Detrimental Effects of Induced Soil Compaction on Morphological Adaptation and Physiological Plasticity of Selected Multipurpose Tree Species
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Plant Sowing and Harvesting
2.4. Morphological Parameters Used in the Study
2.5. Physiological Parameters Used in the Study
2.6. Statistical Analysis
3. Results
3.1. Root Length and Shoot Length
3.2. Diameter at the Root Collar
3.3. Biomass Distribution
3.4. Plant Organs Distribution
3.5. Physiological Plant Trait
3.6. Germination Rate and Survival Percentage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Eucalyptus camaldulensis | E. camaldulensis |
Albizia lebbeck | A. lebbeck |
Vachellia nilotica | V. nilotica |
Zyziphus mauritiana | Z. mauritiana |
Bulk Density | BD |
Root length | RL |
Shoot length | SL |
Diameter at root collar | DRC |
Photosynthetic Water Use Efficiency | Photosynthetic WUE |
References
- Saqib, M.; Akhtar, J.; Abbas, G.; Murtaza, G. Enhancing food security and climate change resilience in degraded land areas by resilient crops and agroforestry. In Climate Change-Resilient Agriculture and Agroforestry; Springer: Berlin/Heidelberg, Germany, 2019; pp. 283–297. [Google Scholar]
- Muñoz-Rojas, M.; Erickson, T.E.; Dixon, K.W.; Merritt, D.J. Soil quality indicators to assess functionality of re-stored soils in degraded semiarid ecosystems. Restor. Ecol. 2016, 24, S43–S52. [Google Scholar] [CrossRef]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Morgado, R.; Ribeiro, P.F.; Santos, J.L.; Rego, F.; Beja, P.; Moreira, F. Drivers of irrigated olive grove expansion in Mediterranean landscapes and associated biodiversity impacts. Landsc. Urban Plan. 2022, 225, 104429. [Google Scholar] [CrossRef]
- Ferrara, C.; Barone, P.M.; Salvati, L. Towards a socioeconomic profile for areas vulnerable to soil compaction? A case study in a Mediterranean country. Geoderma 2015, 247, 97–107. [Google Scholar] [CrossRef]
- Ahmad, I.; Gilani, M.; Wu, P. Cuttings growth response of Dalbergia sissoo (shisham) to soil compaction stress. Appl. Ecol. Environ. Res. 2019, 17, 1049–1059. [Google Scholar] [CrossRef]
- Arman, Z.; Nikooy, M.; Tsioras, P.A.; Heidari, M.; Majnounian, B. Physiological workload evaluation by means of heart rate monitoring during motor-manual clearcutting operations. Int. J. For. Eng. 2021, 32, 91–102. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Jourgholami, M.; Majnounian, B.; Abari, M.E. Effects of tree-length timber skidding on soil compaction in the skid trail in Hyrcanian forest. For. Syst. 2014, 23, 288. [Google Scholar] [CrossRef] [Green Version]
- Kormanek, M.; Głąb, T.; Banach, J.; Szewczyk, G. Effects of soil bulk density on sessile oak Quercus petraea Liebl. seedlings. Eur. J. For. Res. 2015, 134, 969–979. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.F.; Bourrie, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef] [Green Version]
- de Moraes, M.T.; Debiasi, H.; Franchini, J.C.; Mastroberti, A.A.; Levien, R.; Leitner, D.; Schnepf, A. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil Tillage Res. 2020, 200, 104611. [Google Scholar] [CrossRef]
