Assessment of Genetic Variability and Evolutionary Relationships of Rhizoctonia solani Inherent in Legume Crops
Abstract
:1. Introduction
2. Results
2.1. Anastomosis Groups Sequences/Studies Associated with Legume Crops
2.2. Phylogenetic Analysis of AGs within Each Legume Crop
2.3. Phylogenetic Analysis and Genetic Diversity of AGs across the Legumes
2.4. Percent Sequence Identities within and between Clades
2.5. Principal Coordinate Analysis of Anastomosis Groups across Legumes
3. Discussion
4. Materials and Methods
4.1. Data Collection
4.2. Number of Studies That Report Anastomosis Groups
4.3. Sequences Alignments
4.4. Phylogenetic Analysis
4.5. Principal Coordinate Analysis (PCoA)
5. Conclusions, Drawbacks, and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogoshi, A. Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kuhn. Annu. Rev. Phytopathol. 1987, 25, 125–143. [Google Scholar] [CrossRef]
- Sneh, B. Non pathogenic isolates of Rhizoctonia spp.(np-R) and their role in biological control. In Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control; Sneh, B., Jabaji-Hare, S., Neate, S., Dijst, G., Eds.; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 1996; pp. 473–483. [Google Scholar]
- Ajayi-Oyetunde, O.; Bradley, C. Rhizoctonia solani: Taxonomy, population biology and management of Rhizoctonia seedling disease of soybean. Plant Pathol. 2018, 67, 3–17. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, S.; Tian, H.; Wang, Z.; Yu, B.; Ma, L.; Nan, Z.; Fang, X. Varieties with a high level of resistance provide an opportunity to manage root rot caused by Rhizoctonia solani in alfalfa. Eur. J. Plant Pathol. 2021, 160, 983–989. [Google Scholar] [CrossRef]
- Jin, D.; Ma, J.; Ma, W.; Liang, C.; Shi, Y.; He, J.-S. Legumes in Chinese Natural Grasslands: Species, Biomass, and Distribution. Rangel. Ecol. Manag. 2013, 66, 648–656. [Google Scholar] [CrossRef]
- Zheng, F.; Wu, H.; Zhang, R.; Li, S.; He, W.; Wong, F.-L.; Li, G.; Zhao, S.; Lam, H.-M. Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. BMC Genom. 2016, 17, 402. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Luckow, M.A. The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol. 2003, 131, 900–910. [Google Scholar] [CrossRef] [Green Version]
- Hofer, J.M.I.; Ellis, T.H.N. Developmental specialisations in the legume family. Curr. Opin. Plant Biol. 2014, 17, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, H.; Hechenleitner, P.; Santos-Guerra, A.; de Sequeira, M.M.; Pennington, R.T.; Kenicer, G.; Carine, M.A. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evol. Biol. 2012, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- Naseri, B.; Moradi, P. Farm Management Strategies and the Prevalence of Rhizoctonia Root Rot in Bean. J. Plant Dis. Prot. 2015, 122, 238–243. [Google Scholar] [CrossRef]
- Basbagci, G.; Dolar, F.S. First report of binucleate Rhizoctonia AG-K causing root rot on chickpea. Arch. Phytopathol. Plant Prot. 2020, 53, 640–652. [Google Scholar] [CrossRef]
