Optimizing Grain Yield and Radiation Use Efficiency through Synergistic Applications of Nitrogen and Potassium Fertilizers in Super Hybrid Rice
Abstract
:1. Introduction
2. Results
2.1. Weather Conditions
2.2. Grain Yield
2.3. Aboveground Total Dry Weight and HI
2.4. Growth Durations, IP, IPAR, and RUE
2.5. Relationships between Grain Yield and TDW or HI
2.6. Relationships between Grain IR, IP, IPAR, RUE, and Yield
2.7. Evaluation of the Effects of IPAR, RUE, and HI on Grain Yield in Each Cultivar
3. Discussion
4. Materials and Methods
4.1. Experimental Site and Test Material
4.2. Experimental Design and Crop Management
4.3. Sampling and Measurements
4.4. Measurement of IR and RUE
4.5. Quantifying the Contributions of IPAR, RUE, and HI to Grain Yield
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahad, S.; Saud, S.; Akhter, A.; Bajwa, A.A.; Hassan, S.; Battaglia, M.; Adnan, M.; Wahid, F.; Datta, R.; Babur, E.; et al. Bio-based integrated pest management in rice: An agro-ecosystems friendly approach for agricultural sustainability. J. Saudi Soc. Agric. Sci. 2021, 20, 94–102. [Google Scholar] [CrossRef]
- Deng, F.; Wang, L.; Ren, W.J.; Mei, X.F.; Li, S.X. Optimized nitrogen managements and polyaspartic acid urea improved dry matter production and yield of indica hybrid rice. Soil Tillage Res. 2015, 145, 1–9. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.M.; Xu, C.C. Land consolidation and rural revitalization in China: Mechanisms and paths. Land Use Policy 2020, 91, 104379. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Archontoulis, S.V.; Huth, N.; Yang, R.; Liu, D.L.; Yan, H.L.; Meinke, H.; Huber, I.; Feng, P.Y.; et al. Climate change shifts forward flowering and reduces crop waterlogging stress. Environ. Res. Lett. 2021, 16, 094017. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Yan, H.L.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.Y.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef]
- Ma, G.; Yuan, L.P. Hybrid rice achievements, development and prospect in China. J. Integr. Agric. 2015, 14, 197–205. [Google Scholar] [CrossRef]
- Yuan, L.P. Progress in super-hybrid rice breeding. Crop J. 2017, 5, 100–102. [Google Scholar] [CrossRef]
- Peng, S.B.; Khush, G.S.; Virk, P.; Tang, Q.Y.; Zou, Y.B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 2008, 108, 32–38. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Tang, Q.Y.; Zou, Y.B.; Li, D.Q.; Qin, J.Q.; Yang, S.H.; Chen, L.J.; Xia, B.; Peng, S.B. Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res. 2009, 114, 91–98. [Google Scholar] [CrossRef]
- Deng, J.; Harrison, M.T.; Liu, K.; Ye, J.Y.; Xiong, X.; Fahad, S.; Huang, L.Y.; Tian, X.H.; Zhang, Y.B. Integrated crop management practices improve grain yield and resource use efficiency of super hybrid rice. Front. Plant Sci. 2022, 13, 851562. [Google Scholar] [CrossRef]
- Katsura, K.; Maeda, S.; Horie, T.; Shiraiwa, T. Analysis of yield attributes and crop physiological traits of liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Res. 2007, 103, 170–177. [Google Scholar] [CrossRef]
