brand filters were used in this study [Product# SFNY025022S].
- Sterilize via autoclaving on liquid cycle—121 °C for 15 min.
- Working Stock can be stored at 4 °C for 2–3 weeks.
- Nuclei Isolation buffer should be prepared fresh and not stored for more than 48 h at 4 °C.
- All solutions, tubes, mortar and pestle, and cell strainers should be pre-chilled to 4 °C for at least 1 h and kept on cold conditions during the whole process. Centrifuge rotors should be cooled to the same temperature.
- 500 mg of nodule tissue was determined to be the best starting weight for nuclei isolation. When testing, more starting tissue (>600 mg) proved too difficult to wash away enough bacteria. Smaller amounts of tissue (<400 mg) yielded too few nuclei in final suspension. The same amount is used for root tissue as an equal comparison.
- Do not allow the tissue to thaw during grinding. Keep adding liquid nitrogen after 5–6 rounds of grinding.
- Steps with (a) connote steps for root tissue. Steps with (b) connote modified or additional steps for nodule tissue.
- A small paintbrush was used to facilitate the tissue powder into the 50 mL round-bottom tube. It can also be used to push all the tissue into the NIB.
- A small hole was made in a 50 mL conical tube cap in order to make a holder for the miracloth and used in conjunction with the Miltenyi biotech cell strainers, which are stackable. With non-stackable filters, each size strainer will be placed in individual tubes. See Figure 1.
- Cell strainers and miracloth should be prewetted with Wash Buffer before filtering. The BSA in the buffer assists with filtration, especially with the 10 μm strainer.
- Repeating the wash step three times was determined to be the most consistent number of washes to produce high quality and quantity of nuclei suspension. However, the washing step can be extended if needed. When checked under 40× magnification, additional numbers of washes past three showed diminishing amounts of bacteria removed and an increase in nuclei lost and thus is not recommended.
4.2. Nuclei Quantity and Quality Assessment
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anderson, E.J.; Ali, M.L.; Beavis, W.D.; Chen, P.; Clemente, T.E.; Diers, B.W.; Graef, G.L.; Grassini, P.; Hyten, D.L.; McHale, L.K. Soybean [Glycine max (L.) Merr.] breeding: History, improvement, production and future opportunities. Adv. Plant Breed. Strateg. Legum. 2019, 7, 431–516. [Google Scholar]
- Moretti, L.G.; Lazarini, E.; Bossolani, J.W.; Parente, T.L.; Caioni, S.; Araujo, R.S.; Hungria, M. Can additional inoculations increase soybean nodulation and grain yield? Agron. J. 2018, 110, 715–721. [Google Scholar] [CrossRef]
- Thibivilliers, S.; Libault, M. Enhancing Our Understanding of Plant Cell-to-Cell Interactions Using Single-Cell Omics. Front. Plant Sci. 2021, 12, 696811. [Google Scholar] [CrossRef] [PubMed]
- Denyer, T.; Ma, X.; Klesen, S.; Scacchi, E.; Nieselt, K.; Timmermans, M.C.P. Spatiotemporal Developmental Trajectories in the Arabidopsis Root Revealed Using High-Throughput Single-Cell RNA Sequencing. Dev. Cell 2019, 48, 840–852.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmer, A.; Thibivilliers, S.; Ryu, K.H.; Schiefelbein, J.; Libault, M. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant 2021, 14, 372–383. [Google Scholar] [CrossRef]
- Jean-Baptiste, K.; McFaline-Figueroa, J.L.; Alexandre, C.M.; Dorrity, M.W.; Saunders, L.; Bubb, K.L.; Trapnell, C.; Fields, S.; Queitsch, C.; Cuperus, J.T. Dynamics of Gene Expression in Single Root Cells of Arabidopsis thaliana. Plant. Cell 2019, 31, 993–1011. [Google Scholar] [CrossRef] [Green Version]
- Ryu, K.H.; Huang, L.; Kang, H.M.; Schiefelbein, J. Single-Cell RNA Sequencing Resolves Molecular Relationships Among Individual Plant Cells. Plant Physiol. 2019, 179, 1444–1456. [Google Scholar] [CrossRef] [Green Version]
- Shulse, C.N.; Cole, B.J.; Ciobanu, D.; Lin, J.; Yoshinaga, Y.; Gouran, M.; Turco, G.M.; Zhu, Y.; O’Malley, R.C.; Brady, S.M.; et al. High-Throughput Single-Cell Transcriptome Profiling of Plant Cell Types. Cell Rep. 2019, 27, 2241–2247.e2244. [Google Scholar] [CrossRef] [Green Version]
