Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc
Abstract
:1. Introduction
2. Results
2.1. Responses to Excess Cu
2.2. Responses to Excess Fe
2.3. Responses to Excess Zn
2.4. Overall Impact of the Treatments
3. Discussion
4. Materials and Methods
4.1. Plant Material
- (1)
- control, with concentrations of Cu, Fe and Zn compliant to the composition of the MS medium (½), i.e., 0.05 µM CuSO4·5H2O, 50 µM FeNaEDTA and 14.95 µM ZnSO4·H2O;
- (2)
- excess metal nutrients: Cu (as CuSO4), 80 µM (Cu80) and 200 µM (Cu200); Fe (as FeSO4), 200 µM (Fe200) and 300 µM (Fe300); Zn (as ZnSO4), 80 µM (Zn80) and 200 µM (Zn200).
4.2. Chlorophyll a Fluorescence Transient Kinetic and OJIP Parameters
Technical Parameters of Fluorescence | Definition |
---|---|
FO | Fluorescence value (minimum) after the onset of illumination |
FM | Fluorescence value at the peak of OJIP curve; maximum value under saturating illumination |
FV = FM − FO | Maximum variable fluorescence |
FO/FM | Maximum quantum yield at t = 0 of energy dissipation |
FV/FO | Maximum efficiency of the reaction of photolysis of water; it is a proxy of the integrity of OEC |
FV/FM | Maximum quantum yield of primary PSII photochemistry |
Vt = (Ft − FO)/FV | Relative variable fluorescence |
VJ | Relative variable fluorescence at J state (2 ms), which is a proxy of the number of closed RCs |
VK | Relative variable fluorescence at K state (300 µs); it rises when OEC breaks down |
VI | Relative variable fluorescence at I state (30 ms), which is a proxy of the number of reduced QB |
t for FM | Time (in ms) to reach maximal fluorescence FM |
N | Turnover number: number of QA reduction events between t = 0 and t(FM) |
M0 = (ΔV/Δt)0 ≈ 4(F0.3ms − F0.05ms)/FV | Initial slope (ms⁻1) of fluorescence rise in O–J; it is a proxy of the rate of accumulation of closed RCs |
Area | Area between the OJIP curve and the line F = FM, which is a proxy of the number of QA acceptors |
SM = Area/FV | Normalized area between the OJIP curve and the line F = FM, which is a proxy of the number of electron carriers per electron transport chain |
SM/t(FM) | Expresses the average fraction of open RCs in the time span from 0 to t(FM), i.e., during the time needed to complete their closure |
Energy fluxes | Definition |
ABS | The photon flux absorbed by the antenna of PSII units |
TR | The part of ABS trapped by the active PSII units that leads to QA reduction |
DI | The part of ABS dissipated in PSII antenna in processes other than trapping |
ET | The energy flux associated with the electron transport from QA− to the intersystem electron acceptors |
RE | The energy flux associated with the electron transport to the final electron acceptors of PSI |
Efficiencies and quantum yields | Definition |
ET0/TR0 = ψE0 = 1 − VJ | Efficiency with which a PSII trapped electron is transferred from QA− to PQ |
RE0/TR0 = ψR0 = 1 − VI | Efficiency with which a PSII trapped electron is transferred to final PSI acceptors |
RE0/ET0 = δR0 = ψR0/ψE0 | Efficiency with which an electron from PQH2 is transferred to final PSI acceptors |
TR0/ABS = φP0 = FV/FM | Maximum quantum yield of primary PSII photochemistry |
ET0/ABS = φE0 = φP0 × ψE0 | Quantum yield of electron transport from QA− to PQ |
RE0/ABS = φR0 = φP0 × ψR0 | Quantum yield of electron transport to final PSI acceptors |
γRC = 1/[(ABS/RC) + 1] = RC/(ABS + RC) | Probability that a PSII chlorophyll molecule functions as RC |
DI0/ABS = 1 − TR0/ABS | Quantum yield of energy dissipation in PSII |
Specific energy fluxes (per active PSII) | Definition |
ABS/RC = (M0/VJ)/φP0 | Apparent antenna size of an active PSII |
TR0/RC = M0/VJ | Maximum trapped exciton flux per active PSII |
