Application of Near-Infrared Reflectance Spectroscopy for Predicting Damage Severity in a Diverse Panel of Tectona grandis Caused by Ceratocystis fimbriata
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Fungal Strain and Inoculation
3.3. Quantification of Fungal Damage in Teak Stems
3.4. Spectral Reflectance Assessments
3.5. Partial Least Squares Regression
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Figueiredo, E.O.; De Sá, C.P. Silvicultura e Manejo de Povoamentos de Teca (Tectona grandis L.F.); Embrapa Acre. Documentos, 138; Embrapa Acre: Rio Branco, Brazil, 2015; 130p. [Google Scholar]
- Sreekumar, V.B.; Sanil, M.S. Teak biology and ecology. In The Teak Genome; Springer: Berlin/Heidelberg, Germany, 2021; pp. 67–81. [Google Scholar] [CrossRef]
- Vaishnav, V.; Kumar, P.; Shirke, P.A.; Rana, T.S. Genetic variation in carbon isotope discrimination-based water use efficiency of teak (Tectona grandis L. F.) and its association with growth and wood quality traits. Trees 2021, 35, 799–807. [Google Scholar] [CrossRef]
- Vishnu, M.V.J.; Parthiban, K.T.; Raveendran, M.; Kanna, S.U.; Radhakrishnan, S.; Shabbir, R. Variation in biochemical, physiological and ecophysiological traits among the teak (Tectona grandis Linn. F) seed sources of India. Sci. Rep. 2022, 12, 14811. [Google Scholar] [CrossRef]
- Mohapatra, A.; Nayak, H.; Das, O. Factors influencing establishment of teak (Tectona grandis Linn. F) plantation: A review. E-Planet 2020, 18, 85–94. [Google Scholar]
- Vaishnav, V.; Kulkarni, N.; Rana, T.S.; Ansari, S.A. Genetic variation associated with relative resistance in teak (Tectona grandis L. f.) against the leaf skeletonizer, Eutectona machaeralis Walker. bioRxiv 2022, 1–20. [Google Scholar] [CrossRef]
- Medeiros, R.A.; De Paiva, H.N.; Soares, Á.A.V.; Marcatti, G.E.; Takizawa, F.H.; Domiciano, C.A.R.; Leite, H.G. Productive potential of Tectona grandis in Midwest Brazil. Adv. For. Sci. 2019, 6, 803. [Google Scholar] [CrossRef]
- Neves, S.M.A.D.S.; Nunes, M.C.M.; Neves, R.J. Caracterização das condições climáticas de Cáceres/MT, Brasil, no período de 1971 a 2009: Subsídio às atividades agropecuárias e turísticas municipais. Bol. Goiano Geogr. 2011, 31, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Carmo, F.H.D.J.D.; Latorraca, J.V.D.F.; Volpato, M.; Santos, G.C.V.D.; Souza, P.P.D.; Takizawa, F.H. Climate variations affect the growth period of young Tectona grandis Linn F. in the Amazon. Acta Bot. Brasilica 2022, 36, e2020abb0525. [Google Scholar] [CrossRef]
- Firmino, A.C.; Tozze, H.J., Jr.; Furtado, E.L. First report of Ceratocystis fimbriata causing wilt in Tectona grandis in Brazil. New Dis. Rep. 2012, 25, 24. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, E.M.; Harrington, T.C.; Thorpe, D.J.; Alfenas, A.C. Genetic diversity and interfertility among highly differentiated populations of Ceratocystis fimbriata in Brazil. Plant Pathol. 2010, 59, 721–735. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Harrington, T.C.; Piveta, G.; Alfenas, A.C. Genetic variability suggests that three populations of Ceratocystis fimbriata are responsible for the Ceratocystis wilt epidemic on kiwifruit in Brazil. Trop. Plant Pathol. 2017, 42, 86–95. [Google Scholar] [CrossRef]
- Oliveira, L.S.S.; Harrington, T.C.; Ferreira, M.A.; Damacena, M.B.; Al-Sadi, A.M.; Al-Mahmooli, I.H.S.; Alfenas, A.C. Species or genotypes? Reassessment of four recently described species of the Ceratocystis wilt pathogen, Ceratocystis fimbriata, on Mangifera indica. Phytopathology 2015, 105, 1229–1244. [Google Scholar] [CrossRef] [Green Version]
- Valdetaro, D.C.O.F.; Harrington, T.C.; Oliveira, L.S.S.; Guimarães, L.M.S.; Mcnew, D.L.; Pimenta, L.V.A.; Gonçalves, R.C.; Schurt, D.A.; Alfenas, A.C. A host specialized form of Ceratocystis fimbriata causes seed and seedling blight on native Carapa guianensis (Andiroba) in Amazonian rainforests. Fungal Biol. 2019, 123, 170–182. [Google Scholar] [CrossRef] [Green Version]
