Phytochemical Screening and Antioxidant Potential of Selected Extracts from Betula alba var. pendula Roth., Glycyrrhiza glabra L., and Avena sativa L.
Abstract
:1. Introduction
2. Results
2.1. The Extraction Process Yields
2.2. The Determination of Total Flavonoid Content (TFC), Total Polyphenol Content (TPC), and Total Phenolic Acid Content (TPA) Using Spectrophotometric Methods
2.3. GC-MS Analysis
2.4. Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR-MS) Analysis
2.5. Radical Scavenging Activity
2.6. Statistical Analysis
2.6.1. Multiple Box Plots for the Antioxidant Activity
2.6.2. Comparison of Antioxidant Activity between Multiple Plant Extract Groups
2.6.3. Correlation Analysis and Relationship Map
2.7. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals
4.3. Extraction Method and Extraction Process Yield
4.4. Determination of Total Flavonoid Content (TFC), Total Polyphenol Content (TPC), and Total Phenolic Acid Content (TPA) Using Spectrophotometric Methods
4.4.1. Determination of the Total Flavonoid Content (TFC)
4.4.2. Determination of the Total Polyphenol Content (TPC)
4.4.3. Determination of the Total Phenolic Acid Content (TPA)
4.5. GC-MS Analysis
4.5.1. Derivatization Method
4.5.2. A Specific Method for the Identification of the Fatty Acids
4.5.3. Determination Method of Volatile Substances
- incubation (sample volatilization in the thermostat), 10 min at 90 °C; syringe temperature, 100 °C;
- injection volume, 200 µL; split ratio, 5; purge flow, 3 mL/min; injector temperature, 250 °C. Oven heating was programmed from 50 °C to 220 °C, with 20 °C/min, where it remained constant for 1.5 min.
4.6. Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) Analysis
4.7. Radical Scavenging Activity
4.8. Molecular Docking Simulations
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lalhminghlui, K.; Jagetia, G.C. Evaluation of the free-radical scavenging and antioxidant activities of chilauni, Schima wallichii Korth in vitro. Futur. Sci. OA 2018, 4, FSO272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behera, S.K. Phytochemical screening and antioxidant properties of methanolic extract of root of Asparagus racemosus Linn. Int. J. Food Prop. 2018, 21, 2681–2688. [Google Scholar] [CrossRef] [Green Version]
- Ondo, J.P.; Obame, L.C.; Akoue, G.N.; Engono, J.P.M.; Parkouda, S.; Emvo, E.N.; Lebibi, J. Studies on phytochemical screening, total phenolic content and antiradical activity of three extracts of Emilia sagittata DC. (Asteraceae). Int. J. Biosci. 2013, 3, 50–57. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The medical importance of Betula alba- an overview. J. Pharm. Biol. 2015, 5, 99–103. [Google Scholar]
- Costea, T.; Vlase, L.; Ancuceanu, R.V.; Dinu, M.; Olah, N.K.; Popescu, M.L.; Gird, C.E. Chemical composition, antioxidant activity and phytotoxic properties of silver birch leaves. Rom. Biotechnol. Lett. 2016, 21, 11527–11538. [Google Scholar]
- Berzins, R.; Paze, A.; Rizhikovs, J.; Makars, R.; Godiņa, D.; Lauberts, M.; Stankus, K. Influence of solvents on the antioxidant properties of the birch outer bark extract in cosmetic emulsions. Key Eng. Mater. 2021, 903, 28–33. [Google Scholar] [CrossRef]
- Co, M.; Koskela, P.; Eklund-Åkergren, P.; Srinivas, K.; King, J.W.; Sjöberg, P.J.R.; Turner, C. Pressurized liquid extraction of betulin and antioxidants from birch bark. Green Chem. 2009, 11, 668–674. [Google Scholar] [CrossRef]
- Wani, M.S.; Tantary, Y.R.; Gupta, R.C.; Jan, I.; Zarger, S.A.; Betula, L. Distribution, ecology and phytochemicals. In Betula: Ecology and Uses; Bertelsen, C.T., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2020; Available online: https://www.researchgate.net/publication/340902220 (accessed on 15 May 2023).
- Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Medicinal plants of the genus Betula—Traditional uses and a phytochemical–pharmacological review. J. Ethnopharmacol. 2014, 159, 62–83. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, L.; Xia, P.; Zhao, J.; Li, W.; Zhou, Y.; Wei, Q.; Wu, Q.; Wu, Q.; Sun, D.; et al. Glycyrrhetinic acid protects renal tubular cells against oxidative injury via reciprocal regulation of JNK-connexin 43-thioredoxin 1 signaling. Front. Pharmacol. 2021, 12, 619567. [Google Scholar] [CrossRef]
- D’Angelo, S.; Morana, A.; Salvatore, A.; Zappia, V.; Galletti, P. Protective effect of polyphenols from Glycyrrhiza glabra against oxidative stress in Caco-2 cells. J. Med. Food 2009, 12, 1326–1333. [Google Scholar] [CrossRef]
- Chen, J.; Li, L.-F.; Hu, X.-R.; Wei, F.; Ma, S. Network pharmacology-based strategy for elucidating the molecular basis for the pharmacologic effects of licorice (Glycyrrhiza spp.). Front. Pharmacol. 2021, 12, 590477. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Verma, B.; Arya, P. A Review on constituents, pharmacological activities and medicinal uses of Glycyrrhiza Glabra. Univers. J. Pharm. Res. 2017, 2, 6–11. [Google Scholar] [CrossRef]
- Pastorino, G.; Cornara, L.; Soares, S.; Rodrigues, F.; Oliveira, M.B.P.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res. 2018, 32, 2323–2339. [Google Scholar] [CrossRef]
- Ciganović, P.; Jakimiuk, K.; Tomczyk, M.; Končić, M.Z. Glycerolic licorice extracts as active cosmeceutical ingredients: Extraction optimization, chemical characterization, and biological activity. Antioxidants 2019, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, G.; Srikantam, S. Hydroalcoholic extract of licorice (Glycyrrhiza glabra L.) root attenuates ethanol and cerulein induced pancreatitis in rats. Asian Pac. J. Trop. Biomed. 2019, 9, 424–433. [Google Scholar] [CrossRef]
- Kato, M.; Takayama, Y.; Sunagawa, M. The Calcium-activated chloride channel TMEM16A is inhibitied by liquiritigenin. Front. Pharmacol. 2021, 12, 628968. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Mei, L.; Wang, M.; Huang, Q.; Huang, R. Anti-inflammatory and pro-apoptotic effects of 18beta-glycyrrhetinic acid in vitro and in vivo models of rheumatoid arthritis. Front. Pharmacol. 2021, 12, 681525. [Google Scholar] [CrossRef]
- Darvishi, M.; Mehrgan, M.S.; Khajehrahimi, A.E. Effect of licorice (Glycyrrhiza glabra) extract as an immunostimulant on serum and skin mucus immune parameters, transcriptomic responses of immune-related gene, and disease resistance against Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Front. Veter. Sci. 2022, 9, 811684. [Google Scholar] [CrossRef]
- Laekeman, G.; Vlietinck, A. Assessment Report on Avena sativa L. herba and Avena sativa L. fructus; European Medicines Agency: London, UK, 2008; pp. 1–21. [Google Scholar]
- Kim, I.-S.; Hwang, C.-W.; Yang, W.-S.; Kim, C.-H. Multiple antioxidative and bioactive molecules of oats (Avena sativa L.) in human health. Antioxidants 2021, 10, 1454. [Google Scholar] [CrossRef]
- US FDA. Code of Federal Regulations Title 21. 21CFR347.10; 2023; Volume 5. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=347.10&SearchTerm=colloidal%20oatmeal (accessed on 25 May 2023).