ET0/RC = (M0/VJ) × ψE0 | The flux of electrons transferred from QA− to PQ per active PSII |
RE0/RC = (M0/VJ) × ψR0 | The flux of electrons transferred to final PSI acceptors per active PSII |
DI0/RC = ABS/RC − TR0/RC | The flux of energy dissipated in processes other than trapping per active PSII |
Phenomenological energy fluxes (per CS) | Definition |
ABS/CSO ≈ FO and ABS/CSM ≈ FM | Absorbed photon flux per excited cross section of PSII |
RC/CS = (RC/ABS) × (ABS/CS) | Number of active RCs of PSII per excited cross section of PSII |
TR0/CS = (TR0/ABS) × (ABS/CS) | Maximum trapped exciton flux per excited cross section of PSII |
ET0/CS = (ET0/ABS) × (ABS/CS) | The flux of electrons from QA− to PQ per excited cross section of PSII |
RE0/CS = (RE0/ABS) × (ABS/CS) | The flux of electrons to final PSI acceptors per excited cross section of PSII |
DI0/CS = (ABS/CS) − (TR0/CS) | Flux of dissipated energy per excited cross section of PSII |
Performance indexes | Definition |
φ(P0)/(1 − φ(P0)) | Partial performance of primary photochemistry reactions, i.e., their contribution to the global performance of photosynthesis light reactions |
γRC/(1 − γRC) | Number of active RCs per antenna chlorophyll of PSII |
ψ(E0)/(1 − ψ(E0)) | Partial performance of intersystem electron transport, i.e., its contribution to the global performance of photosynthesis light reactions |
δR0/(1 − δR0) | Partial performance of electron transport from QB to the final acceptors of PSI, i.e., its contribution to the global performance of photosynthesis light reactions |
PIABS | Performance index of energy conservation of absorbed photons up to QB reduction |
PItot | Performance index of energy conservation of absorbed photons up to reduction of the final acceptors of PSI |
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.R.; Kumar, M.; Ramteke, P.W.; Gupta, R. A Comprehensive Review on the Heavy Metal Toxicity and Sequestration in Plants. Biomolecules 2022, 12, 43. [Google Scholar] [CrossRef]
- Appenroth, K.J. Definition of “Heavy Metals” and Their Role in Biological Systems. In Soil Heavy Metals. Soil Biology; Sherameti, I., Varma, A., Eds.; Springer: Berlin, Germany, 2010; Volume 19, pp. 19–29. [Google Scholar] [CrossRef]
- Sanità di Toppi, L.; Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105–130. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Aarts, M.G.M. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol. Life Sci. 2012, 69, 3187–3206. [Google Scholar] [CrossRef] [PubMed]
- Alsafran, M.; Saleem, M.H.; Rizwan, M.; Al Jabri, H.; Usman, K.; Fahad, S. An overview of heavy metals toxicity in plants, tolerance mechanism, and alleviation through lysine-chelation with micro-nutrients—A novel approach. Plant Growth Regul. 2023, 100, 337–354. [Google Scholar] [CrossRef]
- Sanità di Toppi, L.; Musetti, R.; Vattuone, Z.; Pawlik-Skowrońska, B.; Fossati, F.; Bertoli, L.; Badiani, M.; Favali, M.A. Cadmium distribution and effects on ultrastructure and chlorophyll status in photobionts and mycobionts of Xanthoria parietina. Microsc. Res. Techniq. 2005, 66, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Fontanini, D.; Andreucci, A.; Ruffini Castiglione, M.; Basile, A.; Sorbo, S.; Petraglia, A.; Degola, F.; Bellini, E.; Bruno, L.; Varotto, C.; et al. The phytochelatin synthase from Nitella mucronata (Charophyta) plays a role in the homeostatic control of iron(II)/(III). Plant Physiol. Biochem. 2018, 127, 88–96. [Google Scholar] [CrossRef]
- Maresca, V.; Bellini, E.; Landi, S.; Capasso, G.; Cianciullo, P.; Carraturo, F.; Pirintsos, S.; Sorbo, S.; Sanità di Toppi, L.; Esposito, S.; et al. Biological responses to heavy metal stress in the moss Leptodictyum riparium (Hedw.). Warnst. Ecotox. Environ. Saf. 2022, 229, 113078. [Google Scholar] [CrossRef]
