The General Trends of Genetic Diversity Change in Alien Plants’ Invasion
Abstract
:1. Introduction
2. Results
2.1. Summary of Database
2.2. Change Trend of Genetic Diversity
2.3. Reliability of Results
3. Discussion
3.1. Potential Causes of the Different Changes in Specific IASs’ Genetic Diversity
3.2. Decreased Genetic Diversity Does Not Necessarily Affect Invasion Process
3.3. Genetic Diversity Is Not a Useful Indicator in Risk Assessment of IAS
3.4. Recommendations for Future Research
4. Materials and Methods
4.1. Literature Search and Data Collection
4.2. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Nentwig, W. Biological Invasions: Why It Matters; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Watson, R.; Baste, I.; Larigauderie, A.; Leadley, P.; Pascual, U.; Baptiste, B.; Demissew, S.; Dziba, L.; Erpul, G.; Fazel, A.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019; pp. 22–47. [Google Scholar]
- Diagne, C.; Leroy, B.; Vaissière, A.-C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.-M.; Bradshaw, C.J.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Capellini, I.; Baker, J.; Allen, W.L.; Street, S.E.; Venditti, C. The role of life history traits in mammalian invasion success. Ecol. Lett. 2015, 18, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Te Beest, M.; Le Roux, J.J.; Richardson, D.M.; Brysting, A.K.; Suda, J.; Kubešová, M.; Pyšek, P. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012, 109, 19–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allendorf, F.W.; Lundquist, L.L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 2003, 17, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Rosche, C.; Durka, W.; Hensen, I.; Mráz, P.; Hartmann, M.; Müller-Schärer, H.; Lachmuth, S. The population genetics of the fundamental cytotype-shift in invasive Centaurea stoebe s.l.: Genetic diversity, genetic differentiation and small-scale genetic structure differ between cytotypes but not between ranges. Biol. Invasions 2016, 18, 1895–1910. [Google Scholar] [CrossRef]
- Yu, X.Q.; He, T.H.; Zhao, J.L.; Li, Q.M. Invasion genetics of Chromolaena odorata (Asteraceae): Extremely low diversity across Asia. Biol. Invasions 2014, 16, 2351–2366. [Google Scholar] [CrossRef]
- Ellegren, H.; Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 2016, 17, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Amavet, P.S.; Zucoloto, R.B.; Hrbek, T.; Farias, I.P. Genetic diversity of New World crocodilians. In Conservation Genetics of New World Crocodilians; Springer: Berlin/Heidelberg, Germany, 2021; pp. 123–151. [Google Scholar]
- Arnaud-Haond, S.; Alberto, F.; Teixeira, S.; Procaccini, G.; Serrao, E.; Duarte, C.M. Assessing genetic diversity in clonal organisms: Low diversity or low resolution? Combining power and cost efficiency in selecting markers. J. Hered. 2005, 96, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Marrs, R.; Sforza, R.; Hufbauer, R. Evidence for multiple introductions of Centaurea stoebe micranthos (spotted knapweed, Asteraceae) to North America. Mol. Ecol. 2008, 17, 4197–4208. [Google Scholar] [CrossRef]
- Lavergne, S.; Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. USA 2007, 104, 3883–3888. [Google Scholar] [CrossRef] [PubMed]
- Patamsytė, J.; Naugžemys, D.; Čėsnienė, T.; Kleizaitė, V.; Demina, O.N.; Mikhailova, S.I.; Agafonov, V.A.; Žvingila, D. Evaluation and comparison of the genetic structure of Bunias orientalis populations in their native range and two non-native ranges. Plant Ecol. 2018, 219, 101–114. [Google Scholar] [CrossRef]