- Martins, P.C.; Dias Junior, M.D.; Ajayi, A.E.; Takahashi, E.N.; Tassinari, D. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests. Ciência e Agrotecnologia 2018, 42, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Ampoorter, E.; De Schrijver, A.; Van Nevel, L.; Hermy, M.; Verheyen, K. Impact of mechanized harvesting on compaction of sandy and clayey forest soils: Results of a meta-analysis. Ann. For. Sci. 2012, 69, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Ogilvie, C.M.; Ashiq, W.; Vasava, H.B.; Biswas, A. Quantifying root-soil interactions in cover crop systems: A review. Agriculture 2021, 11, 218. [Google Scholar] [CrossRef]
- Donovan, M.; Monaghan, R. Impacts of grazing on ground cover, soil physical properties and soil loss via surface erosion: A novel geospatial modelling approach. J. Environ. Manag. 2021, 287, 112206. [Google Scholar] [CrossRef]
- Somerville, P.D.; May, P.B.; Livesley, S.J. Effects of deep tillage and municipal green waste compost amendments on soil properties and tree growth in compacted urban soils. J. Environ. Manag. 2018, 227, 365–374. [Google Scholar] [CrossRef]
- Li, B.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Quantifying and mapping threats to soil biodiversity in Nanjing, China. Eur. J. Soil Biol. 2017, 82, 72–80. [Google Scholar] [CrossRef]
- Baig, M.B.; Burgess, P.J.; Fike, J.H. Agroforestry for healthy ecosystems: Constraints, improvement strategies and extension in Pakistan. Agrofor. Syst. 2021, 95, 995–1013. [Google Scholar] [CrossRef]
- Yasin, G.; Nawaz, M.F.; Yousaf, M.T.B.; Gul, S.; Qadir, I.; Niazi, N.K.; Sabir, M.A. Carbon stock and CO2 sequestration rate in linearly planted Vachellia nilotica farm trees. Pak. J. Agric. Sci. 2020, 57, 807–814. [Google Scholar]
- Ullah, A.; Zeb, A.; Saqib, S.E.; Kächele, H. Landscape co-management and livelihood sustainability: Lessons learned from the billion trees afforestation project in Pakistan. Land Use Policy 2022, 115, 106034. [Google Scholar] [CrossRef]
- Farooq, T.; Gautam, N.; Rashid, M.; Gilani, M.; Nemin, W.; Nawaz, M.; Islam, W.; Zainab, M.; Wu, P. Contributions of agroforestry on socioeconomic conditions of farmers in central Punjab, Pakistan—A case study. Cercet. Agron. Mold. 2018, 2, 91–101. [Google Scholar] [CrossRef]
- ASAE S313.3; Soil Cone Penetrometer. American Society of Agricultural and Biological Engineers (ASABE): St Joseph, MI, USA, 2011.
- Rahneshan, Z.; Nasibi, F.; Moghadam, A.A. Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. J. Plant Interact. 2018, 13, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Ali, S.; Abbas, T.; Adrees, M.; Zia-Ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Qayyum, M.F.; Nawaz, R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J. Environ. Manag. 2018, 206, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Mejía-de Tafur, M.S.; Riaño-Herrera, N.M.; Urrego-Mesa, J.B.; Ibarra-Espinosa, D.M.; Zapata-Duque, C.M. Effect of soil water availability on gas exchange in young trees of Eucalyptus grandis W. Hill ex Maiden. Acta Agron. 2017, 66, 549–557. [Google Scholar] [CrossRef]
- Jourgholami, M. Effects of soil compaction on growth variables in Cappadocian maple (Acer cappadocicum) seedlings. J. For. Res. 2018, 29, 601–610. [Google Scholar] [CrossRef]
- Erb, K.H.; Kastner, T.; Plutzar, C.; Bais, A.L.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 2018, 553, 73–76. [Google Scholar] [CrossRef]