- Sandalio, L.M.; Dalurzo, H.C.; Gómez, M.; Romero-Puertas, M.C.; del Río, L.A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 2001, 52, 2115–2126. [Google Scholar] [CrossRef]
- Jin, X.; Yang, X.; Islam, E.; Liu, D.; Mahmood, Q. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J. Hazard. Mater. 2008, 156, 387–397. [Google Scholar] [CrossRef]
- Ying, R.R.; Qiu, R.L.; Tang, Y.T.; Hu, P.J.; Qiu, H.; Chen, H.R.; Shi, T.H.; Morel, J.L. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J. Plant Physiol. 2010, 167, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, F.; Cai, Y.; Zhang, G.; Wu, F. Modulation of Exogenous Glutathione in Ultrastructure and Photosynthetic Performance Against Cd Stress in the Two Barley Genotypes Differing in Cd Tolerance. Biol. Trace Elem. Res. 2011, 144, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Ribas-Carbó, M.; Diaz-Espejo, A.; Galmés, J.; Medrano, H. Mesophyll conductance to CO2: Current knowledge and future prospects. Plant Cell Environ. 2008, 31, 602–621. [Google Scholar] [CrossRef] [PubMed]
- Souri, Z.; Cardoso, A.A.; da-Silva, C.J.; Oliveira, L.M.; Dari, B.; Sihi, D.; Karimi, N. Heavy Metals and Photosynthesis: Recent Developments. In Photosynthesis, Productivity and Environmental Stress; Ahmad, P., Abass Ahanger, M., Nasser Alyemeni, M., Alam, P., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 107–134. [Google Scholar] [CrossRef]
- Barceló, J.; Vázquez, M.D.; Poschenrieder, C. Structural and ultrastructural disorders in cadmium-treated bush bean plants (Phaseolus vulgaris L.). New Phytol. 1988, 108, 37–49. [Google Scholar] [CrossRef]
- Küpper, H.; Küpper, F.; Spiller, M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J. Exp. Bot. 1996, 47, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Küpper, H.; Küpper, F.; Spiller, M. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth. Res. 1998, 58, 123–133. [Google Scholar] [CrossRef]
- Barón, M.; Arellano, J.B.; Gorgé, J.L. Copper and photosystem II: A controversial relationship. Physiol. Plant. 1995, 94, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Tanyolaç, D.; Ekmekçi, Y.; Ünalan, Ş. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 2007, 67, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, J.; Ananyev, G.M.; Dismukes, G.C. Photoassembly of the water-oxidizing complex in photosystem II. Coordin. Chem. Rev. 2008, 252, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Sagardoy, R.; Morales, F.; López-Millán, A.F.; Abadía, A.; Abadía, J. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol. 2009, 11, 339–350. [Google Scholar] [CrossRef]
- Strasser, R.J. The grouping model of plant photosynthesis: Heterogeneity of photosynthetic units in thylakoids. In Photosynthesis: Proceedings of the Vth International Congress on Photosynthesis, Halkidiki-Greece 1980, Volume III, Structure and Molecular Organisation of the Photosynthetic Apparatus; Akoyunoglou, G., Ed.; Balaban International Science Services: Philadelphia, PA, USA, 1981; pp. 727–737. [Google Scholar]
- Cascio, C.; Schaub, M.; Novak, K.; Desotgiu, R.; Bussotti, F.; Strasser, R.J. Foliar responses to ozone of Fagus sylvatica L. seedlings grown in shaded and in full sunlight conditions. Environ. Exp Bot. 2010, 68, 188–197. [Google Scholar] [CrossRef]
- Yusuf, M.A.; Kumar, D.; Rajwanshi, R.; Strasser, R.J.; Tsimilli-Michael, M.; Govindjee; Sarin, N.B. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. BBA Bioenergetics 2010, 1797, 1428–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Chlorophyll a Fluorescence: A Signature of Photosynthesis, Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar] [CrossRef]