- Ahmed, S.M.U.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef]
- Baird, L.; Yamamoto, M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol. Cell. Biol. 2020, 40, e00099-20. [Google Scholar] [CrossRef] [PubMed]
- Cleasby, A.; Yon, J.; Day, P.J.; Richardson, C.; Tickle, I.; Williams, P.; Callahan, J.F.; Carr, R.; Concha, N.; Kerns, J.K.; et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS ONE 2014, 9, e98896. [Google Scholar] [CrossRef] [PubMed]
- Canning, P.; Sorrell, F.J.; Bullock, A.N. Structural basis of Keap1 interactions with Nrf2. Free. Radic. Biol. Med. 2015, 88, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, M.; Lynch, A.; Muellers, S.N.; Jehle, S.; Luo, L.; Hall, D.R.; Iwase, R.; Carolan, J.P.; Egbert, M.; Wakefield, A.; et al. Interaction energetics and druggability of the protein–protein interaction between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2). Biochemistry 2019, 59, 563–581. [Google Scholar] [CrossRef]
- Cheng, Y.; Cheng, L.; Gao, X.; Chen, S.; Wu, P.; Wang, C.; Liu, Z. Covalent modification of Keap1 at Cys77 and Cys434 by pubescenoside a suppresses oxidative stress-induced NLRP3 inflammasome activation in myocardial ischemia-reperfusion injury. Theranostics 2021, 11, 861–877. [Google Scholar] [CrossRef]
- Dong, T.; Liu, W.; Shen, Z.; Li, L.; Chen, S.; Lei, X. Pterisolic acid B is a Nrf2 activator by targeting C171 within Keap1-BTB domain. Sci. Rep. 2016, 6, 19231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennig, P.; Fenini, G.; Di Filippo, M.; Beer, H.-D. Electrophiles against (skin) diseases: More than Nrf2. Biomolecules 2020, 10, 271. [Google Scholar] [CrossRef] [Green Version]
- Gęgotek, A.; Skrzydlewska, E. The role of transcription factor Nrf2 in skin cells metabolism. Arch. Dermatol. Res. 2015, 307, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Xian, D.; Xiong, X.; Xu, J.; Xian, L.; Lei, Q.; Song, J.; Zhong, J. Nrf2 Overexpression for the protective effect of skin-derived precursors against UV-induced damage: Evidence from a three-dimensional skin model. Oxidative Med. Cell. Longev. 2019, 2019, 7021428. [Google Scholar] [CrossRef] [Green Version]
- Edamitsu, T.; Taguchi, K.; Okuyama, R.; Yamamoto, M. AHR and NRF2 in skin homeostasis and atopic dermatitis. Antioxidants 2022, 11, 227. [Google Scholar] [CrossRef]
- Ungurianu, A.; Zanfirescu, A.; Margină, D. Regulation of gene expression through food—Curcumin as a sirtuin activity modulator. Plants 2022, 11, 1741. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Eggler, A.L.; Liu, D.; Liu, G.; Mesecar, A.D.; van Breemen, R.B. Sites of alkylation of human Keap1 by natural chemoprevention agents. J. Am. Soc. Mass Spectrom. 2007, 18, 2226–2232. [Google Scholar] [CrossRef] [Green Version]
- Shinkai, Y.; Abiko, Y.; Ida, T.; Miura, T.; Kakehashi, H.; Ishii, I.; Nishida, M.; Sawa, T.; Akaike, T.; Kumagai, Y. Reactive sulfur species-mediated activation of the Keap1–Nrf2 pathway by 1,2-naphthoquinone through sulfenic acids formation under oxidative stress. Chem. Res. Toxicol. 2015, 28, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Schär, M.Y.; Corona, G.; Soycan, G.; Dine, C.; Kristek, A.; Alsharif, S.N.S.; Behrends, V.; Lovegrove, A.; Shewry, P.R.; Spencer, J.P.E. Excretion of avenanthramides, phenolic acids and their major metabolites following intake of oat bran. Mol. Nutr. Food Res. 2018, 62, 1700499. [Google Scholar] [CrossRef] [Green Version]
