Chemical Constituents from Ficus sagittifolia Stem Bark and Their Antimicrobial Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Constituents from F. sagittifolia Stem Bark
2.2. Antimicrobial Activity of Isolated Compounds from F. sagittifolia Stem Bark
3. Materials and Methods
3.1. General Instrumental Methods
3.2. Plant Collection and Authentication
3.3. Extraction and Isolation
3.4. Compounds Identification
3.5. Spectral Data of Compounds 1–7
3.6. Simulation of CD Spectra
3.7. Antimicrobial Activity Bioassay
3.7.1. Microbial Cultures
3.7.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal Concentration (MBC/MFC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ugboko, H.U.; Nwinyi, O.C.; Oranusi, S.U.; Fatoki, T.H.; Omonhinmin, C.A. Antimicrobial importance of medicinal plants in Nigeria. Sci. World J. 2020, 2020, 7059323. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resisitance in 2019: A sysytematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Mir, I.H.; Sharma, M.K.; Singh, A. Antimicrobial activity of some medicinal plant extracts against multidrug resistant bacteria. J. Adv. Sci. Res. 2021, 12, 42–47. [Google Scholar]
- Khan, R.; Islam, B.; Akram, M.; Shakil, S.; Ahmad, A.; Ali, S.M.; Siddiqui, M.; Khan, A.U. Antimicrobial activity of five herbal extracts against multi drug resisitant (MDR) strains of bacteria and fungus of clinical origin. Molecules 2009, 14, 586–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manandhar, S.; Luitel, S.; Dahal, R.K. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J. Trop. Med. 2019, 2019, 1895340. [Google Scholar] [CrossRef] [Green Version]
- Mothana, R.A.; Abdo, S.A.; Hasson, S.; Althawab, F.; Alaghbari, S.A.; Lindequist, U. Antimicrobial, antioxidant and cytotoxic activities and phytochemical screening of some Yemeni medicinal plants. Evid. Based Complement. Altern. Med. 2010, 7, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Gupta, T.; Kataria, R.; Sardana, S. A Comprehensive Review on Current Perspectives of Flavonoids as Antimicrobial Agent. Curr. Top. Med. Chem. 2022, 22, 425–434. [Google Scholar] [CrossRef]
- Pistelli, L.; Giorgi, I. Antimicrobial Properties of Flavonoids. In Dietary Phytochemicals and Microbes; Patra, A., Ed.; Springer: Dordrecht, The Netherlands, 2012; Volume 4046, pp. 33–91. [Google Scholar]
- Tiwari, S.C.; Husain, N. Biological activities and role of flavonoids in human health-A. Indian J. Sci. Res. 2017, 12, 193–196. [Google Scholar]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef] [Green Version]
- Plant of the World Online (POWO): Royal Botanical Gaden Kew Science. Ficus sagittifolia. Available online: https://powo.science.kew.org (accessed on 13 February 2023).