- Bodner, G.; Mentler, A.; Keiblinger, K. Plant Roots for Sustainable Soil Structure Management in Cropping Systems. In The Root Systems in Sustainable Agricultural Intensification; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 45–90. [Google Scholar]
- Magagnotti, N.; Spinelli, R.; Güldner, O.; Erler, J. Site impact after motor-manual and mechanised thinning in Mediterranean pine plantations. Biosyst. Eng. 2012, 113, 140–147. [Google Scholar] [CrossRef]
- Hartmann, M.; Niklaus, P.A.; Zimmermann, S.; Schmutz, S.; Kremer, J.; Abarenkov, K.; Lüscher, P.; Widmer, F.; Frey, B. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 2014, 8, 226–244. [Google Scholar] [CrossRef]
- Marchi, E.; Picchio, R.; Mederski, P.S.; Vusić, D.; Perugini, M.; Venanzi, R. Impact of silvicultural treatment and forest operation on soil and regeneration in Mediterranean Turkey oak (Quercus cerris L.) coppice with standards. Ecol. Eng. 2016, 95, 475–484. [Google Scholar] [CrossRef]
- Cambi, M.; Hoshika, Y.; Mariotti, B.; Paoletti, E.; Picchio, R.; Venanzi, R.; Marchi, E. Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. For. Ecol. Manag. 2017, 384, 406–414. [Google Scholar] [CrossRef]
- Nadezhdina, N.; Prax, A.; Čermák, J.; Nadezhdin, V.; Ulrich, R.; Neruda, J.; Schlaghamersky, A. Spruce roots under heavy machinery loading in two different soil types. For. Ecol. Manag. 2012, 282, 46–52. [Google Scholar] [CrossRef]
- Cambi, M.; Mariotti, B.; Fabiano, F.; Maltoni, A.; Tani, A.; Foderi, C.; Laschi, A.; Marchi, E. Early response of Quercus robur seedlings to soil compaction following germination. Land Degrad. Dev. 2018, 29, 916–925. [Google Scholar] [CrossRef]
- Ramalingam, P.; Kamoshita, A.; Deshmukh, V.; Yaginuma, S.; Uga, Y. Association between root growth angle and root length density of a near-isogenic line of IR64 rice with Deeper Rooting 1 under different levels of soil compaction. Plant Prod. Sci. 2017, 20, 162–175. [Google Scholar] [CrossRef] [Green Version]
- Asif, M.; Nawaz, M.F.; Siddiqui, M.T.; Maqsood, M. Effect of induced soil compaction on the ecomorphological traits of early stage Bombax ceiba stumps. Pak. J. Agric. Sci. 2020, 57, 815–822. [Google Scholar]
- Silva, S.R.; Barros, N.F.D.; Novais, R.F.D.; Comerford, N.B. Eucalyptus growth and phosphorus nutritional efficiency as affected by soil compaction and phosphorus fertilization. Commun. Soil Sci. Plant Anal. 2018, 49, 2700–2714. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.F.; Bourrié, G.; Trolard, F.; Ranger, J.; Gul, S.; Niazi, N.K. Early detection of the effects of compaction in forested soils: Evidence from selective extraction techniques. J. Soils Sediments 2016, 16, 2223–2233. [Google Scholar] [CrossRef]
- Alameda, D.; Villar, R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environ. Exp. Bot. 2012, 79, 49–57. [Google Scholar] [CrossRef]
- Jourgholami, M.; Khoramizadeh, A.; Zenner, E.K. Effects of soil compaction on seedling morphology, growth, and architecture of chestnut-leaved oak (Quercus castaneifolia). iForest-Biogeosci. For. 2016, 10, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, B.; Hoshika, Y.; Cambi, M.; Marra, E.; Feng, Z.; Paoletti, E.; Marchi, E. Vehicle-induced compaction of forest soil affects plant morphological and physiological attributes: A meta-analysis. For. Ecol. Manag. 2020, 462, 118004. [Google Scholar] [CrossRef]