- Ercisli, S.; Coruh, I.; Gormez, A.; Sengul, M.; Bilen, S. Total phenolics, mineral content, antioxidant and antibacterial activities of Glycyrrhiza glabra L. roots grown wild in Turkey. Ital. J. Food Sci. 2008, 20, 91–99. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hikmawanti, N.P.E.; Fatmawati, S.; Asri, A.W. The effect of ethanol concentrations as the extraction solvent on antioxidant activity of katuk (Sauropus androgynus (L.) Merr.) leaves extracts. IOP Conf. Series Earth Environ. Sci. 2021, 755, 012060. [Google Scholar] [CrossRef]
- Chandrasekharan, D.K.; Varghese, F. Ethanolic extract of Glycyrrhiza glabra to ameliorate oxidative stress–studies in vitro. Lett. Appl. NanoBioScience 2020, 10, 2289–2297. [Google Scholar] [CrossRef]
- Hadjadj, S.; Esnault, M.-A.; Berardocco, S.; Guyot, S.; Bouchereau, A.; Ghouini, F.; Lamini, R.; El Hadj-Khelil, A.O. Polyphenol composition and antioxidant activity of Searsia tripartita and Limoniastrum guyonianum growing in Southeastern Algeria. Sci. Afr. 2020, 10, e00585. [Google Scholar] [CrossRef]
- Nakurte, I.; Stankus, K.; Virsis, I.; Paze, A.; Rizhikovs, J. Characterization of antioxidant activity and total phenolic compound content of birch outer bark extracts using micro plate assay. In Proceedings of the International Scientific and Practical Conference, Environment Technology Resources Proceedings, Rezekne, Latvia, 15–17 June 2017; Volume I, pp. 197–201. [Google Scholar] [CrossRef]
- Farag, M.A.; Porzel, A.; Wessjohann, L.A. Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC–MS and 1D NMR techniques. Phytochemistry 2012, 76, 60–72. [Google Scholar] [CrossRef]
- Husain, I.; Bala, K.; Khan, I.A.; Khan, S.I. A review on phytochemicals, pharmacological activities, drug interactions, and associated toxicities of licorice (Glycyrrhiza sp.). Food Front. 2021, 2, 449–485. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, M. Chemical analysis of the chinese herbal medicine gan-cao (licorice). J. Chromatogr. A 2009, 1216, 1954–1969. [Google Scholar] [CrossRef] [PubMed]
- Azman, N.A.M.; Skowyra, M.; Muhammad, K.; Gallego, M.G.; Almajano, M.P. Evaluation of the antioxidant activity of Betula pendula leaves extract and its effects on model foods. Pharm. Biol. 2017, 55, 912–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency. Assessment Report on Betula Pendula Roth and/or Betula Pubescens Ehrh. As Well as Hybrids of Both Species, Folium; EMA/HMPC/573240/2014; Committee on Herbal Medicinal Products (HMPC): London, UK, 2014. [Google Scholar]
- Li, L.; Zhang, X.; Cui, L.; Wang, L.; Liu, H.; Ji, H.; Du, Y. Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res. 2013, 1497, 32–39. [Google Scholar] [CrossRef]
- Ding, H.; Wang, H.; Zhu, L.; Wei, W. Ursolic acid ameliorates early brain injury after experimental traumatic brain injury in mice by activating the Nrf2 pathway. Neurochem. Res. 2016, 42, 337–346. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, L.; Ou, Z.; Ma, C.; Kong, L.; Huang, Y.; Chen, Y.; Zhao, H.; Wen, L.; Wu, J.; et al. Betulinic acid protects against renal damage by attenuation of oxidative stress and inflammation via Nrf2 signaling pathway in T-2 toxin-induced mice. Int. Immunopharmacol. 2021, 101, 108210. [Google Scholar] [CrossRef]
- Huang, S.; Mo, C.; Zeng, T.; Lai, Y.; Zhou, C.; Xie, S.; Chen, L.; Wang, Y.; Chen, Y.; Huang, S.; et al. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging 2021, 13, 6592–6605. [Google Scholar] [CrossRef]