- Ajayi-Oyetunde, O.O.; Bradley, C.A. Identification and characterization of Rhizoctonia species associated with soybean seedling disease. Plant Dis. 2017, 101, 520–533. [Google Scholar] [CrossRef] [Green Version]
- Al-Jaradi, A.; Al-Mahmooli, I.; Janke, R.; Maharachchikumbura, S.; Al-Saady, N.; Al-Sadi, A.M. Isolation and identification of pathogenic fungi and oomycetes associated with beans and cowpea root diseases in Oman. PeerJ 2018, 6, e6064. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.C.; Tripathi, A.; Upadhyay, B.K.; Deka, U.K. Diversity of Rhizoctonia solani associated with pulse crops in different agro-ecological regions of India. World J. Microbiol. Biotechnol. 2014, 30, 1699–1715. [Google Scholar] [CrossRef]
- Godoy-Lutz, G.; Kuninaga, S.; Steadman, J.R.; Powers, K. Phylogenetic analysis of Rhizoctonia solani subgroups associated with web blight symptoms on common bean based on ITS-5.8S rDNA. J. Gen. Plant Pathol. 2008, 74, 32–40. [Google Scholar] [CrossRef]
- Xue, C.Y.; Zhou, R.J.; Li, Y.J.; Xiao, D.; Fu, J.F. Cell-wall-degrading enzymes produced in vitro and in vivo by Rhizoctonia solani, the causative fungus of peanut sheath blight. PeerJ 2018, 6, e5580. [Google Scholar] [CrossRef] [Green Version]
- Bai, Q.R.; Jiang, X.Y.; Xie, Y.Y.; Sun, H.Y.; Gao, J. Summer Blight of White Clover (Trifolium repens) Caused by Rhizoctonia solani AG-1-IB in China. Plant Dis. 2014, 98, 1153. [Google Scholar] [CrossRef]
- Kataria, H.R.; Hugelshofer, U.; Gisi, U. Sensitivity of Rhizoctonia species to different fungicides. Plant Pathol. 1991, 40, 203–211. [Google Scholar] [CrossRef]
- Williamson-Benavides, B.A.; Dhingra, A. Understanding Root Rot Disease in Agricultural Crops. Horticulturae 2021, 7, 33. [Google Scholar] [CrossRef]
- Gónzalez, D.; Rodriguez-Carres, M.; Boekhout, T.; Stalpers, J.; Kuramae, E.E.; Nakatani, A.K.; Vilgalys, R.; Cubeta, M.A. Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales. Fungal Biol. 2016, 120, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Salazar, O.; Julián, M.C.; Rubio, H.V. Phylogenetic Grouping of Cultural Types of Rhizoctonia solani AG 2-2 Based on Ribosomal ITS Sequences. Mycologia 2000, 92, 505–509. [Google Scholar] [CrossRef]
- Gonzalez, D.; Carling, D.E.; Kuninaga, S.; Vilgalys, R.; Cubeta, M.A. Ribosomal DNA systematics of Ceratobasidium and Thanatephorus with Rhizoctonia anamorphs. Mycologia 2001, 93, 1138–1150. [Google Scholar] [CrossRef]
- Spedaletti, Y.; Aparicio, M.; Cárdenas, G.M.; Rodriguero, M.; Taboada, G.; Aban, C.; Sühring, S.; Vizgarra, O.; Galván, M. Genetic Characterization and Pathogenicity of Rhizoctonia solani Associated with Common Bean Web Blight in the Main Bean Growing area of Argentina. J. Phytopathol. 2016, 164, 1054–1063. [Google Scholar] [CrossRef]
- Basbagci, G.; Unal, F.; Uysal, A.; Dolar, F.S. Identification and pathogenicity of Rhizoctonia solani AG-4 causing root rot on chickpea in Turkey. Span. J. Agric. Res. 2019, 17, e1007. [Google Scholar] [CrossRef] [Green Version]