- Tracy, S.R.; Black, C.R.; Roberts, J.A.; Sturrock, C.; Mairhofer, S.; Craigon, J.; Mooney, S.J. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Ann. Bot. 2012, 110, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Ampoorter, E.; De Frenne, P.; Hermy, M.; Verheyen, K. Effects of soil compaction on growth and survival of tree saplings: A meta-analysis. Basic Appl. Ecol. 2011, 12, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Tavankar, F.; Nikooy, M.; Pignatti, G.; Venanzi, R.; Lo Monaco, A. Morphology, growth and architecture response of beech (Fagus orientalis Lipsky) and maple tree (Acer velutinum Boiss.) seedlings to soil compaction stress caused by mechanized logging operations. Forests 2019, 10, 771. [Google Scholar] [CrossRef] [Green Version]
- Lombardini, L.; Rossi, L. Ecophysiology of plants in dry environments. In Dryland Ecohydrology; Springer: Cham, Switzerland, 2019; pp. 71–100. [Google Scholar] [CrossRef]
- Philip, E.; Azlin, Y.N. Measurement of soil compaction tolerance of Lagestromia speciosa (L.) Pers. using chlorophyll fluorescence. Urban For. Urban Green. 2005, 3, 203–208. [Google Scholar] [CrossRef]
- Norris, C.E.; Hogg, K.E.; Maynard, D.G.; Curran, M.P. Stumping trials in British Columbia—Organic matter removal and compaction effects on tree growth from seedlings to midrotation stands. Can. J. For. Res. 2014, 44, 1402–1418. [Google Scholar] [CrossRef]
- De La Fuente, L.M.; Ovalle, J.F.; Arellano, E.; Ginocchio Cea, R. Use of alternative containers for promoting deep rooting of native forest species used for dryland restoration: The case of Acacia caven. iForest-Biogeosci. For. 2017, 10, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Riggert, R.; Fleige, H.; Horn, R. An assessment scheme for soil degradation caused by forestry machinery on skid trails in Germany. Soil Sci. Soc. Am. J. 2019, 83, S1–S12. [Google Scholar] [CrossRef]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef] [Green Version]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A European scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Arthur, E.; Schjønning, P.; Moldrup, P.; Tuller, M.; de Jonge, L.W. Density and permeability of a loess soil: Long-term organic matter effect and the response to compressive stress. Geoderma 2013, 193, 236–245. [Google Scholar] [CrossRef]
- Czarnecki, J.; Brennensthul, M.; Białczyk, W.; Ptak, W.; Gil, Ł. Analysis of traction properties and power of wheels used on various agricultural soils. Agric. Eng. 2019, 23, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sand (%) | Silt (%) | Clay (%) | |
---|---|---|---|
0–15 cm (Loam) | 40 ± 3 | 45 ± 3 | 15 ± 2 |
15–30 cm (Sandy loam) | 69 ± 5 | 18.5 ± 2 | 12.5 ± 2 |
pH | * EC (dSm−1) | ** TSS (ppm) | Nitrogen (%) | Phosphorous (ppm) | Potassium (ppm) | Organic Matter (%) | |
---|---|---|---|---|---|---|---|
0–15 cm | 8.0 ± 0.01 | 1.68 ± 0.1 | 1176 ± 35 | 0.07 ± 0.005 | 3.9 ± 0.1 | 280 ± 5 | 1.54 ± 0.05 |
15–30 cm | 8.2 ± 0.02 | 1.35 ± 0.1 | 1236 ± 10 | 0.05 ± 0.005 | 9.8 ± 0.2 | 250 ± 5 | 0.91 ± 0.02 |
Months /Years | Temperature (°C) | * R.H. (%age) | Rainfall (mm) | Sunshine Duration (Hours) | ** Pan Evap. (mm) | *** Evap. Transp. (mm) | Wind Speed (km/h) | ||
---|---|---|---|---|---|---|---|---|---|
Max. | Min. | Avg. | |||||||
Nov/2018 | 27.0 | 12.4 | 19.7 | 74.6 | 0.6 | 6.9 | 1.9 | 1.4 | 3.4 |