- Reisman, S.A.; Aleksunes, L.M.; Klaassen, C.D. Oleanolic acid activates Nrf2 and protects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes. Biochem. Pharmacol. 2009, 77, 1273–1282. [Google Scholar] [CrossRef] [Green Version]
- El-Magd, N.F.A.; El-Mesery, M.; El-Karef, A.; El-Shishtawy, M.M. Glycyrrhizin ameliorates high fat diet-induced obesity in rats by activating NrF2 pathway. Life Sci. 2018, 193, 159–170. [Google Scholar] [CrossRef]
- Wondrak, G.T.; Cabello, C.M.; Villeneuve, N.F.; Zhang, S.; Ley, S.; Li, Y.; Sun, Z.; Zhang, D.D. Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free. Radic. Biol. Med. 2008, 45, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-Y.; Pyo, M.C.; Nam, M.-H.; Lee, K.-W. ERK/Nrf2 pathway activation by caffeic acid in HepG2 cells alleviates its hepatocellular damage caused by t-butylhydroperoxide-induced oxidative stress. Dihydrocaffeic acid bound to the target protein in a similar fashion and could also be regarded as a potential ligand. BMC Complement. Altern. Med. 2019, 19, 139. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, S.; Kumari, N.; Vinoth Prasanna, G.; Balupillai, A.; Ernest, D.; Govindhan, A.; Rajamanickam, V.; Malliga, P.; Latha, S.; Mathan, G. p-Coumaric acid attenuates alcohol exposed hepatic injury through MAPKs, apoptosis and Nrf2 signaling in experimental models. Chem. Interactions 2020, 321, 109044. [Google Scholar] [CrossRef]
- Yu, C.; Pan, S.; Zhang, J.; Li, X.; Niu, Y. Ferulic acid exerts Nrf2-dependent protection against prenatal lead exposure-induced cognitive impairment in offspring mice. J. Nutr. Biochem. 2021, 91, 108603. [Google Scholar] [CrossRef]
- Huang, Z.; Sheng, Y.; Chen, M.; Hao, Z.; Hu, F.; Ji, L. Liquiritigenin and liquiritin alleviated MCT-induced HSOS by activating Nrf2 antioxidative defense system. Toxicol. Appl. Pharmacol. 2018, 355, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Dupuis, J.H.; Yada, R.Y.; Kitts, D.D. Chlorogenic acid isomers directly interact with Keap 1-Nrf2 signaling in Caco-2 cells. Mol. Cell. Biochem. 2019, 457, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-S.; Tang, X.-Y.; Su, W.; Li, X. Vitexin protects melanocytes from oxidative stress via activating MAPK-Nrf2/ARE pathway. Immunopharmacol. Immunotoxicol. 2020, 42, 594–603. [Google Scholar] [CrossRef]
- Fouzder, C.; Mukhuty, A.; Kundu, R. Kaempferol inhibits Nrf2 signalling pathway via downregulation of Nrf2 mRNA and induces apoptosis in NSCLC cells. Arch. Biochem. Biophys. 2020, 697, 108700. [Google Scholar] [CrossRef]
- Yao, H.; Sun, J.; Wei, J.; Zhang, X.; Chen, B.; Lin, Y. Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway. Front. Pharmacol. 2020, 11, 1118. [Google Scholar] [CrossRef]
- Yuan, T.; Wang, X.; Cai, D.; Liao, M.; Liu, R.; Qin, J. Anti-arthritic and cartilage damage prevention via regulation of Nrf2/HO-1 signaling by glabridin on osteoarthritis. Arab. J. Chem. 2021, 14, 103207. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, X.-M.; Wu, L.-Y.; Liu, G.-J.; Xu, W.-D.; Zhang, X.-S.; Gao, Y.-Y.; Tao, T.; Zhou, Y.; Lu, Y.; et al. Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury. J. Neuroinflamm. 2020, 17, 188. [Google Scholar] [CrossRef]
- Gîrd, C.E.; Duțu, L.E.; Popescu, M.L.; Nencu, I.; Costea, T. Farmacognozie Practică (Laboratory Guide—“Carol Davila” University); Editura Universitară “Carol Davila”: București, Romania, 2020; Volume I. [Google Scholar]