- Burkill, H.M. The Useful Plants of West Tropical Africa; Royal Botanic Gardens Kew: Kent, UK, 1985; Volume 4. [Google Scholar]
- Olaoluwa, O.O.; Taiwo, O.M.; Nahar, L.; Saker, S.D. Ethnopharmacology, phytochemistry and biological activities of the African species of the genus Ficus L. Trend Phytochem. Res. 2022, 6, 46–69. [Google Scholar]
- Taiwo, O.M.; Olaoluwa, O.O.; Aiyelaagbe, O.O.; Matasyoh, J.C. Phytochemical constituents of F. Sagittifolia Warburg ex Mildbraed & Burret leaves with antimicrobial activity. Biol. Med. Nat. Prod. Chem. 2022, 11, 75–81. [Google Scholar]
- Guzel, A.; Aksit, H.; Elmastas, M.; Erenler, R. Bioassay-guided isolation and identification of antioxidant flavonoids from Cyclotrichium origanifolium (Labill.) manden and scheng. Pharmacogn. Mag. 2017, 13, 316–320. [Google Scholar]
- Guo, X.; Li, C.; Duan, L.; Zhao, L.; Lou, H.; Ren, D. Separation of the enantiomers of naringenin and eriodictyol by amylose-based chiral reversed-phase high-performance liquid chromatography. Drug Discov. Ther. 2012, 6, 321–326. [Google Scholar] [PubMed]
- Wang, X.G.; Wei, X.Y.; Huang, X.Y.; Shen, I.T.; Tian, Y.Q.; Cu, H.H. Insecticidal constructure and bioactivities of compounds from Ficus sarmentosa var. henryi. Agric. Sci China 2011, 10, 1402–1409. [Google Scholar] [CrossRef]
- Lin, Y.T.; Mao, Y.W.; Imtiyaz, Z.; Chiou, W.F.; Lee, M.H. Comprehensive LC-MS/MS-based phytochemical perspectives and osteogenic effects of Uraria crinita. Food Funct. 2020, 11, 5420–5431. [Google Scholar] [CrossRef]
- Wang, W.; Dang, J.; Shao, Y.; Wang, Q.; Mei, L.; Tao, Y. Flavonoids from the poisonous plant Oxytropis falcate. Chem. Nat. Compd. 2019, 55, 1147–1149. [Google Scholar] [CrossRef]
- Darbour, N.; Bayet, C.; Rodin-Bercion, S.; Elkhomsi, Z.; Lurel, F.; Chaboud, A.; Guilet, D. Isoflavones from Ficus nymphaefolia. Nat. Prod. Res. 2007, 21, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, H.; Morikawa, T.; Xu, F.; Ninomiya, K.; Yoshikawa, M. New isoflavones and pterocarpane with hepatoprotective activity from the stems of Erycibe expansa. Planta Med. 2004, 70, 1201–1209. [Google Scholar] [CrossRef]
- Kothiyal, S.C.; Saklani, S. Isolation and identification of Ficus palmata leaves and their antimicrobial activities. J. Sci. Res. 2017, 9, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Cheng, M.; Peng, C.; Chen, I. Secondary metabolites and antimycobacterial activities from roots of Ficus nervosa. J. Chin. Biodivers. 2010, 7, 1814–1821. [Google Scholar] [CrossRef]
- Lee, H.J.; Lyu, D.H.; Koo, U.; Lee, S.J.; Hong, S.S.; Kim, K.; Kim, K.H.; Lee, D.; Mar, W. Inhibitory effect of 2-arylbenzofurans from the Mori Cortex Radicis (Moraceae) on oxygen glucose deprivation (OGD)-induced cell death of SH-SY5Y cells. Arch. Pharm. Res. 2011, 34, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Kim, H.G.; Park, E.H.; Kim, K.J.; Bang, M.H.; Kim, G.; Jeon, H.J.; Lee, C.G.; Shin, M.C.; Kim, D.O.; et al. Antioxidant and anti-inflammatory effects in lipopolysaccharide-induced THP-1 cells of coumarins from the bark of Hesperethusa crenulata R. Appl. Biol. Chem. 2021, 64, 90. [Google Scholar] [CrossRef]
- Awolola, G.V.; Sofidiya, M.O.; Baijnath, H.; Noren, S.S.; Koorbanally, N.A. The phytochemistry and gastroprotective activities of the leaves of Ficus glumosa. S. Afr. J. Bot. 2019, 126, 190–195. [Google Scholar] [CrossRef]