- Torres, S.V.; Vargas, M.M.; Godoy-Lutz, G.; Porch, T.G.; Beaver, J.S. Isolates of Rhizoctonia solani can produce both web blight and root rot symptoms in common bean (Phaseolus vulgaris L.). Plant Dis. 2016, 100, 1351–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, L.; Srour, A.; Ammar, H.; Bond, J.; Fakhoury, A. A probe panel assay for detection and quantification of soil-borne pathogens in soybean fields (Abstr.). Plant Health 2019, 109, 124. [Google Scholar]
- Ceresini, P.C.; Costa-Souza, E.; Zala, M.; Furtado, E.L.; Souza, N.L. Evidence that the Ceratobasidium-like white-thread blight and black rot fungal pathogens from persimmon and tea crops in the Brazilian Atlantic Forest agroecosystem are two distinct phylospecies. Genet. Mol. Biol. 2012, 35, 480–497. [Google Scholar] [CrossRef] [Green Version]
- Fenille, R.C.; Ciampi, M.B.; Kuramae, E.E.; Souza, N.L. Identification of Rhizoctonia solani associated with soybean in Brazil by rDNA-ITS sequences. Fitopatol. Bras. 2003, 28, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Mora-Umaña, F.; Barboza, N.; Alvarado, R.; Vásquez, M.; GodoyLutz, G.; Steadman, J.R.; Ramírez, P. Virulence and molecular characterization of Costa Rican isolates of Rhizoctonia solani from common bean. Trop. Plant Pathol. 2013, 38, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Ciampi, M.B.; Kuramae, E.E.; Fenille, R.C.; Meyer, M.C.; Souza, N.L.; Ceresini, P.C. Intraspecific Evolution of Rhizoctonia solani AG-1 IA Associated with Soybean and Rice in Brazil based on Polymorphisms at the ITS-5.8S rDNA Operon. Eur. J. Plant Pathol. 2005, 113, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Hyakumachi, M.; Priyatmojo, A.; Kubota, M.; Fukui, H. New Anastomosis Groups, AG-T and AG-U, of Binucleate Rhizoctonia spp. Causing Root and Stem Rot of Cut-Flower and Miniature Roses. Phytopathology 2005, 95, 784–792. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Zhou, Q.; Hwang, S.F.; Ho, A.; Harding, M. Pathogenicity, anastomosis groups, host range and genetic diversity of Rhizoctonia species isolated from soybean, pea and other crops in Alberta and Manitoba, Canada. Can. J. Plant Sci. 2021, 102, 301–315. [Google Scholar] [CrossRef]
- Toda, T.; Hyakumachi, M.; Arora, D.K. Genetic relatedness among and within different Rhizoctonia solani anastomosis groups as assessed by RAPD, ERIC and REP-PCR. Microbiol. Res. 1999, 154, 247–258. [Google Scholar] [CrossRef]
- Sharon, M.; Kuninaga, S.; Hyakumachi, M.; Sneh, B. The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping. Mycoscience 2006, 47, 299–316. [Google Scholar] [CrossRef]
- Shiragaki, K.; Yokoi, S.; Tezuka, T. Phylogenetic Analysis and Molecular Diversity of Capsicum Based on rDNA-ITS Region. Horticulture 2020, 6, 87. [Google Scholar] [CrossRef]