- Bai, P.; Bai, R.Q.; Jin, Y.X. Characteristics and coordination of source-sink relationships in super hybrid rice. Open Life Sci. 2016, 11, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.W.; Chen, Y.L.; He, L.X.; Tang, X.R. Lanthanum (La) improves growth, yield formation and 2-acetyl-1-pyrroline biosynthesis in aromatic rice (Oryza sativa L.). BMC Plant Biol. 2021, 21, 233. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, L.X.; Chen, R.J.; Lu, Y.; Zhang, E.Y.; Miao, J.; Zuo, Z.H.; Zhao, Y.; Zhu, M.Y.; Zhang, Z.H.; Li, P.C.; et al. OsCOMT, encoding a caffeic acid O–methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. Plant Biotechnol. J. 2022, 20, 1122–1139. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Horie, T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Sci. 1989, 29, 90–98. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the efficiency of crop production in britain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1977, 281, 277–294. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Muchow, R.C. Radiation use efficiency. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1999; Volume 65, pp. 215–265. ISBN 978-0-12-000765-3. [Google Scholar]
- Xie, X.B.; Shan, S.L.; Wang, Y.M.; Cao, F.B.; Chen, J.N.; Huang, M.; Zou, Y.B. Dense planting with reducing nitrogen rate increased grain yield and nitrogen use efficiency in two hybrid rice varieties across two light conditions. Field Crops Res. 2019, 236, 24–32. [Google Scholar] [CrossRef]
- Liu, K.; Yang, R.; Deng, J.; Huang, L.Y.; Wei, Z.W.; Ma, G.H.; Tian, X.H.; Zhang, Y.B. High radiation use efficiency improves yield in the recently developed elite hybrid rice Y-Liangyou 900. Field Crops Res. 2020, 253, 107804. [Google Scholar] [CrossRef]
- Song, Y.F.; Luo, Z.; Pan, Y.X.; Zhang, L.H.; Chen, Q.L.; Zheng, J.L. Three unsaturated fatty acid biosynthesis-related genes in yellow catfish Pelteobagrus fulvidraco: Molecular characterization, tissue expression and transcriptional regulation by leptin. Gene 2015, 563, 1–9. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Rutayisire, C. Utilization of chemical fertilizers under tropial conditions. 2. effect of nitrogen, phosphorus and potassium on the relationship between intercepted radiation and yield in potato crops in Central Africa. Potato Res. 1986, 29, 357–365. [Google Scholar] [CrossRef]
- Shah, S.F.A.; McKenzie, B.A.; Gaunt, R.E.; Marshall, J.W.; Frampton, C.M. Effect of early blight (Alternaria solani) and different nitrogen inputs on radiation interception, radiation use efficiency, and total dry matter production in potatoes (Solanum tuberosum) grown in Canterbury, New Zealand. N. Z. J. Crop Hortic. Sci. 2004, 32, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Shan, S.L.; Zhou, X.F.; Chen, J.N.; Cao, F.B.; Jiang, L.G.; Zou, Y.B. Leaf photosynthetic performance related to higher radiation use efficiency and grain yield in hybrid rice. Field Crops Res. 2016, 193, 87–93. [Google Scholar] [CrossRef]
- Li, G.H.; Zhang, J.; Yang, C.D.; Song, Y.P.; Zheng, C.Y.; Liu, Z.H.; Wang, S.H.; Tang, S.; Ding, Y.F. Yield and yield components of hybrid rice as influenced by nitrogen fertilization at different eco-sites. J. Plant Nutr. 2014, 37, 244–258. [Google Scholar] [CrossRef]
