Functional Characterization and Toxicity of Pectin from Red Chilto Fruit Waste (Peels)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Red Chilto Pectin Morphology, Viscosity, and Color Parameters
2.2. Chemical Composition of Red Chilto Pectin
2.3. Functional Properties of Red Chilto Red
2.4. Antioxidant Activity of Chilto Pectin
2.5. Hypoglycemic Activities of Chilto Pectin
2.6. Toxicity Assessment
3. Materials and Methods
3.1. Fruits Samples
3.2. Extraction of Red Chilto Pectin
3.3. Physicochemical Characterization of Red Chilto Pectin
3.3.1. Sugar, Proteins, Anthocyanins, and Total Phenolic Compounds Quantification
3.3.2. Color, Ash, and Moisture Determination
3.3.3. Apparent Viscosity Measurement
3.4. Morphology via Scanning Electron Microscopy
3.5. Functional Properties of Chilto Pectin
3.5.1. Water and Oil Holding Capacity
3.5.2. Emulsifying Capacity and Stability
3.5.3. Foaming Properties
- V0: Volume after vortex
- V30: Volume after 30 min
- VT: Total volume of reaction
3.6. Antioxidant Activity
3.6.1. Total Antioxidant Activity of Red Chilto Pectin
3.6.2. H2O2 Scavenging Assay
3.6.3. Superoxide Radical Scavenging Assay
3.6.4. Xanthine Oxidase Inhibition
3.7. Antihyperglycemic Activity
3.7.1. Inhibitory Effect on α-Glucosidase and α-Amylase Activities
3.7.2. Activity on Glucose Diffusion and Glucose Intake by Saccharomyces Cerevisiae Cells
3.8. Toxicity Tests
3.8.1. Acute Toxicity Using Artemia Salina Test
3.8.2. Caenorhabditis elegans Toxicity Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, S.J.; Chen, R.Y.; Huang, L.; Liang, R.H.; Liu, C.M.; Chen, J. Investigation on the influence of pectin structures on the pasting properties of rice starch by multiple regression. Food Hydrocoll. 2017, 63, 580–584. [Google Scholar] [CrossRef]
- Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.L.; Sousa, R.C.S. Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Shivamathi, C.S.; Gunaseelan, S.; Soosai, M.R.; Vignesh, N.S.; Varalakshmi, P.; Kumar, R.S.; Moorthy, I.M.G. Process optimization and characterization of pectin derived from underexploited pineapple peel biowaste as a value-added product. Food Hydrocoll. 2022, 123, 107141. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; Food and Agricultural Organization: Rome, Italy, 2019. [Google Scholar]
- Kazemi, M.; Khodaiyan, F.; Hosseini, S.S. Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization. LWT Food Sci. Technol. 2019, 105, 182–189. [Google Scholar] [CrossRef]
- Devi, W.E.; Kumar, R.S.K.B.A.; Mishra, A.A. Extraction of pectin from citrus fruit peel and its utilization in preparation of jelly. Int. J. Eng. Res. 2014, 3, 181. [Google Scholar]
- Seixas, F.L.; Fukuda, D.L.; Turbiani, F.R.; Garcia, P.S.; Petkowicz, C.L.D.O.; Jagadevan, S.; Gimenes, M.L. Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocoll. 2014, 38, 186–192. [Google Scholar] [CrossRef]
- Raji, Z.; Khodaiyan, F.; Rezaei, K.; Kiani, H.; Hosseini, S.S. Extraction optimization and physicochemical properties of pectin from melon peel. Int. J. Biol. Macromol. 2017, 98, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, R.M.; Cardozo, M.L.; Zampini, I.C.; Isla, M.I. Evaluation of antioxidant activity and genotoxicity of alcoholic and aqueous beverages and pomace derived from ripe fruits of Cyphomandra betacea Sendt. J. Agric. Food Chem. 2010, 58, 331–337. [Google Scholar] [CrossRef]
- Orqueda, M.E.; Rivas, M.; Zampini, I.C.; Alberto, M.R.; Torres, S.; Cuello, S.; Sayago, J.; Thomas-Valdes, S.; Jiménez-Aspee, F.; Schmeda-Hirschmann, G.; et al. Chemical and functional characterization of seed, pulp and skin powder from chilto (Solanum betaceum), an Argentine native fruit. Phenolic fractions affect key enzymes involved in metabolic syndrome and oxidative stress. Food Chem. 2017, 216, 70–79. [Google Scholar] [CrossRef]