- Ghelardini, L.; Pepori, A.L.; Luchi, N.; Capretti, P.; Santini, A. Drivers of emerging fungal diseases of forest trees. For. Ecol. Manag. 2016, 381, 235–246. [Google Scholar] [CrossRef]
- Gomdola, D.; Bhunjun, C.; Hyde, K.; Jeewon, R.; Pem, D.; Jayawardena, R. Ten important forest fungal pathogens: A review on their emergence and biology. Mycosphere 2022, 13, 612–671. [Google Scholar] [CrossRef]
- Piveta, G.; Ferreira, M.; Muniz, M.F.B.; Valdetaro, D.; Valdebenito-Sanhueza, R.; Harrington, T.; Alfenas, A. Ceratocystis fimbriata on kiwifruit (Actinidia spp.) in Brazil. N. Z. J. Crop Hortic. Sci. 2016, 44, 13–24. [Google Scholar] [CrossRef]
- Guimarães, L.M.S.; Nunes, A.S.; Santos, S.A.; Resende, M.D.V.; Damacena, M.B.; Siqueira, D.L.; Alves, R.S.; Alfenas, A.C. Resistance of mango cultivar ubá to Ceratocystis fimbriata depends on the pathogen’s physiological variability. Crop. Prot. 2021, 143, 105560. [Google Scholar] [CrossRef]
- Da Silva, J.E.C.; Cruz, A.M.; Pereira, B.L.C.; Oliveira, A.C.; Hoffmann, W.R. Properties of teak wood infected by Ceratocystis fimbriata. Floresta 2021, 51, 1037–1045. [Google Scholar] [CrossRef]
- Pinargote, C.B.; Apuntes, E.S.; Tobar, R.L.; Jiménez, M.C.; Castro, F.B.; Navarrete, P.D. Ceratocystis fimbriata agente causal de la enfermedad de marchitez vascular de Tectona grandis L.f. (teca) en Ecuador. Boletín Micológico 2020, 35, 17–25. [Google Scholar] [CrossRef]
- Oliveira, C.A.D.C.; Martins, G.M.D.J.; Santos, F.A.S.; Anjos, I.V.D.; Amorim, A.F.S.; Preisigke, S.D.C.; Gilio, T.A.S.; Araújo, K.L.; Neves, L.G. Selection of teak clones resistant to the fungus Ceratocystis fimbriata. Sci. For. 2021, 49, e3553. [Google Scholar] [CrossRef]
- Sankaran, S.; Ehsani, R.; Inch, S.A.; Ploetz, R.C. Evaluation of visible-near infrared reflectance spectra of avocado leaves as a non-destructive sensing tool for detection of laurel wilt. Plant Dis. 2012, 96, 1683–1689. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.M.; Bachik, N.A.; Muhadi, N.A.; Yusof, T.N.T.; Gomes, C. Non-destructive techniques of detecting plant diseases: A review. Physiol. Mol. Plant Pathol. 2019, 108, 101426. [Google Scholar] [CrossRef]
- Renner, I.E.; Fritz, V.A. Using near-infrared reflectance spectroscopy (NIRS) to predict glucobrassicin concentrations in cabbage and brussels sprout leaf tissue. Plant Methods 2020, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.C.; Anderson, J.; Davidson, K.J.; Ely, K.S.; Lamour, J.; Li, Q.; Morrison, B.D.; Yang, D.; Rogers, A.; Serbin, S.P. A Best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression. J. Exp. Bot. 2021, 72, 6175–6189. [Google Scholar] [CrossRef]
- Wang, C.; Nie, S.; Xi, X.H.; Luo, S.Z.; Sun, X.F. Estimating the biomass of maize with hyperspectral and LiDAR data. Remote Sen. 2017, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Huang, Z.H.; Sun, H.; Wang, G.X. Mapping forest ecosystem biomass density for Xiangjiang river basin by combining plot and remote sensing data and comparing spatial extrapolation methods. Remote Sens. 2017, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Elsherbiny, O.; Fan, Y.; Zhou, L.; Qiu, Z. Fusion of feature selection methods and regression algorithms for predicting the canopy water content of rice based on hyperspectral data. Agriculture 2021, 11, 51. [Google Scholar] [CrossRef]
- Killner, M.H.M.; Rohwedder, J.J.R.; Pasquini, C. A PLS regression model using NIR spectroscopy for on-line monitoring of the biodiesel production reaction. Fuel 2011, 90, 3268–3273. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Bertrand-Krajewski, J.-L. Partial Least Squares local calibration of a UV–visible spectrometer used for in situ measurements of COD and TSS concentrations in urban drainage systems. Water Sci. Technol. 2008, 57, 581–588. [Google Scholar] [CrossRef]