- Maebara, Y.; Tamaoki, M.; Iguchi, Y.; Nakahama, N.; Hanai, T.; Nishino, A.; Hayasaka, D. Genetic diversity of invasive Spartina alterniflora Loisel.(Poaceae) introduced unintentionally into Japan and its invasion pathway. Front. Plant Sci. 2020, 11, 556039. [Google Scholar] [CrossRef] [PubMed]
- Rollins, L.A.; Moles, A.T.; Lam, S.; Buitenwerf, R.; Buswell, J.M.; Brandenburger, C.R.; Flores-Moreno, H.; Nielsen, K.B.; Couchman, E.; Brown, G.S. High genetic diversity is not essential for successful introduction. Ecol. Evol. 2013, 3, 4501–4517. [Google Scholar] [CrossRef]
- Guo, W.; Qiao, S.; Wang, Y.; Shi, S.; Tan, F.; Huang, Y. Genetic diversity, population structure, and genetic relatedness of native and non-native populations of Spartina alterniflora (Poaceae, Chloridoideae). Hydrobiologia 2015, 745, 313–327. [Google Scholar] [CrossRef]
- Rosche, C.; Hensen, I.; Schaar, A.; Zehra, U.; Jasieniuk, M.; Callaway, R.M.; Khasa, D.P.; Al-Gharaibeh, M.M.; Lekberg, Y.; Nagy, D.U. Climate outweighs native vs. nonnative range-effects for genetics and common garden performance of a cosmopolitan weed. Ecol. Monogr. 2019, 89, e01386. [Google Scholar] [CrossRef]
- Hernández, F.; Presotto, A.; Poverene, M.; Mandel, J.R. Genetic diversity and population structure of wild sunflower (Helianthus annuus L.) in Argentina: Reconstructing its invasion history. J. Hered. 2019, 110, 746–759. [Google Scholar] [CrossRef]
- Vandepitte, K.; Helsen, K.; Van Acker, K.; Mergeay, J.; Honnay, O. Retention of gene diversity during the spread of a non-native plant species. Mol. Ecol. 2017, 26, 3141–3150. [Google Scholar] [CrossRef]
- Xu, C.Y.; Tang, S.Q.; Fatemi, M.; Gross, C.L.; Julien, M.H.; Curtis, C.; Van Klinken, R.D. Population structure and genetic diversity of invasive Phyla canescens: Implications for the evolutionary potential. Ecosphere 2015, 6, 1–21. [Google Scholar] [CrossRef]
- Ferrero, V.; Barrett, S.C.; Castro, S.; Caldeirinha, P.; Navarro, L.; Loureiro, J.; Rodríguez-Echeverría, S. Invasion genetics of the Bermuda buttercup (Oxalis pes-caprae): Complex intercontinental patterns of genetic diversity, polyploidy and heterostyly characterize both native and introduced populations. Mol. Ecol. 2015, 24, 2143–2155. [Google Scholar] [CrossRef]
- Guggisberg, A.; Welk, E.; Sforza, R.; Horvath, D.P.; Anderson, J.V.; Foley, M.E.; Rieseberg, L.H. Invasion history of North American Canada thistle, Cirsium arvense. J. Biogeogr. 2012, 39, 1919–1931. [Google Scholar] [CrossRef]
- Thompson, G.D.; Bellstedt, D.U.; Byrne, M.; Millar, M.A.; Richardson, D.M.; Wilson, J.R.; Le Roux, J.J. Cultivation shapes genetic novelty in a globally important invader. Mol. Ecol. 2012, 21, 3187–3199. [Google Scholar] [CrossRef] [PubMed]
- Lett, I.; Hensen, I.; Hirsch, H.; Renison, D. No differences ingenetic diversity of Cotoneaster franchetii (Rosaceae) shrubs between native and non-native ranges. Boletín De La Soc. Argent. De Botánica 2015, 50, 377–384. [Google Scholar] [CrossRef]
- Shang, L.; Li, L.F.; Song, Z.P.; Wang, Y.; Yang, J.; Wang, C.C.; Qiu, S.Y.; Huang, J.X.; Nie, M.; Wolfe, L.M. High genetic diversity with weak phylogeographic structure of the invasive Spartina alterniflora (Poaceae) in China. Front. Plant Sci. 2019, 10, 1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.M.; Liao, W.J.; Wolfe, L.M.; Zhang, D.Y. No evolutionary shift in the mating system of North American Ambrosia artemisiifolia (Asteraceae) following its introduction to China. PLoS ONE 2012, 7, e31935. [Google Scholar] [CrossRef]