- Orqueda, M.E.; Torres, S.; Zampini, I.C.; Cattaneo, F.; Di Pardo, A.F.; Valle, E.M.; Jimenez-Aspee, F.; Schmeda-Hirschmann, G.; Isla, M.I. Integral use of Argentinean Solanum betaceum red fruits as functional food ingredient to prevent metabolic syndrome: Effect of in vitro simulated gastroduodenal digestion. Heliyon 2020, 6, e03387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isla, M.I.; Zampini, I.C.; Orqueda, E.; Moreno, A.; Torres, S.; Perez, J.; Rodriguez, F.; Cattaneo, F. Potential application of native fruit wastes from Argentina as non conventional sources of functional ingredients. Applied Environmental Science and Engineering for a Sustainable Future. In Valorisation of Agro-Industrial Residues–Volume II: Non-Biological Approaches for the Valorization of Agro-Industrial Waste; Zakaria, Z.A., Gonzalez, C.A., Kusumaningtyas, R.D., Eds.; Springer: Cham, Switzerland, 2020; Volume 8, ISBN 978-3-030-39207-9. [Google Scholar] [CrossRef]
- Isla, M.I.; Ezquer, M.E.; Leal, M.; Moreno, M.A.; Zampini, I.C. Flower beverages of native medicinal plants from Argentina (Acacia caven, Geoffroea decorticans and Larrea divaricata) as antioxidant and anti-inflammatory. J. Ethnopharmacol. 2021, 281, 114490. [Google Scholar] [CrossRef] [PubMed]
- Isla, M.I.; Orqueda, M.E.; Moreno, M.A.; Torres, S.; Zampini, I.C. Solanum betaceum Fruits Waste: A Valuable Source of Bioactive Compounds to Be Used in Foods and Non-Foods Applications. Foods 2022, 11, 3363. [Google Scholar] [CrossRef] [PubMed]
- Orqueda, M.E.; Torres, S.; Verón, H.; Pérez, J.; Rodriguez, F.; Zampini, C.; Isla, M.I. Physicochemical, microbiological, functional and sensory properties of frozen pulp of orange and orange-red chilto (Solanum betaceum Cav.) fruits. Sci. Hortic. 2021, 276, 109736. [Google Scholar] [CrossRef]
- Orqueda, M.E.; Méndez, D.A.; Martínez-Abad, A.; Zampini, C.; Torres, S.; Isla, M.I.; Lopez-Rubio, A.; Fabra, M.J. Feasibility of active biobased films produced using red chilto wastes to improve the protection of fresh salmon fillets via a circular economy approach. Food Hydrocoll. 2022, 133, 107888. [Google Scholar] [CrossRef]
- Moreno, M.A.; Orqueda, M.E.; Gómez-Mascaraque, L.G.; Isla, M.I.; López-Rubio, A. Crosslinked electrospun zein-based food packaging coatings containing bioactive chilto fruit extracts. Food Hydrocoll. 2019, 95, 496–505. [Google Scholar] [CrossRef]
- Do Nascimento, G.E.; Corso, C.R.; de Paula Werner, M.F.; Baggio, C.H.; Iacomini, M.; Cordeiro, L.M. Structure of an arabinogalactan from the edible tropical fruit tamarillo (Solanum betaceum) and its antinociceptive activity. Carbohydr. Polym. 2015, 116, 300–306. [Google Scholar] [CrossRef]
- Gannasin, S.P.; Adzahan, N.M.; Hamzah, M.Y.; Mustafa, S.; Muhammad, K. Physicochemical properties of tamarillo (Solanum betaceum Cav.) hydrocolloid fractions. Food Chem. 2015, 182, 292–301. [Google Scholar] [CrossRef]
- Do Nascimento, G.E.; Iacomini, M.; Cordeiro, L.M.A. comparative study of mucilage and pulp polysaccharides from tamarillo fruit (Solanum betaceum Cav.). Plant Physiol. Biochem. 2016, 104, 278–283. [Google Scholar] [CrossRef]
- Gavahian, M.; Mathad, G.N.; Pandiselvam, R.; Lin, J.; Sun, D.W. Emerging technologies to obtain pectin from food processing by-products: A strategy for enhancing resource efficiency. Trends Food Sci. Technol. 2021, 115, 42–54. [Google Scholar] [CrossRef]
- Grassino, A.N.; Brnčić, M.; Vikić-Topić, D.; Roca, S.; Dent, M.; Brnčić, S.R. Ultrasound assisted extraction and characterization of pectin from tomato waste. Food Chem. 2016, 198, 93–100. [Google Scholar] [CrossRef]