- Richardson, A.D.; Reeves, J.B.; Gregoire, T.G. Multivariate analyses of visible/near infrared (VIS/NIR) absorbance spectra reveal underlying spectral differences among dried, ground conifer needle samples from different growth environments. New Phytol. 2004, 161, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Mevik, B.-H.; Wehrens, R. The Pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 2007, 18, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Monteuuis, O. Clonal teak. In The Teak Genome; Springer: Berlin/Heidelberg, Germany, 2021; pp. 155–169. [Google Scholar]
- Engelbrecht, C.J.B.; Harrington, T.C. Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia 2005, 97, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Tumura, K. Avaliação de Resistência, Análise Epidemiológica e Caracterização Anatômica da Madeira em Clones de Eucalyptus sp. Infectados por Ceratocystis fimbriata. Master’s Thesis, Universidade Estadual Paulista, Faculdade de Ciências Agronômicas, Botucatu, Brazil, 2011; 66p. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Henrich, V.; Krauss, G.; Götze, C.; Sandow, C.; IDB. Entwicklung Einer Datenbank für Fernerkundungsindizes. AK Fernerkundung, Bochum. 2012. Available online: www.indexdatabase.de (accessed on 10 January 2023).
- Kalivas, J.H. Two data sets of near infrared spectra. Chemom. Intell. Lab. Syst. 1997, 37, 255–259. [Google Scholar] [CrossRef]
- Van der Voet, H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 1994, 25, 313–323. [Google Scholar] [CrossRef]
- Nagler, P.L.; Inoue, Y.; Glenn, E.P.; Russ, A.L.; Daughtry, C.S.T. Cellulose Absorption Index (CAI) to quantify mixed soil–plant litter scenes. Remote Sens. Environ. 2003, 87, 310–325. [Google Scholar] [CrossRef]
- Daughtry, C.S.T. Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 2001, 93, 125–131. [Google Scholar] [CrossRef]
- Lemaire, G.; Francois, C.; Soudani, K.; Berveiller, D.; Pontailler, J.; Breda, N.; Genet, H.; Davi, H.; Dufrene, E. Calibration and Validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar] [CrossRef]
- Ustin, S.L.; Roberts, D.A.; Gardner, M.; Dennison, P. Evaluation of the potential of hyperion data to estimate wildfire hazard in the Santa Ynez Front Range, Santa Barbara, California. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 796–798. [Google Scholar] [CrossRef]
- Malthus, T.J.; Andrieu, B.; Danson, F.M.; Jaggard, K.W.; Steven, M.D. Candidate high spectral resolution infrared indices for crop cover. Remote Sens. Environ. 1993, 46, 204–212. [Google Scholar] [CrossRef]
- Galvão, L.S.; Formaggio, A.R.; Tisot, D.A. Discrimination of sugarcane varieties in southeastern brazil with EO-1 hyperion data. Remote Sens. Environ. 2005, 94, 523–534. [Google Scholar] [CrossRef]
- Yao, X.; Si, H.; Cheng, T.; Jia, M.; Chen, Q.; Tian, Y.C.; Zhu, Y.; Cao, W.; Chen, C.; Cai, J.; et al. Hyperspectral estimation of canopy leaf biomass phenotype per ground area using a continuous wavelet analysis in wheat. Front. Plant Sci. 2018, 9, 1360. [Google Scholar] [CrossRef] [Green Version]
- Serrano, L.; Peñuelas, J.; Ustin, S.L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data. Remote Sens. Environ. 2002, 81, 355–364. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C.; Hill, J. Remote sensing of forest biophysical variables using hymap imaging spectrometer data. Remote Sens. Environ. 2005, 95, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Underwood, E. Mapping nonnative plants using hyperspectral imagery. Remote Sens. Environ. 2003, 86, 150–161. [Google Scholar] [CrossRef]
- Datt, B. Remote sensing of water content in Eucalyptus leaves. Aust. J. Bot. 1999, 47, 909. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Griffin, K.L.; Field, C.B. Assessing community type, plant biomass, pigment composition, and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens. Environ. 1993, 46, 110–118. [Google Scholar] [CrossRef]