- Bellini, E.; Bandoni, E.; Giardini, S.; Sorce, C.; Spanò, C.; Bottega, S.; Fontanini, D.; Kola, A.; Valensin, D.; Bertolini, A.; et al. Glutathione and phytochelatins jointly allow intracellular and extracellular detoxification of cadmium in the liverwort Marchantia polymorpha. Environ. Exp. Bot. 2023, 209, 105303. [Google Scholar] [CrossRef]
- Shimamura, M. Marchantia polymorpha: Taxonomy, Phylogeny and Morphology of a Model System. Plant Cell Physiol. 2016, 57, 230–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, J.L.; Kohchi, T.; Yamato, K.T.; Jenkins, J.; Shu, S.; Ishizaki, K.; Yamaoka, S.; Nishihama, R.; Nakamura, Y.; Berger, F.; et al. Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell 2017, 171, 287–304.e15. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S. Marchantia polymorpha L.: A Bioaccumulator. Aerobiologia 2007, 23, 181–187. [Google Scholar] [CrossRef]
- Ares, Á.; Itouga, M.; Kato, Y.; Sakakibara, H. Differential Metal Tolerance and Accumulation Patterns of Cd, Cu, Pb and Zn in the Liverwort Marchantia polymorpha L. Bull. Environ. Contam. Toxicol. 2018, 100, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Paunov, M.; Koleva, L.; Vassilev, A.; Vangronsveld, J.; Goltsev, V. Effects of Different Metals on Photosynthesis: Cadmium and Zinc Affect Chlorophyll Fluorescence in Durum Wheat. Int. J. Mol. Sci. 2018, 19, 787. [Google Scholar] [CrossRef] [Green Version]
- Krüger, G.H.J.; De Villiers, M.F.; Strauss, A.J.; de Beer, M.; van Heerden, P.D.R.; Maldonado, R.; Strasser, R.J. Inhibition of photosystem II activities in soybean (Glycine max) genotypes differing in chilling sensitivity. South Afr. J. Bot. 2014, 95, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Tsimilli-Michael, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 2020, 58, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Zagorchev, L.; Atanasova, A.; Albanova, I.; Traianova, A.; Mladenov, P.; Kouzmanova, M.; Goltsev, V.; Kalaji, H.M.; Teofanova, D. Functional Characterization of the Photosynthetic Machinery in Smicronix Galls on the Parasitic Plant Cuscuta campestris by JIP-Test. Cells 2021, 10, 1399. [Google Scholar] [CrossRef] [PubMed]
- Sanità di Toppi, L.; Gremigni, P.; Pawlik-Skowrońska, B.; Prasad, M.N.V.; Cobbett, C.S. Response to Heavy Metals in Plants: A Molecular Approach. In Abiotic Stresses in Plants; Sanità di Toppi, L., Pawlik-Skowrońska, B., Eds.; Springer: Dordrecht, Germany, 2003; pp. 133–156. [Google Scholar] [CrossRef]
- Bertrand, M.; Poirier, I. Photosynthetic organisms and excess of metals. Photosynthetica 2005, 43, 345–353. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Henriques, F.S. Biochemical, physiological, and structural effects of excess copper in plants. Bot. Rev. 1991, 57, 246–273. [Google Scholar] [CrossRef]
- Perales-Vela, H.V.; González-Moreno, S.; Montes-Horcasitas, C.; Cañizares-Villanueva, R.O. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere 2007, 67, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Schröder, W.P.; Arellano, J.B.; Bittner, T.; Barón, M.; Eckert, H.J.; Renger, G. Flash-induced absorption spectroscopy studies of copper interaction with photosystem II in higher plants. J. Biol. Chem. 1994, 269, 32865–32870. [Google Scholar] [CrossRef]
- Yruela, I.; Gatzen, G.; Picorel, R.; Holzwarth, A.R. Cu (II)-Inhibitory Effect on Photosystem II from Higher Plants. A Picosecond Time-Resolved Fluorescence Study. Biochemistry 1996, 35, 9469–9474. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Tian, Q. Early stage toxicity of excess copper to photosystem II of Chlorella pyrenoidosa–OJIP chlorophyll a fluorescence analysis. J. Environ. Sci. 2009, 21, 1569–1574. [Google Scholar] [CrossRef]