- Lu, J.; Liu, K.; Deng, J.; Feng, X.Q.; Xiong, X.; Huang, L.Y.; Tian, X.H.; Zhang, Y.B. Evaluating the effect of population density and the contribution of early canopy closure to grain yield of hybrid rice. J. Plant Growth Regul. 2022, 41, 830–839. [Google Scholar] [CrossRef]
- Liu, K.; Yang, R.; Lu, J.; Wang, X.Y.; Lu, B.L.; Tian, X.H.; Zhang, Y.B. Radiation use efficiency and source-sink changes of super hybrid rice under shade stress during grain-filling stage. Agron. J. 2019, 111, 1788–1798. [Google Scholar] [CrossRef]
- Deng, J.; Ye, J.Y.; Liu, K.; Harrison, M.T.; Zhong, X.F.; Wang, C.H.; Tian, X.H.; Huang, L.Y.; Zhang, Y.B. Optimizing agronomy improves super hybrid rice yield and nitrogen use efficiency through enhanced post-heading carbon and nitrogen metabolism. Agronomy 2022, 13, 13. [Google Scholar] [CrossRef]
- Zhang, M.L.; Cheng, Y.; Sui, G.M.; Hou, S.G.; Yu, G.X.; Li, H.B.; Wang, Y.F.; Wu, K. Effect of n fertilizer on the yield and nitrogen use efficiency in rice. Chin. Agric. Sci. Bull. 2010, 26, 230–234. (In Chinese) [Google Scholar]
- Wang, Q.S.; Zhen, R.H.; Ding, Y.F.; Zhu, Y.; Wang, S.H.; Cao, W.X. Effect of potassium application rates on nitrogen absorption and utilization of different types of rice: Effect of potassium application rates on nitrogen absorption and utilization of different types of rice. Acta Agron. Sin. 2009, 35, 704–710. [Google Scholar] [CrossRef]
- Hu, C.H.; Xie, L.S.; Fu, C.L.; Zeng, J.H. The effects different fertilizer levels on super rice yield and fertilizer utilization. Chin. Agric. Sci. Bull. 2012, 28, 106–110. (In Chinese) [Google Scholar]
- Saudy, H.S.; El–Metwally, I.M.; Shahin, M.G. Co-application effect of herbicides and micronutrients on weeds and nutrient uptake in flooded irrigated rice: Does it have a synergistic or an antagonistic effect? Crop Prot. 2021, 149, 105755. [Google Scholar] [CrossRef]
- Li, J.; Yan, J.Y.; Hu, W.S.; Li, X.K.; Cong, R.H.; Ren, T.; Lu, J.W. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.). Acta Agron. Sin. 2019, 45, 941–948. (In Chinese) [Google Scholar]
- Hou, W.F.; Xue, X.X.; Li, X.K.; Khan, M.R.; Yan, J.Y.; Ren, T.; Cong, R.H.; Lu, J.W. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res. 2019, 236, 14–23. [Google Scholar] [CrossRef]
- Liu, K.; Deng, J.; Lu, J.; Wang, X.Y.; Lu, B.L.; Tian, X.H.; Zhang, Y.B. High nitrogen levels alleviate yield loss of super hybrid rice caused by high temperatures during the flowering stage. Front. Plant Sci. 2019, 10, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saudy, H.S.; Salem, E.M.M.; Abd El-Momen, W.R. Effect of potassium silicate and irrigation on grain nutrient uptake and water use efficiency of wheat under calcareous soils. Gesunde Pflanz. 2023, 75, 647–654. [Google Scholar] [CrossRef]
- Zeng, J.M.; Cui, K.H.; Huang, J.L.; He, F.; Peng, S.B. Responses of physio-biochemical properties to n-fertilizer application and its relationship with nitrogen use efficiency in rice (Oryza sativa L.). Acta Agron. Sin. 2007, 33, 1168–1176. (In Chinese) [Google Scholar]
- Chang, S.Q.; Chang, T.G.; Song, Q.F.; Zhu, X.G.; Deng, Q.Y. Photosynthetic and agronomic traits of an elite hybrid rice Y-liang-you 900 with a record-high yield. Field Crops Res. 2016, 187, 49–57. [Google Scholar] [CrossRef]