- Sharon, M.; Sneh, B.; Kuninaga, S.; Hyakumachi, M.; Naito, S. Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 2008, 49, 93–114. [Google Scholar] [CrossRef]
- Boysen, M.; Borja, M.; del Moral, C.; Salazar, O.; Rubio, V. Identification at strain level of Rhizoctonia solani AG4 isolates by direct sequence of asymmetric PCR products of the ITS regions. Curr. Genet. 1996, 29, 174–181. [Google Scholar] [CrossRef]
- Li, C.; Guo, Z.; Zhou, S.; Han, Q.; Zhang, M.; Peng, Y.; Hsiang, T.; Chen, X. Evolutionary and genomic comparisons of hybrid uninucleate and nonhybrid Rhizoctonia fungi. Commun. Biol. 2021, 4, 201. [Google Scholar] [CrossRef]
- Zhou, Q.X.; Hwang, S.F.; Fu, H.T.; Strelkov, S.E.; Gossen, B.D. Genetic variation of Rhizoctonia solani isolates from canola in Alberta, Canada. Can. J. Plant Sci. 2014, 94, 671–681. [Google Scholar] [CrossRef]
- Grosch, R.; Schneider, J.H.M.; Peth, A.; Waschke, A.; Franken, P.; Kofoet, A.; Jabaji-Hare, S.H. Development of a specific PCR assay for the detection of Rhizoctonia solani AG 1-IB using SCAR primers. J. Appl. Microbiol. 2007, 102, 806–819. [Google Scholar] [CrossRef]
- Guarro, J.; Gené, J.; Stchigel, A.M. Developments in fungal taxonomy. Clin. Microbiol. Rev. 1999, 12, 454–500. [Google Scholar] [CrossRef] [Green Version]
- Guillemaut, C.; Edel-Hermann, V.; Camporota, P.; Alabouvette, C.; Richard-Molard, M.; Steinberg, C. Typing of anastomosis groups of Rhizoctonia solani by restriction analysis of ribosomal DNA. Can. J. Microbiol. 2003, 49, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Budge, G.E.; Shaw, M.W.; Lambourne, C.; Jennings, P.; McPherson, M. Characterization and origin of infection of Rhizoctonia solani associated with Brassica oleracea crops in the UK. Plant Pathol. 2010, 58, 1059–1070. [Google Scholar] [CrossRef]
- Aiello, D.; Guarnaccia, V.; Formica, P.T.; Hyakumachi, M.; Polizzi, G. Occurrence and characterisation of Rhizoctonia species causing diseases of ornamental plants in Italy. Eur. J. Plant Pathol. 2017, 148, 967–982. [Google Scholar] [CrossRef]
- Grosch, R.; Schneider, J.H.M.; Kofoet, A. Characterisation of Rhizoctonia solani Anastomosis Groups Causing Bottom Rot in Field-Grown Lettuce in Germany. Eur. J. Plant Pathol. 2004, 110, 53–62. [Google Scholar] [CrossRef]
- Sharon, M.; Freeman, S.; Kuninaga, S.; Sneh, B. Genetic diversity, anastomosis groups and virulence of Rhizoctonia spp. from strawberry. Eur. J. Plant Pathol. 2007, 117, 247–265. [Google Scholar] [CrossRef]
- Arias, M.M.D.; Munkvold, G.P.; Ellis, M.L.; Leandro, L.F.S. Distribution and frequency of Fusarium species associated with soybean roots in Iowa. Plant Dis. 2013, 97, 1557–1562. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nuclc Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Katoh, K.; Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 2008, 9, 286–298. [Google Scholar] [CrossRef] [Green Version]
- Dubey, S.C.; Tripathi, A.; Upadhyay, B.K. Molecular diversity analysis of Rhizoctonia solani isolates infecting various pulse crops in different agro-ecological regions of India. Folia Microbiol. 2012, 57, 513–524. [Google Scholar] [CrossRef]