- Lamuela-Raventós, R.M. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 107–115. [Google Scholar] [CrossRef]
- Kyriazis, I.D.; Skaperda, Z.; Tekos, F.; Makri, S.; Vardakas, P.; Vassi, E.; Patouna, A.; Terizi, K.; Angelakis, C.; Kouretas, D. Methodology for the biofunctional assessment of honey (Review). Int. J. Funct. Nutr. 2021, 2, 1–11. [Google Scholar] [CrossRef]
- Rajurkar, N.; Hande, S. Estimation of phytochemical content and antioxidant activity of some selected traditional Indian medicinal plants. Indian J. Pharm. Sci. 2011, 73, 146–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romulo, A. The principle of some in vitro antioxidant activity methods: Review. IOP Conf. Ser. Earth Environ. Sci. 2020, 426, 012177. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Danet, A.F. Recent advances in antioxidant capacity assays. In Antioxidants-Benefits, Sources, Mechanisms of Action; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Sarwar, R.; Farooq, U.; Khan, A.; Naz, S.; Khan, S.; Khan, A.; Rauf, A.; Bahadar, H.; Uddin, R. Evaluation of antioxidant, free radical scavenging, and antimicrobial activity of Quercus incana Roxb. Front. Pharmacol. 2015, 6, 277. [Google Scholar] [CrossRef] [Green Version]
- Krieger, E.; Vriend, G. YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics 2014, 30, 2981–2982. [Google Scholar] [CrossRef] [Green Version]
- Zanfirescu, A.; Nitulescu, G.; Mihai, D.P.; Nitulescu, G.M. Identifying FAAH inhibitors as new therapeutic options for the treatment of chronic pain through drug repurposing. Pharmaceuticals 2021, 15, 38. [Google Scholar] [CrossRef]
- Nitulescu, G.; Nitulescu, G.M.; Zanfirescu, A.; Mihai, D.P.; Gradinaru, D. Candidates for repurposing as anti-virulence agents based on the structural profile analysis of microbial collagenase inhibitors. Pharmaceutics 2021, 14, 62. [Google Scholar] [CrossRef]
- Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; et al. A practical guide to large-scale docking. Nat. Protoc. 2021, 16, 4799–4832. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitulescu, G.; Mihai, D.P.; Nicorescu, I.M.; Olaru, O.T.; Ungurianu, A.; Zanfirescu, A.; Nitulescu, G.M.; Margina, D. Discovery of natural naphthoquinones as sortase A inhibitors and potential anti-infective solutions against Staphylococcus aureus. Drug Dev. Res. 2019, 80, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
Vegetal Extract | TFC (g Rutoside/100 g Dry Extract) | TPC (g Tannic Acid/100 g Dry Extract) | TPA (g Chlorogenic Acid/100 g Dry Extract) |
---|---|---|---|
Betulae extractum (BE) | 3.747 ± 0.3140 | 47.96 ± 9.7083 | 25.34 ± 1.6728 |
Liquiritiae extractum (LE) | 3.44 ± 0.3037 | 9.31 ± 0.9913 | ND |
Avenae extractum (AE) | 1.95 ± 0.0526 | 40.55 ± 6.3715 | ND |
Betulae extractum (BE) | Liquiritiae extractum (LE) | Avenae extractum (AE) |
---|---|---|
Myristic acid | Palmitic acid | Myristic acid |
Palmitic acid | Linoleic acid | Palmitic acid |
Linoleic acid | Oleic acid | Linoleic acid |
Oleic acid | Stearic acid | Linolenic acid |
Stearic acid | Stearic acid | |
Behenic acid | Palmitelaidic acid |
Type of Extract | Linoleic Acid (g %) | Linolenic Acid (g %) |
---|---|---|
Betulae extractum (BE) | 0.015 | <0.01 |
Liquiritiae extractum (LE) | 0.01 | <0.01 |
Avenae extractum (AE) | 0.19 | 0.92 |
Type of Extract | Compound | Compound Class |