- Ciappetta, S.; Ghiani, A.; Gilardelli, F.; Bonini, M.; Citterio, S.; Gentili, R. Invasion of Ambrosia artemisiifolia in Italy: Assessment via analysis of genetic variability and herbarium data. Flora 2016, 223, 106–113. [Google Scholar] [CrossRef]
- Sun, Y.; Roderick, G.K. Rapid evolution of invasive traits facilitates the invasion of common ragweed, Ambrosia artemisiifolia. J. Ecol. 2019, 107, 2673–2687. [Google Scholar] [CrossRef] [Green Version]
- Li, W.T.; Zheng, Y.L.; Zhang, L.K.; Lei, Y.B.; Li, Y.P.; Liao, Z.Y.; Li, Z.P.; Feng, Y.L. Postintroduction evolution contributes to the successful invasion of Chromolaena odorata. Ecol. Evol. 2020, 10, 1252–1263. [Google Scholar] [CrossRef] [Green Version]
- Gaskin, J.F.; Schwarzländer, M.; Gibson, R.D.; Simpson, H.; Marshall, D.L.; Gerber, E.; Hinz, H. Geographic population structure in an outcrossing plant invasion after centuries of cultivation and recent founding events. AoB Plants 2018, 10, ply020. [Google Scholar]
- Vyšniauskienė, R.; Naugžemys, D.; Patamsytė, J.; Rančelienė, V.; Čėsnienė, T.; Žvingila, D. ISSR and chloroplast DNA analyses indicate frequent hybridization of alien Medicago sativa subsp. sativa and native M. sativa subsp. falcata. Plant Syst. Evol. 2015, 301, 2341–2350. [Google Scholar] [CrossRef]
- Mandak, B.; Hadincová, V.; Mahelka, V.; Wildova, R. European invasion of North American Pinus strobus at large and fine scales: High genetic diversity and fine-scale genetic clustering over time in the adventive range. PLoS ONE 2013, 8, e68514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.R.; Barrett, S.C.; Zhang, D.Y.; Liao, W.J. Invasion genetics of Senecio vulgaris: Loss of genetic diversity characterizes the invasion of a selfing annual, despite multiple introductions. Biol. Invasions 2017, 19, 255–267. [Google Scholar] [CrossRef]
- Bernik, B.M.; Li, H.S.; Blum, M.J. Genetic variation of Spartina alterniflora intentionally introduced to China. Biol. Invasions 2016, 18, 1485–1498. [Google Scholar] [CrossRef]
- Xia, L.; Geng, Q.F.; An, S.Q. Rapid genetic divergence of an invasive species, Spartina alterniflora, in China. Front. Genet. 2020, 11, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleunen, M.V.; Weber, E.; Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010, 13, 235–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genton, B.J.; Kotanen, P.M.; Cheptou, P.-O.; Adolphe, C.; Shykoff, J.A. Enemy release but no evolutionary loss of defence in a plant invasion: An inter-continental reciprocal transplant experiment. Oecologia 2005, 146, 404–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, G.-R.; Roques, A.; Hulme, P.E.; Sykes, M.T.; Pyšek, P.; Kühn, I.; Zobel, M.; Bacher, S.; Botta-Dukát, Z.; Bugmann, H. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 2009, 24, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Galeuchet, D.; Perret, C.; Fischer, M. Microsatellite variation and structure of 28 populations of the common wetland plant, Lychnis flos-cuculi L., in a fragmented landscape. Mol. Ecol. 2005, 14, 991–1000. [Google Scholar] [CrossRef]
- Wellband, K.W.; Pettitt-Wade, H.; Fisk, A.T.; Heath, D.D. Differential invasion success in aquatic invasive species: The role of within-and among-population genetic diversity. Biol. Invasions 2017, 19, 2609–2621. [Google Scholar] [CrossRef]
- Amos, W.; Harwood, J. Factors affecting levels of genetic diversity in natural populations. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998, 353, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Durka, W.; Michalski, S.G.; Berendzen, K.W.; Bossdorf, O.; Bucharova, A.; Hermann, J.M.; Hölzel, N.; Kollmann, J. Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. J. Appl. Ecol. 2017, 54, 116–126. [Google Scholar] [CrossRef]