- Ikeshiro, Y.; Mase, I.; Tomita, Y. Coumarin glycosides from Peucedanum japonicum. Phytochemistry 1994, 35, 1339–1341. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Ji, Y.P.; Zhao, Y.; Wang, C.G.; Hu, J.F. Gynostemosides A–E, megastigmane glycosides from Gynostemma pentaphyllum. Phytochemistry 2010, 71, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Takasugi, M.; Anetai, M.; Katsui, N.; Masamune, T. The occurrence of vomifoliol, dehydrovomifoliol and dihydrophaseic acid in the roots of “kidney bean”(Phaseolus vulgaris L.). Chem. Lett. 1973, 2, 245–248. [Google Scholar] [CrossRef]
- Caccamese, S.; Caruso, C.; Parrinello, N.; Savarino, A. High-performance liquid chromatographic separation and chiroptical properties of the enantiomers of naringenin and other flavanones. J. Chromatogr. A 2005, 1076, 155–162. [Google Scholar] [CrossRef]
- Giorgio, E.; Parrinello, N.; Caccamese, S.; Rosini, C. Non-empirical assignment of the absolute configuration of (−)-naringenin, by coupling the exciton analysis of the circular dichroism spectrum and the ab initio calculation of the optical rotatory power. Org. Biomol. Chem. 2004, 2, 3602–3607. [Google Scholar] [CrossRef]
- Ding, Y.; Li, X.C.; Ferreira, D. Theoretical calculation of electronic circular dichroism of a hexahydroxydiphenoyl-containing flavanone glycoside. J. Nat. Prod. 2009, 72, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Dat, H.N.; Tien, L.H.T.; Dung, N.T.M.; Van Kieu, N.; Huy, D.T.; Tuyet, N.T.A.; Phung, N.K.P. Chemical constituents of Ficus consociata Blume (Moraceae). Vietnam J. Chem. 2019, 57, 202–207. [Google Scholar] [CrossRef]
- Fan, M.S.; Ye, G.; Huang, C.G. The advances of chemistry and pharmacological study of Ficus genus. Nat. Prod. Res. Dev. 2005, 17, 497–504. [Google Scholar]
- Zhou, Q.; Lei, X.; Niu, J.; Chen, Y.; Shen, X.; Zhang, N.A. New hemiacetal chromone racemate and α-glucosidase inhibitors from Ficus tikoua. Bur. Nat. Prod. Res. 2022, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Liao, H.; Kuo, Y.; Chen, G.; Song, X. A new isoflavone from fruits of Ficus auriculata and its antibacterial activity. Nat. Prod. Res. 2022, 36, 1191–1196. [Google Scholar] [CrossRef] [PubMed]
- SciFinder. Eriodictyol. Available online: https://scifinder-n.cas.org/internal/api/link?redirect_uri=https://scifinder-n.cas.org/navigate/?key=6491bf677c72c6763a763414&state=search&resultview=list&isfromexport=true (accessed on 20 June 2023).
- Lee, E.H.; Kim, H.J.; Song, Y.S.; Jin, C.; Lee, K.T.; Cho, J.; Lee, Y.S. Constituents of the stems and fruits of Opuntia ficus-indica var. saboten. Arch. Pharmacal. Res. 2003, 26, 1018–1023. [Google Scholar] [CrossRef]
- Wang, X.G.; Wei, X.Y.; Tian, Y.Q.; Shen, L.T.; Xu, H.H. Antifungal flavonoids from Ficus sarmentosa var. henryi (King) Corner. Agric. Sci. China 2010, 9, 690–694. [Google Scholar] [CrossRef]
- Sandjo, L.P.; de Moraes, M.H.; Kuete, V.; Kamdoum, B.C.; Ngadjui, B.T.; Steindel, M. Individual and combined antiparasitic effect of six plant metabolites against Leishmania amazonensis and Trypanosoma cruzi. Bioorg. Med. Chem. Lett. 2016, 26, 1772–1775. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chang, F.R.; Lin, Y.J.; Hsieh, P.W.; Wu, M.J.; Wu, Y.C. Identification of antioxidants from rhizome of Davallia solida. Food Chem. 2008, 107, 684–691. [Google Scholar] [CrossRef]