- Liew, S.Q.; Chin, N.L.; Yusof, Y.A. Extraction and characterization of pectin from passion fruit peels. J. Agric. Agric. Sci. 2014, 2, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Gannasin, S.P.; Ramakrishnan, Y.; Adzahan, N.M.; Muhammad, K. Functional and preliminary characterisation of hydrocolloid from tamarillo (Solanum betaceum Cav.) puree. Molecules 2012, 17, 6869–6885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- do Nascimento, G.E.; Hamm, L.A.; Baggio, C.H.; Werner, M.F.D.P.; Iacomini, M.; Cordeiro, L.M. Structure of a galactoarabinoglucuronoxylan from tamarillo (Solanum betaceum), a tropical exotic fruit, and its biological activity. Food Chem. 2013, 141, 510–516. [Google Scholar] [CrossRef] [Green Version]
- Di Mattia, C.D.; Sacchetti, G.; Mastrocola, D.; Sarker, D.K.; Pittia, P. Surface properties of phenolic compounds and their influence on the dispersion degree and oxidative stability of olive oil O/W emulsions. Food Hydrocoll. 2010, 24, 652–658. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Khodaiyan, F.; Kazemi, M.; Najari, Z. Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int. J. Biol. Macromol. 2019, 125, 621–629. [Google Scholar] [CrossRef]
- Larsen, L.R.; Buerschaper, J.; Schieber, A.; Weber, F. Interactions of anthocyanins with pectin and pectin fragments in model solutions. J. Agric. Food Chem. 2019, 67, 9344–9353. [Google Scholar] [CrossRef] [PubMed]
- Diep, T.T.; Rush, E.C.; Yoo, M.J.Y. Tamarillo (Solanum betaceum Cav.): A review of physicochemical and bioactive properties and potential applications. Food Rev. Int. 2020, 38, 1343–1367. [Google Scholar] [CrossRef]
- Koh, J.; Xu, Z.; Wicker, L. Blueberry pectin and increased anthocyanins stability under in vitro digestion. Food Chem. 2020, 302, 125343. [Google Scholar] [CrossRef]
- Grassino, A.N.; Ostojić, J.; Miletić, V.; Djaković, S.; Bosiljkov, T.; Zorić, Z.; Brnčić, M. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- Hosseini, S.; Parastouei, K.; Khodaiyan, F. Simultaneous extraction optimization and characterization of pectin and phenolics from sour cherry pomace. Int. J. Biol. Macromol. 2020, 158, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, S.; Wu, D.; Zhu, K.; Ye, X. Manosonication assisted extraction and characterization of pectin from different citrus peel wastes. Food Hydrocoll. 2021, 121, 106952. [Google Scholar] [CrossRef]
- Shafie, M.H.; Yusof, R.; Gan, C.Y. Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: Optimization and characterization studies. Carbohydr. Polym. 2019, 216, 303–311. [Google Scholar] [CrossRef]
- Khamsucharit, P.; Laohaphatanalert, K.; Gavinlertvatana, P.; Sriroth, K.; Sangseethong, K. Characterization of pectin extracted from banana peels of different varieties. Food Sci. Biotechnol. 2018, 27, 623–629. [Google Scholar] [CrossRef]
- Kazemi, M.; Khodaiyan, F.; Labbafi, M.; Hosseini, S.S.; Hojjati, M. Pistachio green hull pectin: Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties. Food Chem. 2019, 271, 663–672. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). Compendium of Food Additive Specifications; Food and Agricultural Organization (FAO): Québec City, QC, Canada, 2009. [Google Scholar]
- Zhang, H.; Yang, S.; Joyce, D.C.; Jiang, Y.; Qu, H.; Duan, X. Physiology and quality response of harvested banana fruit to cold shock. Postharvest Biol. Technol. 2010, 55, 154–159. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, X.; Zhang, F.; Yang, X.; Ni, L.; Zhang, W.; Liu, Z.; Zhang, Y. Improving viscosity and gelling properties of leaf pectin by comparing five pectin extraction methods using green tea leaf as a model material. Food Hydrocol. 2020, 98, 105246. [Google Scholar] [CrossRef]