- Kloss, L.; Fischer, M.; Durka, W. Land-use effects on genetic structure of a common grassland herb: A matter of scale. Basic Appl. Ecol. 2011, 12, 440–448. [Google Scholar] [CrossRef]
- Lawson Handley, L.-J.; Estoup, A.; Evans, D.; Thomas, C.; Lombaert, E.; Facon, B.; Aebi, A.; Roy, H. Ecological genetics of invasive alien species. BioControl 2011, 56, 409–428. [Google Scholar] [CrossRef] [Green Version]
- Darwin, C. The Origin of Species; PF Collierson: New York, NY, USA, 1909; pp. 95–96. [Google Scholar]
- Estoup, A.; Ravigné, V.; Hufbauer, R.; Vitalis, R.; Gautier, M.; Facon, B. Is there a genetic paradox of biological invasion? Annu. Rev. Ecol. Evol. Syst. 2016, 47, 51–72. [Google Scholar] [CrossRef]
- Li, S.P.; Guo, T.; Cadotte, M.W.; Chen, Y.J.; Kuang, J.L.; Hua, Z.S.; Zeng, Y.; Song, Y.; Liu, Z.; Shu, W.S. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 2015, 52, 89–99. [Google Scholar] [CrossRef]
- Gonzalez, A.; Ronce, O.; Ferriere, R.; Hochberg, M.E. Evolutionary rescue: An emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopp, M.; Matuszewski, S. Rapid evolution of quantitative traits: Theoretical perspectives. Evol. Appl. 2014, 7, 169–191. [Google Scholar] [CrossRef]
- Lacy, R.C. Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1987, 1, 143–158. [Google Scholar] [CrossRef]
- Dlugosch, K.M.; Parker, I.M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 2008, 17, 431–449. [Google Scholar] [CrossRef]
- Roman, J.; Darling, J.A. Paradox lost: Genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 2007, 22, 454–464. [Google Scholar] [CrossRef]
- Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 2011, 14, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.P.; van Klinken, R.D.; Sosa, A.; Li, B.; Chen, J.K.; Xu, C.Y. The relative importance of genetic diversity and phenotypic plasticity in determining invasion success of a clonal weed in the USA and China. Front. Plant Sci. 2016, 7, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bock, D.G.; Caseys, C.; Cousens, R.D.; Hahn, M.A.; Heredia, S.M.; Hübner, S.; Turner, K.G.; Whitney, K.D.; Rieseberg, L.H. What we still don’t know about invasion genetics. In Invasion Genetics: The Baker Stebbins Legacy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 346–370. [Google Scholar]
- Lynch, M.; Conery, J.S. The evolutionary fate and consequences of duplicate genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef] [Green Version]
- Ossowski, S.; Schneeberger, K.; Lucas-Lledó, J.I.; Warthmann, N.; Clark, R.M.; Shaw, R.G.; Weigel, D.; Lynch, M. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 2010, 327, 92–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, K.; Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 2002, 17, 170–176. [Google Scholar] [CrossRef]
- Williamson, M. Explaining and predicting the success of invading species at different stages of invasion. Biol. Invasions 2006, 8, 1561–1568. [Google Scholar] [CrossRef]
- Heger, T. Introduced tree species in European forests: Opportunities and challenges. In Introduced Tree Species in European Forests; European Forest Institute: Hannover, Germany, 2016. [Google Scholar]
- Liu, J.; Li, J.M.; Yu, H.; He, W.M.; Yu, F.H.; Sang, W.G.; Liu, G.F.; Dong, M. The relationship between functional traits and invasiveness of alien plants. Biodivers. Sci. 2010, 18, 569–576. [Google Scholar]
- Pyšek, P.; Richardson, D.M. Traits associated with invasiveness in alien plants: Where do we stand? In Biological Invasions; Springer: Berlin/Heidelberg, Germany, 2007; pp. 97–125. [Google Scholar]