- Fang, B.H.; Teng, Z.N.; Liu, Y.; Zhang, Y.Z. Photosynthesis light response curves of super high-yielding hybrid rice and model fitting. China Rice 2017, 23, 1–5. (In Chinese) [Google Scholar] [CrossRef]
- Katsura, K.; Maeda, S.; Lubis, I.; Horie, T.; Cao, W.X.; Shiraiwa, T. The high yield of irrigated rice in Yunnan, China. Field Crops Res. 2008, 107, 1–11. [Google Scholar] [CrossRef]
- Lu, R.K. Soil and Agro-Chemistry Analytical Methods; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- Meek, D.W.; Hatfield, J.L.; Howell, T.A.; Idso, S.B.; Reginato, R.J. A generalized relationship between photosynthetically active radiation and solar radiation. Agron. J. 1984, 76, 939–945. [Google Scholar] [CrossRef]
Variety | Nitrogen | Potassium | GD | IR | IP | IPAR | RUE |
---|---|---|---|---|---|---|---|
(V) | (N) | (K) | (d) | (MJ m−2) | (%) | (MJ m−2) | (g m−2) |
YLY900 | N90 | K120 | 109 | 1591.4 | 75.4 b | 539.7 c | 2.07 b |
K160 | 109 | 1608.7 | 76.0 b | 550.4 b | 2.08 b | ||
K210 | 109 | 1622.9 | 77.7 a | 567.2 a | 2.14 a | ||
Mean | 109 | 1607.7 | 76.4B | 552.4 B | 2.10 B | ||
N120 | K120 | 110 | 1608.7 | 75.8 b | 548.7 c | 2.31 a | |
K160 | 110 | 1622.9 | 77.0 b | 562.1 b | 2.30 a | ||
K210 | 110 | 1623.9 | 79.0 a | 577.2 a | 2.29 a | ||
Mean | 110 | 1618.5 | 77.3 AB | 562.7 A | 2.3 A | ||
N180 | K120 | 111 | 1622.9 | 77.2 b | 563.9 b | 2.23 c | |
K160 | 111 | 1623.9 | 77.3 b | 565.2 b | 2.37 b | ||
K210 | 111 | 1625.4 | 78.9 a | 577.2 a | 2.43 a | ||
Mean | 111 | 1624.1 | 77.8 A | 568.8 A | 2.34 A | ||
QYHZ | N90 | K120 | 102 | 1529.9 | 77.5 a | 533.8 a | 1.90 b |
K160 | 102 | 1532.7 | 78.0 a | 538.1 a | 1.93 b | ||
K210 | 102 | 1539.3 | 79.9 a | 553.4 a | 1.98 a | ||
Mean | 102 | 1534.0 | 78.5 A | 541.8 B | 1.94 C | ||
N120 | K120 | 102 | 1532.7 | 79.4 a | 547.9 a | 2.12 b | |
K160 | 102 | 1539.3 | 79.6 a | 551.7 a | 2.17 ab | ||
K210 | 102 | 1556.7 | 80.2 a | 561.6 a | 2.22 a | ||
Mean | 102 | 1542.9 | 79.8 A | 553.7 AB | 2.17 B | ||
N180 | K120 | 104 | 1539.3 | 79.7 a | 551.8 a | 2.36 a | |
K160 | 104 | 1556.7 | 80.6 a | 564.3 a | 2.37 a | ||
K210 | 104 | 1563.4 | 80.8 a | 568.3 a | 2.38 a | ||
Mean | 104 | 1553.2 | 80.3 A | 561.5 AB | 2.37 A | ||
ANOVA | |||||||
V | 31.8 ** | 9.3 ** | 19.2 ** | ||||
N | 5.4 ** | 12.7 ** | 96.2 ** | ||||
K | 7.1 ** | 15.4 ** | 4.7 * | ||||
V × N | ns | ns | 8.0 ** | ||||
V × K | ns | ns | ns | ||||
N × K | ns | ns | ns | ||||
V × N × K | ns | ns | ns |
Variety | Nitrogen | Potassium | GD | IR | IP | IPAR | RUE |
---|---|---|---|---|---|---|---|
(V) | (N) | (K) | (d) | (MJ m−2) | (%) | (MJ m−2) | (g m−2) |
YLY900 | N90 | K120 | 106 | 1822.9 | 87.2 a | 714.9 b | 1.95 a |
K160 | 106 | 1844.1 | 87.2 a | 723.4 b | 1.95 a | ||
K210 | 106 | 1864 | 88.7 a | 744.1 a | 1.95 a | ||
Mean | 106 | 1843.7 | 87.7 B | 727.5 B | 1.95 B | ||
N120 | K120 | 108 | 1844.1 | 85.8 a | 711.8 b | 2.04 c | |
K160 | 108 | 1864.0 | 87.4 a | 732.9 b | 2.12 b | ||
K210 | 108 | 1878.8 | 87.7 a | 741.0 a | 2.17 a | ||
Mean | 108 | 1862.3 | 86.9 B | 728.6 B | 2.11 A | ||
N180 | K120 | 110 | 1864.0 | 92.0 a | 771.7 a | 1.92 b | |
K160 | 110 | 1878.8 | 92.4 a | 781.5 a | 2.09 a | ||
K210 | 110 | 1896.6 | 92.6 a | 790.4 a | 2.13 a | ||
Mean | 110 | 1879.8 | 92.4 A | 781.2 A | 2.05 AB | ||
QYHZ | N90 | K120 | 98 | 1655.0 | 85.2 a | 634.6 b | 2.26 b |