- Colodel, C.; Vriesmann, L.; Petkowicz, C.L.D.O. Rheological characterization of a pectin extracted from ponkan (Citrus reticulata blanco cv. ponkan) peel. Food Hydrocol. 2019, 94, 326–332. [Google Scholar] [CrossRef]
- Sila, A.; Bayar, N.; Ghazala, I.; Bougatef, A.; Ellouz-Ghorbel, R.; Ellouz-Chaabouni, S. Water-soluble polysaccharides from agro-industrial by-products: Functional and biological properties. Int. J. Biol. Macromol. 2014, 69, 236–243. [Google Scholar] [CrossRef]
- Naqash, F.; Masoodi, F.A.; Gani, A.; Nazir, S.; Jhan, F. Pectin recovery from apple pomace: Physico-chemical and functional variation based on methyl-esterification. Int. J. Food Sci. 2021, 56, 4669–4679. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, X.; Jing, C.; Zou, P.; Zhang, C.; Li, Y. Microwave assisted hydrothermal extraction of polysaccharides from Ulva prolifera: Functional properties and bioactivities. Carbohydr. Polym. 2018, 181, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Bayar, N.; Bouallegue, T.; Achour, M.; Kriaa, M.; Bougatef, A.; Kammoun, R. Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chem. 2017, 235, 275–282. [Google Scholar] [CrossRef]
- Asgari, K.; Labbafi, M.; Khodaiyan, F.; Kazemi, M.; Hosseini, S.S. High-methylated pectin from walnut processing wastes as a potential resource: Ultrasound assisted extraction and physicochemical, structural and functional analysis. Int. J. Biol. Macromol. 2020, 152, 1274–1282. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. Pectin extracted from thermally treated olive oil by-products: Characterization, physico-chemical properties, in vitro bile acid and glucose binding. Food Hydrocoll. 2015, 43, 311–321. [Google Scholar] [CrossRef]
- Cui, S.W.; Chang, Y.H. Emulsifying and structural properties of pectin enzymatically extracted from pumpkin. LWT-Food Sci. Technol. 2014, 58, 396–403. [Google Scholar] [CrossRef]
- Gunness, P.; Zhai, H.; Williams, B.A.; Zhang, D.; Gidley, M.J. Pectin and mango pulp both reduce plasma cholesterol in pigs but have different effects on triglycerides and bile acids. Food Hydrocoll. 2021, 112, 106369. [Google Scholar] [CrossRef]
- Khedmat, L.; Izadi, A.; Mofid, V.; Mojtahedi, S.Y. Recent advances in extracting pectin by single and combined ultrasound techniques: A review of techno-functional and bioactive health-promoting aspects. Carbohydr. Polym. 2020, 229, 115474. [Google Scholar] [CrossRef]
- Ezzati, S.; Ayaseh, A.; Ghanbarzadeh, B.; Heshmati, M.K. Pectin from sunflower by-product: Optimization of ultrasound-assisted extraction, characterization, and functional analysis. Int. J. Biol. Macromol. 2020, 165, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, Z.; Khodaiyan, F.; Kazemi, M.; Sharifan, A. Optimization of microwave-assisted extraction and structural characterization of pectin from sweet lemon peel. Int. J. Biol. Macromol. 2020, 147, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Wang, F.; Li, G.; Tang, M.T.; Wang, C.; Zhou, Q.Q.; Zhou, T.; Gu, Q. Antioxidant and hypolipidemic activities of pectin isolated from citrus canning processing water. LWT Food Sci. Technol. 2022, 59, 113203. [Google Scholar] [CrossRef]
- Sharma, R.; Kamboj, S.; Khurana, R.; Singh, G.; Rana, V. Physicochemical and functional performance of pectin extracted by QbD approach from Tamarindus indica L. pulp. Carbohydr. Polym. 2015, 134, 364–374. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, W.; Wu, Z.; Liu, R.; Yang, C.; Hui, A.; Xian, Z. Preparation, characterization, antioxidant and anti-inflammatory activities of acid-soluble pectin from okra (Abelmoschus esculentus L.). Int. J. Biol. Macromol. 2021, 181, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Feng, K.L.; Yang, J.C.; He, Y.S.; Guo, H.; Wang, S.P.; Wu, D.T. Polysaccharides from dandelion (Taraxacum mongolicum) leaves: Insights into innovative drying techniques on their structural characteristics and biological activities. Int. J. Biol. Macromol. 2021, 167, 995–1005. [Google Scholar] [CrossRef]