- Turco, G.M.; Rodriguez-Medina, J.; Siebert, S.; Han, D.; Valderrama-Gómez, M.; Vahldick, H.; Shulse, C.N.; Cole, B.J.; Juliano, C.E.; Dickel, D.E.; et al. Molecular Mechanisms Driving Switch Behavior in Xylem Cell Differentiation. Cell Rep. 2019, 28, 342–351.e4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.-Q.; Xu, Z.-G.; Shang, G.-D.; Wang, J.-W. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol. Plant 2019, 12, 648–660. [Google Scholar] [CrossRef]
- Satterlee, J.W.; Strable, J.; Scanlon, M.J. Plant stem-cell organization and differentiation at single-cell resolution. Proc. Natl. Acad. Sci. USA 2020, 117, 33689–33699. [Google Scholar] [CrossRef]
- Bezrutczyk, M.; Zöllner, N.R.; Kruse, C.P.S.; Hartwig, T.; Lautwein, T.; Köhrer, K.; Frommer, W.B.; Kim, J.-Y. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves. Plant Cell 2021, 33, 531–547. [Google Scholar] [CrossRef]
- Xu, X.; Crow, M.; Rice, B.R.; Li, F.; Harris, B.; Liu, L.; Demesa-Arevalo, E.; Lu, Z.; Wang, L.; Fox, N.; et al. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev. Cell 2021, 56, 557–568.e6. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liang, Z.; Feng, D.; Jiang, S.; Wang, Y.; Du, Z.; Li, R.; Hu, G.; Zhang, P.; Ma, Y.; et al. Transcriptional landscape of rice roots at the single-cell resolution. Mol. Plant 2021, 14, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Zong, J.; Wang, L.; Zhu, L.; Bian, L.; Zhang, B.; Chen, X.; Huang, G.; Zhang, X.; Fan, J.; Cao, L.; et al. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytol. 2022, 234, 494–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cheng, D.; Fan, C.; Zhang, C.; Zhang, C.; Liu, Z. Cell Type-Specific Differentiation Between Indica and Japonica Rice Root Tip Responses to Different Environments Based on Single-Cell RNA Sequencing. Front. Genet. 2021, 12, 659500. [Google Scholar] [CrossRef]
- Kang, M.; Choi, Y.; Kim, H.; Kim, S.G. Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent. New Phytol. 2022, 234, 527–544. [Google Scholar] [CrossRef]
- Patil, G.B.; Stupar, R.M.; Zhang, F. Protoplast Isolation, Transfection, and Gene Editing for Soybean (Glycine max). Methods Mol. Biol. 2022, 2464, 173–186. [Google Scholar]
- Cervantes-Pérez, S.A.; Thibivillliers, S.; Tennant, S.; Libault, M. Review: Challenges and perspectives in applying single nuclei RNA-seq technology in plant biology. Plant Sci. 2022, 325, 111486. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, L.; Zhou, L.; Yung, W.-S.; Wang, Z.; Xiao, Z.; Wang, Q.; Wang, X.; Li, M.-W.; Lam, H.-M. Identification of the accessible chromatin regions in six tissues in the soybean. Genomics 2022, 114, 110364. [Google Scholar] [CrossRef]
- Chen, G.; Ning, B.; Shi, T. Single-cell RNA-seq technologies and related computational data analysis. Front. Genet. 2019, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Grindberg, R.V.; Yee-Greenbaum, J.L.; McConnell, M.J.; Novotny, M.; O’Shaughnessy, A.L.; Lambert, G.M.; Araúzo-Bravo, M.J.; Lee, J.; Fishman, M.; Robbins, G.E.; et al. RNA-sequencing from single nuclei. Proc. Natl. Acad. Sci. USA 2013, 110, 19802–19807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, M.L.; Deligiannis, I.K.; Yin, K.; Danese, A.; Lleshi, E.; Coupland, P.; Vallejos, C.A.; Matchett, K.P.; Henderson, N.C.; Colome-Tatche, M.; et al. Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy. Nat. Commun. 2021, 12, 4264. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kong, X.; Long, Y.; Liu, S.; Zhang, H.; Jia, J.; Cui, W.; Zhang, Z.; Song, X.; Qiu, L.; et al. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. Nat. Plants 2023, 9, 515–524. [Google Scholar] [CrossRef]
- Gaurav, V.; Kolewe, M.E.; Roberts, S.C. Flow cytometric methods to investigate culture heterogeneities for plant metabolic engineering. Methods Mol. Biol. 2010, 643, 243–262. [Google Scholar]