- Wan, C.; Chen, C.; Li, M.; Yang, Y.; Chen, M.; Chen, J. Chemical constituents and antifungal activity of Ficus hirta Vahl. fruits. Plants 2017, 64, 44. [Google Scholar] [CrossRef] [Green Version]
- Islam, A.; Islam, M.S.; Rahman, M.K.; Uddin, M.N.; Akanda, M.R. The pharmacological and biological roles of eriodictyol. Arch. Pharm. Res. 2020, 43, 582–592. [Google Scholar] [CrossRef]
- Deng, Z.; Hassan, S.; Rafiq, M.; Li, H.; He, Y.; Cai, Y.; Kang, X.; Liu, Z.; Yan, T. Pharmacological activity of eriodictyol: The major natural polyphenolic flavanone. Evid. Based Complement. Altern. Med. 2020, 2020, 6681352. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, R.A. Antiinflammatory and Antimicrobial Properties of Flavonoids from Heliotropium subulatum Exudate. Inflamm. Allergy Drug Target 2015, 14, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Verdrengh, M.; Collins, L.V.; Bergin, P.; Tarkowski, A. Phytoestrogen genistein as an anti-staphylococcal agent. Microbes Infect. 2004, 6, 86–92. [Google Scholar] [CrossRef] [PubMed]
Compounds | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Microorganism | 1 + 2 (30:70) | 3 | 4 + 5 (80:20) | 6 | 7 | Gentamycin | Ketoconazole | |||||||
MIC | MBC/ MFC | MIC | MBC/ MFC | MIC | MBC/ MFC | MIC | MBC/ MFC | MIC | MBC/ MFC | MIC | MBC/ MFC | MIC | MBC/ MFC | |
S. aureus | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.005 | 0.005 | NA | NA |
E. coli | 0.0625 | 0.25 | 0.0313 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.125 | 0.125 | 0.005 | 0.01 | NA | NA |
P. aeruginosa | 0.125 | 0.25 | 0.0625 | 0.25 | 0.156 | 0.25 | 0.125 | 0.25 | 0.0078 | 0.25 | 0.01 | 0.01 | NA | NA |
S. typhi | 0.125 | 0.25 | 0.125 | 0.25 | 0.25 | 0.125 | 0.25 | 0.25 | 0.25 | 0.25 | >0.01 | >0.01 | NA | NA |
K. pneumoniae | 0.125 | 0.125 | 0.125 | 0.125 | <0.0039 | 0.0313 | 0.25 | 0.125 | 0.125 | 0.25 | 0.01 | 0.01 | NA | NA |
C. albicans | 0.125 | 0.25 | 0.125 | 0.25 | 0.125 | 0.5 | 0.0625 | 0.5 | 0.125 | 0.125 | NA | NA | 0.01 | 0.01 |
A. niger | 0.0625 | 0.125 | 0.0313 | 0.25 | 0.0156 | 0.125 | 0.0313 | 0.125 | <0.0039 | 0.25 | NA | NA | 0.005 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiwo, O.M.; Olaoluwa, O.O.; Aiyelaagbe, O.O.; Schmidt, T.J. Chemical Constituents from Ficus sagittifolia Stem Bark and Their Antimicrobial Activities. Plants 2023, 12, 2801. https://doi.org/10.3390/plants12152801
Taiwo OM, Olaoluwa OO, Aiyelaagbe OO, Schmidt TJ. Chemical Constituents from Ficus sagittifolia Stem Bark and Their Antimicrobial Activities. Plants. 2023; 12(15):2801. https://doi.org/10.3390/plants12152801
Chicago/Turabian StyleTaiwo, Olayombo M., Olaoluwa O. Olaoluwa, Olapeju O. Aiyelaagbe, and Thomas J. Schmidt. 2023. "Chemical Constituents from Ficus sagittifolia Stem Bark and Their Antimicrobial Activities" Plants 12, no. 15: 2801. https://doi.org/10.3390/plants12152801
APA StyleTaiwo, O. M., Olaoluwa, O. O., Aiyelaagbe, O. O., & Schmidt, T. J. (2023). Chemical Constituents from Ficus sagittifolia Stem Bark and Their Antimicrobial Activities. Plants, 12(15), 2801. https://doi.org/10.3390/plants12152801