Dec/2018 | 21.7 | 6.5 | 14.1 | 81.5 | 0.7 | 6.9 | 1.0 | 0.9 | 2.9 |
Jan/2019 | 19.2 | 7.0 | 13.1 | 80.7 | 18.0 | 5.4 | 1.2 | 0.8 | 4.8 |
Feb/2019 | 20.3 | 9.1 | 14.7 | 79.0 | 64.2 | 6.7 | 1.6 | 1.1 | 4.4 |
Mar/2019 | 26.0 | 13.8 | 19.9 | 68.5 | 55.7 | 8.9 | 3.0 | 2.1 | 4.8 |
Apr/2019 | 35.0 | 20.6 | 27.8 | 42.5 | 31.2 | 9.0 | 5.4 | 3.8 | 5.0 |
May/2019 | 39.0 | 23.9 | 31.4 | 46.5 | 39.1 | 10.1 | 6.8 | 4.8 | 5.0 |
Jun/2019 | 42.4 | 27.4 | 34.9 | 47.8 | 35.5 | 10.1 | 8.5 | 6.0 | 5.7 |
Jul/2019 | 38.0 | 28.0 | 33.0 | 62.7 | 102.8 | 7.4 | 5.5 | 3.9 | 5.8 |
Aug/2019 | 38.0 | 28.5 | 33.2 | 72.5 | 80.9 | 7.7 | 4.5 | 3.2 | 4.3 |
Beds | Bed-1 (T1) Controlled | Bed-2 (T2) (10%) | Bed-3 (T3) (20%) | Bed-4 (T4) (30%) | Bed-5 (T5) (40%) |
---|---|---|---|---|---|
B. Densities (mg m−3) | 1.3 ± 0.03 | 1.40 ± 0.05 | 1.55 ± 0.04 | 1.65 ± 0.08 | 1.8 ± 0.1 |
T1 | T2 | T3 | T4 | T5 | ||
---|---|---|---|---|---|---|
No. of Leaves | E. camaldulensis A. lebbeck V. nilotica Z. mauritiana | 65.67 ± 1.76 | 59.00 ± 1.15 | 54.00 ± 1.00 | 36.33 ± 3.28 | 26.67 ± 2.85 |
56.00 ± 1.00 | 49.33 ± 1.45 | 41.33 ± 3.28 | 24.00 ± 1.00 | 16.00 ± 1.53 | ||
47.33 ± 1.76 | 43.33 ± 0.88 | 35.67 ± 1.86 | 25.00 ± 2.31 | 19.33 ± 0.33 | ||
69.66 ± 0.88 | 56.33 ± 2.33 | 49.00 ± 2.65 | 42.00 ± 0.57 | 28.33 ± 5.70 | ||
No. of Branches | E. camaldulensis A. lebbeck V. nilotica Z. mauritiana | 20.67 ± 1.33 | 16.00 ± 1.15 | 14.33 ± 0.66 | 5.66 ± 0.66 | 4.66 ± 0.33 |
12.00 ± 0.57 | 10.33 ± 0.33 | 9.00 ± 0.57 | 7.66 ± 0.33 | 5.66 ± 0.33 | ||
6.00 ± 0.57 | 5.33 ± 0.33 | 5.00 ± 0.57 | 3.33 ± 0.33 | 2.33 ± 0.33 | ||
17.33 ± 0.33 | 15.33 ± 0.33 | 12.33 ± 1.20 | 6.00 ± 1.73 | 3.66 ± 0.66 | ||
Leaf Area (mm2) | E. camaldulensis A. lebbeck V. nilotica Z. mauritiana | 936.6 ± 1.95 | 866.5 ± 2.11 | 822.5 ± 1.57 | 617.6 ± 33.0 | 479.9 ± 34.6 |
76.40 ± 0.72 | 70.30 ± 0.70 | 62.26 ± 0.66 | 43.73 ± 0.38 | 33.13 ± 2.50 | ||
6.20 ± 0.05 | 5.80 ± 0.05 | 5.76 ± 0.03 | 5.53 ± 0.03 | 5.48 ± 0.04 | ||
62.37 ± 1.27 | 61.96 ± 0.29 | 60.53 ± 0.20 | 59.06 ± 0.52 | 58.26 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asif, M.; Nawaz, M.F.; Ahmad, I.; Rashid, M.H.U.; Farooq, T.H.; Kashif, M.; Gul, S.; Li, Q. Detrimental Effects of Induced Soil Compaction on Morphological Adaptation and Physiological Plasticity of Selected Multipurpose Tree Species. Plants 2023, 12, 2468. https://doi.org/10.3390/plants12132468
Asif M, Nawaz MF, Ahmad I, Rashid MHU, Farooq TH, Kashif M, Gul S, Li Q. Detrimental Effects of Induced Soil Compaction on Morphological Adaptation and Physiological Plasticity of Selected Multipurpose Tree Species. Plants. 2023; 12(13):2468. https://doi.org/10.3390/plants12132468
Chicago/Turabian StyleAsif, Muhammad, Muhammad Farrakh Nawaz, Irfan Ahmad, Muhammad Haroon U. Rashid, Taimoor Hassan Farooq, Muhammad Kashif, Sadaf Gul, and Qian Li. 2023. "Detrimental Effects of Induced Soil Compaction on Morphological Adaptation and Physiological Plasticity of Selected Multipurpose Tree Species" Plants 12, no. 13: 2468. https://doi.org/10.3390/plants12132468
APA StyleAsif, M., Nawaz, M. F., Ahmad, I., Rashid, M. H. U., Farooq, T. H., Kashif, M., Gul, S., & Li, Q. (2023). Detrimental Effects of Induced Soil Compaction on Morphological Adaptation and Physiological Plasticity of Selected Multipurpose Tree Species. Plants, 12(13), 2468. https://doi.org/10.3390/plants12132468