- Ohkura, M.; Abawi, G.S.; Smart, C.D.; Hodge, K.T. Diversity and aggressiveness of Rhizoctonia solani and Rhizoctonia-like fungi on vegetables in New York. Plant Dis. 2009, 93, 615–624. [Google Scholar] [CrossRef] [Green Version]
- Muzhinji, N.; Truter, M.; Woodhall, J.W.; Van der Waals, J.E. Anastomosis groups and pathogenicity of Rhizoctonia solani and binucleate Rhizoctonia from potato in South Africa. Plant Dis. 2015, 99, 1790–1802. [Google Scholar] [CrossRef] [Green Version]
- Mathew, F.M.; Lamppa, R.S.; Chittem, K.; Chang, Y.W.; Markell, S.G. Characterization and Pathogenicity of Rhizoctonia solani Isolates Affecting Pisum sativum in North Dakota. Plant Dis. 2012, 96, 666–672. [Google Scholar] [CrossRef] [Green Version]
- Kilicoglu, M.C.; Ozkoc, I. Phylogenetic analysis of Rhizoctonia solani AG-4 isolates from common beans in Black Sea coastal region, Turkey, based on ITS-5.8S rDNA. Turk. J. Biol. 2013, 37, 18–24. [Google Scholar]
- Hyakumachi, M.; Mushika, T.; Ogiso, Y.; Toda, T.; Kageyama, K.; Tsuge, T. Characterization of a new cultural type (LP) of Rhizoctonia solani AG2-2 isolated from warm-season turfgrasses, and its genetic differentiation from other cultural types. J. Plant Pathol. 1998, 47, 1–9. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Yang, X.B. Recovery of anastomosis groups of Rhizoctonia solani from different latitudinal positions and influence of temperatures on their growth and survival. Plant Dis. 2004, 88, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Godoy-Lutz, G.; Steadman, J.R.; Higgins, B.; Powers, K. Genetic variation among isolates of the web blight pathogen of common bean based on PCR-RFLP of the ITS-rDNA region. Plant Dis. 2003, 87, 766–771. [Google Scholar] [CrossRef] [Green Version]
- Ciampi, M.B.; Meyer, M.C.; Costa, M.J.; Zala, M.; McDonald, B.A.; Ceresini, P.C. Genetic structure of populations of Rhizoctonia solani anastomosis group-1 IA from soybean in Brazil. Phytopathology 2008, 98, 932–941. [Google Scholar] [CrossRef] [Green Version]
- Vilgalys, R.; Cubeta, M.A. Molecular systematics and population biology of Rhizoctonia. Annu. Rev. Phytopathol. 1994, 32, 135–155. [Google Scholar] [CrossRef]
- Kuninaga, S.; Natsuaki, T.; Takeuchi, T.; Yokosawa, R. Sequence variation of the rDNA ITS regions within and between anastomosis groups in Rhizoctonia solani. Curr. Genet. 1997, 32, 237–243. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Jiajun, L.; Jiang, P.; Power, N.M.; Ming, Y.; Hong, F.; Feng, J. Isolation and identification of Fusarium species causing the Medicago sativa root rot in Shaanxi Province. Acta Plant Prot. 2019, 46, 715–716. [Google Scholar]
- Misawa, T.; Kayamori, M.; Kurose, D.; Sasaki, J.; Toda, T. First report of Rhizoctonia disease of lily caused by Rhizoctonia solani AG-11 in Japan. J. Gen. Plant Pathol. 2017, 83, 406–409. [Google Scholar] [CrossRef]