- Lv, Q.Q.; Cao, J.J.; Liu, R.; Chen, H.Q. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran. Food Chem. 2021, 341, 128218. [Google Scholar] [CrossRef] [PubMed]
- Amamou, S.; Lazreg, H.; Hafsa, J.; Majdoub, H.; Rihouey, C.; Le Cerf, D.; Achour, L. Effect of extraction condition on the antioxidant, antiglycation and α-amylase inhibitory activities of Opuntia macrorhiza fruit peels polysaccharides. LWT Food Sci. Technol. 2020, 127, 109411. [Google Scholar] [CrossRef]
- Espinal-Ruiz, M.; Parada-Alfonso, F.; Restrepo-Sánchez, L.P.; Narváez-Cuenca, C.E. Inhibition of digestive enzyme activities by pectic polysaccharides in model solutions. Bioact. Carbohydrates Diet. Fibre 2014, 4, 27–38. [Google Scholar] [CrossRef]
- Liew, S.Q.; Chin, N.L.; Yusof, Y.A.; Sowndhararajan, K. Comparison of acidic and enzymatic pectin extraction from passion fruit peels and its gel properties. J. Food Process. Eng. 2016, 39, 501–511. [Google Scholar] [CrossRef]
- Li, S.; Huang, Z.; Dong, Y.; Zhu, R.; Li, T. Haw pectin pentaglaracturonide inhibits fatty acid synthesis and improves insulin sensitivity in high-fat-fed mice. J. Funct. Foods 2017, 34, 440–446. [Google Scholar] [CrossRef]
- Schwartz, S.E.; Levine, R.A.; Weinstock, R.S.; Petokas, S.; Mills, C.A.; Thomas, F.D. Sustained pectin ingestion: Effect on gastric emptying and glucose tolerance in non-insulin-dependent diabetic patients. Am. J. Clin. Nutr. 1988, 48, 1413–1417. [Google Scholar] [CrossRef]
- Brownlee, I.A. The physiological roles of dietary fibre. Food Hydrocoll. 2011, 25, 238–250. [Google Scholar] [CrossRef]
- Jonker, D.; Fowler, P.; Albers, R.; Tzoumaki, M.V.; Hof, K.H.V.H.; Aparicio-Vergara, M. Safety assessment of rhamnogalacturonan-enriched carrot pectin fraction: 90-Day oral toxicity study in rats and in vitro genotoxicity studies. Food Chem. Toxicol. 2020, 139, 111243. [Google Scholar] [CrossRef]
- EFSA FAF Panel (EFSA Panel on Food Additives and Flavourings); Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Fernandez, M.J.F.; Fürst, P.; Gürtler, R.; Husøy, T.; et al. Opinion on the re-evaluation of pectin and amidated pectin as food additives in foods for infants below 16 weeks of age and follow-up of their re-evaluation as food additives for uses in foods for all population groups. EFSA J. 2021, 19, 57. [Google Scholar] [CrossRef]
- Hunt, P.R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 2017, 37, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Banti, C.N.; Hadjikakou, S.K. Evaluation of Toxicity with Brine Shrimp Assay. Bio. Protoc. 2021, 11, e3895. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Gonçalves, T.; Iglesias-Mejuto, A.; Linhares, T.; Coelho, J.M.; Vieira, P.; Faísca, P.; Reis, C.P. Biological Thermal Performance of Organic and Inorganic Aerogels as Patches for Photothermal Therapy. Gels 2022, 8, 485. [Google Scholar] [CrossRef] [PubMed]
- Ghibaudo, F.; Gerbino, E.; Hugo, A.A.; Dall’Orto, V.C.; Gomez-Zavaglia, A. Fortification of water kefir with magnetite nanoparticles. Food Res. Int. 2021, 149, 110650. [Google Scholar] [CrossRef]
- World Health Organization. International Programme on Chemical Safety. Human Health Risk Assessment Toolkit: Chemical Hazards. (IPCS Harmonization Project Document; no.8); World Health Organization: Geneva, Switzerland, 2010; ISBN 978 92 4 154807 6. [Google Scholar]