- Li, X.; Zhao, J.; Tan, Z.; Zeng, R.; Liao, H. GmEXPB2, a Cell Wall β-Expansin, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development. Plant Physiol. 2015, 169, 2640–2653. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.G.; Boehm, K.S.; Stack, S.M. Isolation of milligram quantities of nuclear DNA from tomato (Lycopersicon esculentum), A plant containing high levels of polyphenolic compounds. Plant Mol. Biol. Rep. 1997, 15, 148–153. [Google Scholar] [CrossRef]
- Li, Z.; Parris, S.; Saski, C.A. A simple plant high-molecular-weight DNA extraction method suitable for single-molecule technologies. Plant Methods 2020, 16, 38. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.C.; Wu, Z.C.; Huang, L.L.; Abbas, F.; Wang, H.C. Systematic Methods for Isolating High Purity Nuclei from Ten Important Plants for Omics Interrogation. Cells 2022, 11, 3919. [Google Scholar] [CrossRef]
- Thibivilliers, S.; Anderson, D.; Libault, M. Isolation of Plant Root Nuclei for Single Cell RNA Sequencing. Curr. Protoc. Plant Biol. 2020, 5, e20120. [Google Scholar] [CrossRef]
- Conde, D.; Triozzi, P.M.; Balmant, K.M.; Doty, A.L.; Miranda, M.; Boullosa, A.; Schmidt, H.W.; Pereira, W.J.; Dervinis, C.; Kirst, M. A robust method of nuclei isolation for single-cell RNA sequencing of solid tissues from the plant genus Populus. PLoS ONE 2021, 16, e0251149. [Google Scholar] [CrossRef] [PubMed]
- Sikorskaite, S.; Rajamäki, M.-L.; Baniulis, D.; Stanys, V.; Valkonen, J.P.T. Protocol: Optimised methodology for isolation of nuclei from leaves of species in the Solanaceae and Rosaceae families. Plant Methods 2013, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, H.; Okino, N.; Kijitori, H.; Izawa, Y.; Wada, Y.; Maki, M.; Yamamoto, T.; Yano, T. Analysis of biofilm and bacterial communities in the towel environment with daily use. Sci. Rep. 2023, 13, 7611. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, N.; Yamasaki, S.; Horiguchi, Y. A study of bacterial culturability during bioaerosol challenge test using a test chamber. J. Aerosol Sci. 2011, 42, 397–407. [Google Scholar] [CrossRef]
- Shirai, A.; Yasutomo, Y.-K. Bactericidal action of ferulic acid with ultraviolet-A light irradiation. J. Photochem. Photobiol. B Biol. 2019, 191, 52–58. [Google Scholar] [CrossRef]
# | Chemical | Stock Concentration | Final Concentration |
---|---|---|---|
A | Nuclei Isolation Buffer—pH 7.0 | ||
1 | Sodum Metabisulfite | - | 10 mM |
2 | Sodium Diethyldithiocarbamate | - | 0.50% |
3 | Magnesium Chloride | 0.5 M | 10 mM |
4 | EGTA (pH 6.0) | 0.25 M | 6 mM |
5 | L-Lysine | 1 M | 200 mM |
6 | PIPES (pH 6.0) | 0.5 M | 10 mM |
7 | Hexylene glycol | - | 1 M |
8 | DTT | 0.5 M | 1 mM |
9 | RNAse Inhibitor | - | 0.2 Units/μL |
B | Wash Buffer (WB) | ||
1 | PBS | - | 1× |
2 | BSA | 10% | 0.10% |
3 | DTT | 0.5 M | 1 mM |
4 | RNAse Inhibitor | - | 0.2 Units/μL |
C | 30% percoll NIB | ||
1 | NIB | - | 70% |
2 | Percoll | - | 30% |
D | 10% percoll Wash Buffer | ||
1 | WB | - | 90% |
2 | Percoll | - | 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Agostino, L.W.; Yong-Villalobos, L.; Herrera-Estrella, L.; Patil, G.B. Development of High-Quality Nuclei Isolation to Study Plant Root–Microbe Interaction for Single-Nuclei Transcriptomic Sequencing in Soybean. Plants 2023, 12, 2466. https://doi.org/10.3390/plants12132466
D’Agostino LW, Yong-Villalobos L, Herrera-Estrella L, Patil GB. Development of High-Quality Nuclei Isolation to Study Plant Root–Microbe Interaction for Single-Nuclei Transcriptomic Sequencing in Soybean. Plants. 2023; 12(13):2466. https://doi.org/10.3390/plants12132466
Chicago/Turabian StyleD’Agostino, Leonidas W., Lenin Yong-Villalobos, Luis Herrera-Estrella, and Gunvant B. Patil. 2023. "Development of High-Quality Nuclei Isolation to Study Plant Root–Microbe Interaction for Single-Nuclei Transcriptomic Sequencing in Soybean" Plants 12, no. 13: 2466. https://doi.org/10.3390/plants12132466
APA StyleD’Agostino, L. W., Yong-Villalobos, L., Herrera-Estrella, L., & Patil, G. B. (2023). Development of High-Quality Nuclei Isolation to Study Plant Root–Microbe Interaction for Single-Nuclei Transcriptomic Sequencing in Soybean. Plants, 12(13), 2466. https://doi.org/10.3390/plants12132466