- Quadros, A.; Boari, A.J.; Kauffmann, C.M.; Filho, F.F.; Batista, I.; Gavinho, B.; Nechet, K.L. Rhizoctonia solani AG-1 1A causing leaf blight in yardlong bean in Brazil. Australas Plant Dis. Notes 2021, 16, 21. [Google Scholar] [CrossRef]
- Gondal, A.S.; Rauf, A.; Naz, F. Anastomosis Groups of Rhizoctonia solani associated with tomato foot rot in Pothohar Region of Pakistan. Sci. Rep. 2019, 9, 3910. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [Green Version]
- Woodhall, J.W.; Wharton, P.S.; Peters, J.C. First Report of Rhizoctonia solani AG4 HG-II Infecting Potato Stems in Idaho. Plant Dis. 2012, 96, 1701. [Google Scholar] [CrossRef]
- Strausbaugh, C.A.; Eujayl, I.A.; Panella, L.W.; Hanson, L.E. Virulence, distribution and diversity of Rhizoctonia solani from sugar beet in Idaho and Oregon. Can. J. Plant Pathol. 2011, 33, 210–226. [Google Scholar] [CrossRef]
- Broders, K.D.; Parker, M.L.; Melzer, M.S.; Boland, G.J. Phylogenetic diversity of Rhizoctonia solani associated with canola and wheat in Alberta, Manitoba, and Saskatchewan. Plant Dis. 2014, 98, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Pope, E.J.; Carter, D.A. Phylogenetic placement and host specificity of mycorrhizal isolates belonging to AG-6 and AG-12 in the Rhizoctonia solani species complex. Mycologia 2001, 93, 712–719. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Gower, J.C. A general coefficient of similarity and some of its properties. Biometrics 1971, 22, 857–871. [Google Scholar] [CrossRef]
Legume Crop | Group | b Subgroup | Number of Sequences/Studies |
---|---|---|---|
Alfalfa | a AG1 | IA | 1 |
AG4 | HGII | 2 | |
Clover | AG1 | IB | 6 |
AG11 | NA | 1 | |
Cowpea | AG1 | IA | 1 |
Unc | 2 | 2 | |
Peanut | AG1 | IA | 1 |
AG3 | 3 | 1 | |
AG4 | 4 | 1 | |
AG4 | HGI | 2 | |
Common beans | AG1-IE | 1 | |
AG1-IF | 2 | ||
AG2 | AG2-2 WB | 63 | |
2IIIB | 2 | ||
AG4 | HGI | 22 | |
HGII | 4 | ||
Pea | AG2 | AG2-1 | 2 |
AG2-2 | 1 | ||
AG4 | AG4 | 5 | |
HGII | 17 | ||
AG-5 | AG-5 | 1 | |
Soybean | AG-1 | 1 | 1 |
IA | 38 | ||
IB | 1 | ||
IC | 1 | ||
AG-2 | 1 | 3 | |
2 | 1 | ||
2IIIB | 18 | ||
3 | 2 | ||
AG-3 | 3 | 6 | |
AG-4 | 4 | 1 | |
HGI | 2 | ||
HGII | 4 | ||
HGIII | 3 | ||
AG-5 | c NA | 4 | |
AG-6 | c NA | 1 | |
AG-7 | c NA | 10 | |
AG-9 | c NA | 1 | |
AG-11 | c NA | 10 | |
Chickpea | AG-1 | 1 | 2 |
3 | 2 | ||
AG-3 | 3 | 2 | |
AG-4 | 4 | 1 | |
HGII | 23 | ||
AG-5 | c NA | 2 | |
AG-10 | c NA | 1 | |
[37,38,39,40,41,42,43,44,45,46,47,48,49] |
CLADES | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I (AG-1) | II | III (AG-4) | IV | V (AG-2) | VI | VII | Outgroup | ||||||||||||||
IA | IB | IE | IF | IC | 1 | AG-5 | AG-7 | HG-1 | HG-II | HG-III | 4 | AG-5 | AG-11 | AG-2-1 | AG-2- 2WB | AG-2- 2IIIB | AG-2-2 | AG-10 | AG-3 | ||
IA | 95.6–100 | ||||||||||||||||||||
IB | 82.2–84.1 | 99.5–99.7 | |||||||||||||||||||
IE | 96.1–100 | 84.1–84.6 | 99–100 | ||||||||||||||||||