- AOAC. Official Methods of Analysis, 16th ed.; method 920.151; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Costamagna, M.S.; Ordoñez, R.M.; Zampini, I.C.; Sayago, J.E.; Isla, M.I. Nutritional and antioxidant properties and toxicity of Geoffroea decorticans, an Argentinean fruit and products derived from them (flour, arrope, decoction and hydroalcoholic beverage). Food Res. Int. 2013, 54, 160–168. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- AACC. Basic method 08-01 ash, crude protein-improved method Kjedahl method 46-10. In International Approved Methods of American Association of Cereal Chemists; AACC: St Paul, MN, USA, 2000. [Google Scholar]
- AOAC. Association of official analytical chemists. In Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Cardozo, M.L.; Ordóñez, R.M.; Alberto, M.R.; Zampini, I.C.; Isla, M.I. Antioxidant and anti-inflammatory activity characterization and genotoxicity evaluation of Ziziphus mistol ripe berries, exotic Argentinean fruit. Food Res. Int. 2011, 44, 2063–2071. [Google Scholar] [CrossRef]
- Zampini, I.C.; Gana, J.M.; Ordoñez, R.M.; Sayago, J.E.; Moreno, M.I.N.; Isla, M.I. Antioxidant and xanthine oxidase inhibitory activities of plant species from the Argentine Puna (Antofagasta, Catamarca). Recent Prog. Med. Plants 2008, 21, 95–110. [Google Scholar]
- Costamagna, M.S.; Zampini, I.C.; Alberto, M.R.; Cuello, S.; Torres, S.; Pérez, J.; Isla, M.I. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chem. 2016, 190, 392–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, F.; Sairam, S.; Urooj, A. In vitro hypoglycemic effects of selected dietary fiber sources. J. Food Sci. Technol. 2011, 48, 285–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhinge, S.D.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Hasabe, T.S. In vitro hypoglycemic effects of unripe and ripe fruits of Musa sapientum. Braz. J. Pharm. Sci. 2018, 53, 159. [Google Scholar] [CrossRef] [Green Version]
- Orqueda, M.E.; Torres, S.; Zampini, I.C.; Isla, M.I. In Vitro Hypoglycemic and Anti-Inflammatory Potential and Toxicity of Powders from Pulp and by-Products of Ziziphus mistol from Argentina. Foods 2022, 11, 2125. [Google Scholar] [CrossRef] [PubMed]
Chemical Composition | |
TPC 1 (%) | 0.0400 ± 0.0020 |
Anthocyanin 2 (%) | 0.0065 ± 0.0005 |
Ash (%) | 12.2 ± 0.9 |
Protein (%) | 4.7 ± 0.2 |
Total sugars (%) | 22.1 ± 0.5 |
Color parameters | |
L* | 75.4 ± 0.33 |
a* | 7.8 ± 0.06 |
b* | 13.8 ± 0.1 |
Apparent viscosity 3 | |
0.5% | 446.0 ± 3.0 |
1.5% | 507.1 ± 2.8 |
3% | 676.9 ± 2.1 |
Functional Properties | |
WHC (g W/g DW) | 4.19 ± 0.04 |
OHC (g O/g DW) | 2.02 ± 0.09 |
EC (%) | 83.00 ± 0.50 |
ES (%) | 87.50 ± 0.62 |
FC (%) | 21.10 ± 0.90 |
FS (%) | 79.06 ± 1.20 |
Antioxidant and Hypoglycemic Activities | SC50 or IC50 (mg/mL) 1 |
---|---|
O2•− | 5.20 ± 0.90 |
ABTS•+ | 0.51 ± 0.03 |
H2O2 | 5.64 ± 0.05 |
Xanthine oxidase | 3.15 ± 0.08 |
α-glucosidase | NI 2 |
α-amylase | 3.30 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orqueda, M.E.; Zampini, I.C.; Torres, S.; Isla, M.I. Functional Characterization and Toxicity of Pectin from Red Chilto Fruit Waste (Peels). Plants 2023, 12, 2603. https://doi.org/10.3390/plants12142603
Orqueda ME, Zampini IC, Torres S, Isla MI. Functional Characterization and Toxicity of Pectin from Red Chilto Fruit Waste (Peels). Plants. 2023; 12(14):2603. https://doi.org/10.3390/plants12142603
Chicago/Turabian StyleOrqueda, María Eugenia, Iris Catiana Zampini, Sebastian Torres, and María Inés Isla. 2023. "Functional Characterization and Toxicity of Pectin from Red Chilto Fruit Waste (Peels)" Plants 12, no. 14: 2603. https://doi.org/10.3390/plants12142603
APA StyleOrqueda, M. E., Zampini, I. C., Torres, S., & Isla, M. I. (2023). Functional Characterization and Toxicity of Pectin from Red Chilto Fruit Waste (Peels). Plants, 12(14), 2603. https://doi.org/10.3390/plants12142603