- Richardson, D.M.; Pyšek, P. Fifty years of invasion ecology–the legacy of Charles Elton. Divers. Distrib. 2008, 14, 161–168. [Google Scholar] [CrossRef]
- Puillandre, N.; Dupas, S.; Dangles, O.; Zeddam, J.-L.; Capdevielle-Dulac, C.; Barbin, K.; Torres-Leguizamon, M.; Silvain, J.-F. Genetic bottleneck in invasive species: The potato tuber moth adds to the list. Biol. Invasions 2008, 10, 319–333. [Google Scholar] [CrossRef]
- Andreu, J.; Vilà, M. Risk analysis of potential invasive plants in Spain. J. Nat. Conserv. 2010, 18, 34–44. [Google Scholar] [CrossRef]
- Tu, W.Q.; Xiong, Q.L.; Qiu, X.P.; Zhang, Y.M. Dynamics of invasive alien plant species in China under climate change scenarios. Ecol. Indic. 2021, 129, 107919. [Google Scholar] [CrossRef]
- Wittenberg, R.; Cock, M.J.W. Best practices for the prevention and management of invasive alien species. In Invasive Alien Species: A New Synthesis; Mooney, H.A., Mack, R.N., McNeely, J.A., Neville, L.E., Schei, P.J., Waage, J.K., Eds.; Island Press: Washington, DC, USA, 2005; Volume 63, pp. 209–232. [Google Scholar]
- Pyšek, P.; Richardson, D.M. Invasive species, environmental change and management, and health. Annu. Rev. Environ. Resour. 2010, 35, 25–55. [Google Scholar] [CrossRef] [Green Version]
- Ziller, S.R.; de Sá Dechoum, M.; Dudeque Zenni, R. Predicting invasion risk of 16 species of eucalypts using a risk assessment protocol developed for Brazil. Austral Ecol. 2019, 44, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E. Beyond control: Wider implications for the management of biological invasions. J. Appl. Ecol. 2006, 43, 835–847. [Google Scholar] [CrossRef]
- Stepien, C.A.; Brown, J.E.; Neilson, M.E.; Tumeo, M.A. Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: Insights for risk analysis. Risk Anal. Int. J. 2005, 25, 1043–1060. [Google Scholar] [CrossRef]
- Senior, A.M.; Grueber, C.E.; Kamiya, T.; Lagisz, M.; O’dwyer, K.; Santos, E.S.; Nakagawa, S. Heterogeneity in ecological and evolutionary meta-analyses: Its magnitude and implications. Ecology 2016, 97, 3293–3299. [Google Scholar] [CrossRef]
- Gurevitch, J.; Hedges, L.V. Statistical issues in ecological meta-analyses. Ecology 1999, 80, 1142–1149. [Google Scholar] [CrossRef]
- Lee, Y.H. Meta-analysis of genetic association studies. Ann. Lab. Med. 2015, 35, 283. [Google Scholar] [CrossRef] [Green Version]
- Field, A.P.; Gillett, R. How to do a meta-analysis. Br. J. Math. Stat. Psychol. 2010, 63, 665–694. [Google Scholar] [CrossRef]
- Shelby, L.B.; Vaske, J.J. Understanding meta-analysis: A review of the methodological literature. Leis. Sci. 2008, 30, 96–110. [Google Scholar] [CrossRef]
- Weber, M.M.; Stevens, R.D.; Diniz-Filho, J.A.F.; Grelle, C.E.V. Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta-analysis. Ecography 2017, 40, 817–828. [Google Scholar] [CrossRef]
- Nakagawa, S.; Santos, E.S. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 2012, 26, 1253–1274. [Google Scholar] [CrossRef]
- Vesterinen, H.; Sena, E.; Egan, K.; Hirst, T.; Churolov, L.; Currie, G.; Antonic, A.; Howells, D.; Macleod, M. Meta-analysis of data from animal studies: A practical guide. J. Neurosci. Methods 2014, 221, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, S.; Noble, D.W.; Senior, A.M.; Lagisz, M. Meta-evaluation of meta-analysis: Ten appraisal questions for biologists. BMC Biol. 2017, 15, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Zhou, Y.; Staver, A.C. Enhanced activity of soil nutrient-releasing enzymes after plant invasion: A meta-analysis. Ecology 2019, 100, e02830. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marin-Martinez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 2006, 11, 193. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Sheldon, T.A.; Sutton, A.J.; Abrams, K.R.; Jones, D.R. Methods for exploring heterogeneity in meta-analysis. Eval. Health Prof. 2001, 24, 126–151. [Google Scholar] [CrossRef]