- Faseela, P.; Sinisha, A.K.; Brestič, M.; Puthur, J. Special issue in honour of Prof. Reto J. Strasser–Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica 2020, 58, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Pádua, M.; Cavaco, A.M.; Aubert, S.; Bligny, R.; Casimiro, A. Effects of copper on the photosynthesis of intact chloroplasts: Interaction with manganese. Physiol. Plantarum 2010, 138, 301–311. [Google Scholar] [CrossRef]
- Shioi, Y.; Tamai, H.; Sasa, T. Effects of copper on photosynthetic electron transport systems in spinach chloroplasts. Plant Cell Physiol. 1978, 19, 203–209. [Google Scholar] [CrossRef]
- Ouzounidou, G.; Moustakas, M.; Strasser, R.J. Sites of Action of Copper in the Photosynthetic Apparatus of Maize Leaves: Kinetic Analysis of Chlorophyll Fluorescence, Oxygen Evolution, Absorption Changes and Thermal Dissipation as Monitored by Photoacoustic Signals. Function. Plant Biol. 1997, 24, 81–90. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, D.; Soni, V. Performance of chlorophyll a fluorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper. Sci. Rep. 2022, 12, 10620. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.G.; Oliva, M.A.; Rosado-Souza, L.; Camargo Mendes, G.; Santos Colares, D.; Stopato, C.H.; Miyasaka Almeida, A. Iron excess affects rice photosynthesis through stomatal and non-stomatal limitations. Plant Sci. 2013, 201, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Adamski, J.M.; Peters, J.A.; Danieloski, R.; Bacarin, M.A. Excess iron-induced changes in the photosynthetic characteristics of sweet potato. J. Plant Physiol. 2011, 168, 2056–2062. [Google Scholar] [CrossRef] [PubMed]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Küpper, H.; Andresen, E. Mechanisms of metal toxicity in plants. Metallomics 2016, 8, 269–285. [Google Scholar] [CrossRef]
- Assche, F.V.; Clijsters, H. Effects of metals on enzyme activity in plants. Plant Cell Environ. 1990, 13, 195–206. [Google Scholar] [CrossRef]
- Lo, J.-C.; Tsednee, M.; Lo, Y.-C.; Yang, S.-C.; Hu, J.-M.; Ishizaki, K.; Kohchi, T.; Lee, D.-C.; Yeh, K.-C. Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha. New Phytol. 2016, 211, 569–583. [Google Scholar] [CrossRef] [Green Version]
- Stirbet, A.; Lazar, D.; Kromdijk, J.; Govindjee, G. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- Stirbet, A.; Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photoch. Photobio B 2011, 104, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Hammer, O.; Harper, D.; Ryan, P. PAST: Palaeontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 4. Available online: https://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 9 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorce, C.; Bellini, E.; Bacchi, F.; Sanità di Toppi, L. Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc. Plants 2023, 12, 2776. https://doi.org/10.3390/plants12152776
Sorce C, Bellini E, Bacchi F, Sanità di Toppi L. Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc. Plants. 2023; 12(15):2776. https://doi.org/10.3390/plants12152776
Chicago/Turabian StyleSorce, Carlo, Erika Bellini, Florinda Bacchi, and Luigi Sanità di Toppi. 2023. "Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc" Plants 12, no. 15: 2776. https://doi.org/10.3390/plants12152776
APA StyleSorce, C., Bellini, E., Bacchi, F., & Sanità di Toppi, L. (2023). Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc. Plants, 12(15), 2776. https://doi.org/10.3390/plants12152776