- Serrano, L. Deriving Water Content of Chaparral Vegetation from AVIRIS Data. Remote Sens. Environ. 2000, 74, 570–581. [Google Scholar] [CrossRef]
- Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the Reflectance Water Index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Delalieux, S.; Somers, B.; Hereijgers, S.; Verstraeten, W.; Keulemans, W.; Coppin, P. A Near-infrared narrow-waveband ratio to determine leaf area index in orchards. Remote Sens. Environ. 2008, 112, 3762–3772. [Google Scholar] [CrossRef]
- Levin, N.; Kidron, G.J.; Ben-Dor, E. Surface properties of stabilizing coastal dunes: Combining spectral and field analyses. Sedimentology 2007, 54, 771–788. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P.; Law, B.E.; Treuhaft, R.N. Subpixel canopy cover estimation of coniferous forests in Oregon using SWIR imaging spectrometry. J. Geophys. Res. Atmos. 2001, 106, 5151–5160. [Google Scholar] [CrossRef] [Green Version]
Source of Variation | Plant Height | Stem Basal Diameter | Apex Diameter | Lesion Length | Lesion Area | Severity |
---|---|---|---|---|---|---|
Genotype (G) | *** | *** | *** | *** | *** | *** |
Block (B) | NS | *** | *** | *** | *** | *** |
G x B interaction | * | *** | NS | NS | ** | NS |
Mean | 30.04 cm | 13.04 mm | 7.66 mm | 7.56 cm | 1.47 cm2 | 26.13% |
R2 | 0.64 | 0.60 | 0.49 | 0.45 | 0.55 | 0.47 |
Broad-sense heritability (H2) | 0.63 | 0.30 | 0.33 | 0.16 | 0.34 | 0.15 |
Trait | Samples (Number) | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
Lesion area (calibration) | 84 | 1.38 cm2 | 0.71 | 0.40 cm2 | 3.72 cm2 |
Lesion area (validation) | 26 | 1.42 cm2 | 0.83 | 0.49 cm2 | 5.43 cm2 |
Lesion length (calibration) | 84 | 8.54 cm | 3.96 | 1.20 cm | 18.63 cm |
Lesion length (validation) | 26 | 7.79 cm | 3.19 | 3.07 cm | 14.40 cm |
Severity (calibration) | 84 | 28.88% | 12.93 | 5.59% | 57.70% |
Severity (validation) | 26 | 27.92% | 11.98 | 9.40% | 57.70% |
Trait | R2 (Cal) | SECV (Cal) | R2 (Val) | SEP (Val) | RPD | Terms3 |
---|---|---|---|---|---|---|
Predictions based on NIRS data | ||||||
Lesion area | 0.907 | 0.041 | 0.894 | 0.042 | 3.1 | 2 |
Lesion length | 0.916 | 0.043 | 0.883 | 0.043 | 2.7 | 3 |
Severity | 0.903 | 0.042 | 0.893 | 0.043 | 2.8 | 4 |
Predictions based on SRI | ||||||
Lesion area | 0.832 | 0.037 | 0.783 | 0.039 | 2.1 | 6 |
Lesion length | 0.772 | 0.039 | 0.745 | 0.038 | 2.7 | 4 |
Severity | 0.801 | 0.034 | 0.771 | 0.032 | 2.2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjos, I.V.d.; Ali, M.; Mora-Poblete, F.; Araujo, K.L.; Gilio, T.A.S.; Neves, L.G. Application of Near-Infrared Reflectance Spectroscopy for Predicting Damage Severity in a Diverse Panel of Tectona grandis Caused by Ceratocystis fimbriata. Plants 2023, 12, 2734. https://doi.org/10.3390/plants12142734
Anjos IVd, Ali M, Mora-Poblete F, Araujo KL, Gilio TAS, Neves LG. Application of Near-Infrared Reflectance Spectroscopy for Predicting Damage Severity in a Diverse Panel of Tectona grandis Caused by Ceratocystis fimbriata. Plants. 2023; 12(14):2734. https://doi.org/10.3390/plants12142734
Chicago/Turabian StyleAnjos, Isabela Vera dos, Mohsin Ali, Freddy Mora-Poblete, Kelly Lana Araujo, Thiago Alexandre Santana Gilio, and Leonarda Grillo Neves. 2023. "Application of Near-Infrared Reflectance Spectroscopy for Predicting Damage Severity in a Diverse Panel of Tectona grandis Caused by Ceratocystis fimbriata" Plants 12, no. 14: 2734. https://doi.org/10.3390/plants12142734
APA StyleAnjos, I. V. d., Ali, M., Mora-Poblete, F., Araujo, K. L., Gilio, T. A. S., & Neves, L. G. (2023). Application of Near-Infrared Reflectance Spectroscopy for Predicting Damage Severity in a Diverse Panel of Tectona grandis Caused by Ceratocystis fimbriata. Plants, 12(14), 2734. https://doi.org/10.3390/plants12142734