---|---|---|
Betulae extractum (BE) | Betulinic acid | Triterpenes |
Oleanolic acid | ||
Ursolic acid | ||
Betulin | ||
Erythrodiol | ||
Betulinaldehide | ||
Betulonic acid | ||
Lupenone | ||
Lupeol | ||
Stearic acid | Fatty acids | |
Oleic acid | ||
Linoleic acid | ||
Betuloside | Phenolic compounds | |
Caffeic acid | ||
Kaempferol | ||
Myo-Inositol | Polyols | |
Liquiritiae extractum (LE) | Glycyrrhizin/Glycyrrhizinic acid | Triterpenes |
Glycyrrhetinic acid | ||
Liquiritigenin/Isoliquiritigenin | Phenolic compounds | |
Glabridin | ||
Linoleic acid | Fatty acids | |
Palmitic acid | ||
Myo-inositol | Polyols | |
Avenae extractum (AE) | Avenacoside A | Steroidal saponin |
Linolenic acid | Fatty acids | |
Oleic acid | ||
Palmitic acid | ||
Linoleic acid | ||
Tricin | Flavonoids | |
Vitexin | ||
Myo-Inositol | Polyol | |
Tryptophan | Amino acid | |
Citric acid | Tricarboxilic acid | |
Caffeic acid | Phenolic compounds | |
Ferulic acid | ||
Sucrose | Sugars | |
D-mannose | ||
D-glucopyranose | ||
Beta-glucan | ||
Kestose | ||
Neokestose |
Vegetal Extract | DPPH Method, IC50 (µg/mL) | ABTS Method, IC50 (µg/mL) | FRAP Method, EC50 (µg/mL) |
---|---|---|---|
Betulae extractum (BE) | 73.6 | 11.2 | 58.7 |
Liquiritiae extractum (LE) | 805.6 | 92.1 | 722.0 |
Avenae extractum (AE) | 1122.6 | 99.7 | 135.1 |
Vitamin C (reference substance) | 16.5 | - | - |
(I) Vegetal Extract Group | (J) Vegetal Extract Group | Mean Difference (I-J) | ||
---|---|---|---|---|
ABTS | DPPH | FRAP | ||
Betulae extractum (BE) | Liquiritiae | 0.0010 | 0.2258 * | 1.0506 * |
Avenae | 0.3240 * | 0.3842 * | 0.7373 * | |
Avenae extractum (AE) | Betulae | −0.3240 * | −0.2258 * | −1.0506 * |
Liquiritiae | −0.3229 * | 0.1584 * | −0.3132 * | |
Liquiritiae extractum (LE) | Betulae | −0.0010 | −0.3842 * | −0.7373 * |
Avenae | 0.3229 * | −0.1584 * | 0.3132 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghica, A.; Drumea, V.; Moroșan, A.; Mihaiescu, D.E.; Costea, L.; Luță, E.A.; Mihai, D.P.; Balaci, D.T.; Fița, A.C.; Olaru, O.T.; et al. Phytochemical Screening and Antioxidant Potential of Selected Extracts from Betula alba var. pendula Roth., Glycyrrhiza glabra L., and Avena sativa L. Plants 2023, 12, 2510. https://doi.org/10.3390/plants12132510
Ghica A, Drumea V, Moroșan A, Mihaiescu DE, Costea L, Luță EA, Mihai DP, Balaci DT, Fița AC, Olaru OT, et al. Phytochemical Screening and Antioxidant Potential of Selected Extracts from Betula alba var. pendula Roth., Glycyrrhiza glabra L., and Avena sativa L. Plants. 2023; 12(13):2510. https://doi.org/10.3390/plants12132510
Chicago/Turabian StyleGhica, Adelina, Veronica Drumea, Alina Moroșan, Dan Eduard Mihaiescu, Liliana Costea, Emanuela Alice Luță, Dragos Paul Mihai, Dalila Teodora Balaci, Ancuța Cătălina Fița, Octavian Tudorel Olaru, and et al. 2023. "Phytochemical Screening and Antioxidant Potential of Selected Extracts from Betula alba var. pendula Roth., Glycyrrhiza glabra L., and Avena sativa L." Plants 12, no. 13: 2510. https://doi.org/10.3390/plants12132510
APA StyleGhica, A., Drumea, V., Moroșan, A., Mihaiescu, D. E., Costea, L., Luță, E. A., Mihai, D. P., Balaci, D. T., Fița, A. C., Olaru, O. T., Boscencu, R., & Gîrd, C. E. (2023). Phytochemical Screening and Antioxidant Potential of Selected Extracts from Betula alba var. pendula Roth., Glycyrrhiza glabra L., and Avena sativa L. Plants, 12(13), 2510. https://doi.org/10.3390/plants12132510