- Greenland, S. Basic methods for sensitivity analysis of biases. Int. J. Epidemiol. 1996, 25, 1107–1116. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. Bmj 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
Species | Life Form | Life History | Native Range | Origin | Trait | Refs. |
---|---|---|---|---|---|---|
Acacia saligna | Woody | Perennial | Australia | Tropics | Na | [25] |
Ambrosia artemisiifolia | Herb | Annual | America | Temperate | Hj | [28] |
Ambrosia artemisiifolia | Herb | Annual | America | Temperate | Na | [29] |
Ambrosia artemisiifolia | Herb | Annual | America | Temperate | Na | [30] |
Arctotheca populifolia | Herb | Perennial | Africa | Temperate | AR | [17] |
Arctotheca populifolia | Herb | Perennial | Africa | Temperate | AR | [17] |
Bunias orientalis | Herb | Perennial | Europe | Temperate | Hj | [15] |
Centaurea stoebe | Herb | Perennial | Europe | Temperate | AR | [8] |
Centaurea stoebe subsp. micranthos | Herb | Perennial | Europe | Temperate | HE | [13] |
Cirsium arvense | Herb | Perennial | Eurasia | Temperate | AR | [24] |
Chromolaena odorata | Herb | Perennial | America | Temperate | AR | [9] |
Chromolaena odorata | Herb | Perennial | America | Temperate | Na | [31] |
Erigeron canadensis | Herb | Annual | America | Temperate | HE | [19] |
Cotoneaster franchetii | Woody | Perennial | Asia | Temperate | HE | [26] |
Helianthus annuus | Herb | Annual | America | Temperate | Na | [20] |
Isatis tinctoria | Herb | Biennial | Eurasia | Temperate | Hj | [32] |
Medicago sativa | Herb | Perennial | Eurasia | Temperate | HE | [33] |
Oxalis pes-caprae | Herb | Perennial | Africa | Temperate | Na | [23] |
Pinus strobus | Woody | Perennial | America | Temperate | Hj | [34] |
Phyla canescens | Herb | Perennial | America | Tropics | HE | [22] |
Senecio vulgaris | Herb | Annual | Europe | Temperate | HE | [35] |
Sisymbrium austriacum | Herb | Annual | Europe | Temperate | Na | [21] |
Spartina alterniflora | Herb | Perennial | America | Temperate | Na | [18] |
Spartina alterniflora | Herb | Perennial | America | Temperate | Hj | [36] |
Spartina alterniflora | Herb | Perennial | America | Temperate | HE | [27] |
Spartina alterniflora | Herb | Perennial | America | Temperate | AR | [16] |
Spartina alterniflora | Herb | Perennial | America | Temperate | AR | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhang, Y.; Tu, W.; Sun, G.; Wu, N.; Zhang, Y. The General Trends of Genetic Diversity Change in Alien Plants’ Invasion. Plants 2023, 12, 2690. https://doi.org/10.3390/plants12142690
Jiang H, Zhang Y, Tu W, Sun G, Wu N, Zhang Y. The General Trends of Genetic Diversity Change in Alien Plants’ Invasion. Plants. 2023; 12(14):2690. https://doi.org/10.3390/plants12142690
Chicago/Turabian StyleJiang, Han, Yi Zhang, Wenqin Tu, Geng Sun, Ning Wu, and Yongmei Zhang. 2023. "The General Trends of Genetic Diversity Change in Alien Plants’ Invasion" Plants 12, no. 14: 2690. https://doi.org/10.3390/plants12142690
APA StyleJiang, H., Zhang, Y., Tu, W., Sun, G., Wu, N., & Zhang, Y. (2023). The General Trends of Genetic Diversity Change in Alien Plants’ Invasion. Plants, 12(14), 2690. https://doi.org/10.3390/plants12142690