IF | 78.9–86.6 | 90.5–91.2 | 81.4–81.6 | 99–99.7 | |||||||||||||||||
IC | 86.4–87.6 | 82.9–83.1 | 84.2–86 | 80.4–80.6 | 99–100 | ||||||||||||||||
1 | 91.5–99.5 | 83.7–84.1 | 94.1–97.0 | 83.4–84.6 | 82.7–87.6 | 99–100 | |||||||||||||||
AG-5 | 77.6–88.8 | 97.7–98 | 97.1–98 | ||||||||||||||||||
AG-7 | 80.1–89.7 | 90.5–91.9 | 97–100 | ||||||||||||||||||
HG-1 | 81.1–85.4 | 85.2–85.6 | 85.7–85.9 | 99–100 | |||||||||||||||||
HG-II | 81.0–86.5 | 85.4–86.1 | 85.4–86.1 | 96–99 | 96–100 | ||||||||||||||||
HG-III | 80.7–86.3 | 86.1–86.7 | 86–86.4 | 91–96 | 91–99 | 91–100 | |||||||||||||||
4 | 82.2–86.5 | 85.4–86.4 | 85.4–86.1 | 96.2 | 96–100 | 92–96.2 | 97.9–100 | ||||||||||||||
AG-5 | 72.6–82.6 | 81.7–86.4 | 82–86.8 | 78.4–85.2 | 94.7–99.5 | ||||||||||||||||
AG-11 | 75.2–80.8 | 83–84.1 | 82.5–84.6 | 80.3–84 | 89.1–93.8 | 91.3–100 | |||||||||||||||
AG-2-1 | 67.5–77.8 | 71–80.6 | 76.4–84.9 | 72.7–84.7 | 80.7–90.7 | 78.4–88.2 | 90–99.2 | ||||||||||||||
AG-2- 2WB | 74.5–81.6 | 83.3–83.6 | 82.6–84 | 79.1–79.9 | 79.8–84.5 | 81.5–82.7 | 70–80 | 98.6–99.7 | |||||||||||||
AG-2- 2IIIB | 77.2–81.3 | 83.3–84.2 | 82.3–82.7 | 79.5–80 | 79–84.4 | 81.5–83.9 | 74–82.1 | 95.6–97 | 97.9–99.5 | ||||||||||||
AG-2-2 | 74.5–80.7 | 83.3–84.6 | 82.1–82.2 | 78.5–79.6 | 78.5–83.2 | 80.9–82.3 | 74.8–82 | 96.1–96.3 | 96.3–97 | 98.2–99.0 | |||||||||||
AG-10 | 73.3–81.7 | 83.2–84 | 83–84.5 | 81.4–84.3 | 85.5–89.7 | 85.7–87.5 | 81.4–82.4 | 99.9–100 | |||||||||||||
AG-3 | 67–76.2 | 74.8–80.1 | 75.4–85.9 | 70.9–82.1 | 80.2–89.9 | 81.4–89 | 55.8–76.9 | 90.2–91.5 | 96.8–99.2 | ||||||||||||
Outgroup | 54–58 | 58 | 59 | 54–58 | 50–54 | 55.1–55.3 | 57–58 | 54 | 55 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.; Ali, A.; Hussain, A.; Ali, A.; Alrefaei, A.F.; Naqvi, S.A.H.; Rao, M.J.; Mubeen, I.; Farooq, T.; Ölmez, F.; et al. Assessment of Genetic Variability and Evolutionary Relationships of Rhizoctonia solani Inherent in Legume Crops. Plants 2023, 12, 2515. https://doi.org/10.3390/plants12132515
Abbas A, Ali A, Hussain A, Ali A, Alrefaei AF, Naqvi SAH, Rao MJ, Mubeen I, Farooq T, Ölmez F, et al. Assessment of Genetic Variability and Evolutionary Relationships of Rhizoctonia solani Inherent in Legume Crops. Plants. 2023; 12(13):2515. https://doi.org/10.3390/plants12132515
Chicago/Turabian StyleAbbas, Aqleem, Amjad Ali, Azhar Hussain, Amjad Ali, Abdulwahed Fahad Alrefaei, Syed Atif Hasan Naqvi, Muhammad Junaid Rao, Iqra Mubeen, Tahir Farooq, Fatih Ölmez, and et al. 2023. "Assessment of Genetic Variability and Evolutionary Relationships of Rhizoctonia solani Inherent in Legume Crops" Plants 12, no. 13: 2515. https://doi.org/10.3390/plants12132515
APA StyleAbbas, A., Ali, A., Hussain, A., Ali, A., Alrefaei, A. F., Naqvi, S. A. H., Rao, M. J., Mubeen, I., Farooq, T., Ölmez, F., & Baloch, F. S. (2023). Assessment of Genetic Variability and Evolutionary Relationships of Rhizoctonia solani Inherent in Legume Crops. Plants, 12(13), 2515. https://doi.org/10.3390/plants12132515