K160 | 98 | 1675.1 | 85.6 a | 645.0 b | 2.32 a | ||
K210 | 98 | 1694.9 | 88.0 a | 671.0 a | 2.33 a | ||
Mean | 98 | 1675.0 | 86.3 C | 650.2 C | 2.30 C | ||
N120 | K120 | 100 | 1675.1 | 88.4 a | 666 b | 2.46 b | |
K160 | 100 | 1694.9 | 89.2 a | 680.4 b | 2.50 a | ||
K210 | 100 | 1715.1 | 90.7 a | 699.6 a | 2.50 a | ||
Mean | 100 | 1695.0 | 89.4 B | 682.0 B | 2.49 B | ||
N180 | K120 | 102 | 1694.9 | 91.6 a | 698.8 a | 2.58 b | |
K160 | 102 | 1715.1 | 92.9 a | 716.9 a | 2.59 b | ||
K210 | 102 | 1721.2 | 93.3 a | 722.5 a | 2.73 a | ||
Mean | 102 | 1710.4 | 92.6 A | 712.7 A | 2.63 A | ||
ANOVA | |||||||
V | ns | 221.9 ** | 467.3 ** | ||||
N | 37.8 ** | 64.6 ** | 41.3 ** | ||||
K | 3.7 * | 14.6 ** | 8.4 ** | ||||
V × N | 4.3 * | 4.5 * | 13.4 ** | ||||
V × K | ns | ns | ns | ||||
N × K | ns | ns | ns | ||||
V × N × K | ns | ns | ns |
Variety | Nitrogen | Potassium | GD | IR | IP | IPAR | RUE |
---|---|---|---|---|---|---|---|
(V) | (N) | (K) | (d) | (MJ m−2) | (%) | (MJ m−2) | (g m−2) |
YLY900 | N90 | K120 | 105 | 2074.2 | 87.0 a | 811.8 a | 1.72 a |
K160 | 105 | 2083.5 | 87.6 a | 821.2 a | 1.73 a | ||
K210 | 105 | 2100.9 | 88.0 a | 832.1 a | 1.75 a | ||
Mean | 105 | 2086.2 | 87.5 B | 821.7 C | 1.73 B | ||
N120 | K120 | 106 | 2083.5 | 88.6 a | 830.8 b | 1.76 b | |
K160 | 106 | 2100.9 | 89.2 a | 843.2 b | 1.85 a | ||
K210 | 106 | 2115.7 | 90.9 a | 865.1 a | 1.85 a | ||
Mean | 106 | 2100.0 | 89.6 B | 846.4 B | 1.82 A | ||
N180 | K120 | 107 | 2100.9 | 91.6 a | 865.6 a | 1.71 c | |
K160 | 107 | 2115.7 | 92.2 a | 877.7 a | 1.83 b | ||
K210 | 107 | 2124.0 | 92.5 a | 883.7 a | 1.90 a | ||
Mean | 107 | 2113.5 | 92.1 A | 875.6 A | 1.81 A | ||
QYHZ | N90 | K120 | 97 | 1978.7 | 85.1 b | 757.3 b | 1.79 b |
K160 | 97 | 1997.4 | 85.8 b | 770.8 b | 1.82 b | ||
K210 | 97 | 1998.0 | 87.0 a | 782.5 a | 1.89 a | ||
Mean | 97 | 1991.4 | 86.0 C | 770.2 C | 1.83 C | ||
N120 | K120 | 98 | 1997.4 | 88.5 b | 795.0 a | 1.95 b | |
K160 | 98 | 1998.0 | 89.1 b | 801.3 a | 2.02 a | ||
K210 | 98 | 1988.5 | 90.5 a | 810.0 a | 2.06 a | ||
Mean | 98 | 1994.6 | 89.4 B | 802.1 B | 2.01 B | ||
N180 | K120 | 100 | 1998.0 | 91.1 a | 818.9 a | 2.10 b | |
K160 | 100 | 1988.5 | 92.2 a | 824.5 a | 2.12 b | ||
K210 | 100 | 1995.8 | 92.6 a | 831.2 a | 2.27 a | ||
Mean | 100 | 1994.1 | 91.9 A | 824.9 A | 2.16 A | ||
ANOVA | |||||||
V | ns | 165.8 ** | 515.5 ** | ||||
N | 55.2 ** | 68.4 ** | 164.2 ** | ||||
K | 5.3 * | 10.1 ** | 51.7 ** | ||||
V × N | ns | ns | 60.7 ** | ||||
V × K | ns | ns | ns | ||||
N × K | ns | ns | 5.6 ** | ||||
V × N × K | ns | ns | ns |
ANOVA | GY | TDW | HI | IP | IPAR | RUE |
---|---|---|---|---|---|---|
Y | 3435.8 ** | 1762.6 ** | 46.7 ** | 727.8 ** | 5045.1 ** | 490.1 ** |
V | 718.3 ** | 119.0 ** | 94.0 ** | 7.1 ** | 347.8 ** | 338.4 ** |
N | 1638.1 ** | 697.4 ** | ns | 78.8 ** | 133.6 ** | 214.6 ** |
K | 255.7 ** | 148.9 ** | 13.5 ** | 14.5 ** | 37.5 ** | 30.7 ** |
Y × V | 402.5 ** | 153.2 ** | 32.4 ** | 10.6 ** | 56.8 ** | 225.8 ** |
Y × N | 19.3 ** | 2.7 * | 9.2 ** | 9.0 ** | 13.6 ** | 6.7 ** |
Y × K | 4.1 ** | 3.2 * | ns | ns | ns | ns |
V × N | 49.1 ** | 77.2 ** | 4.3 * | 4.1 * | 3.2 * | 44.2 ** |
V × K | ns | ns | ns | ns | ns | ns |
N × K | 4.2 ** | 4.4 ** | 6.0 ** | ns | ns | 3.3 * |
Y × V × N | 11.8 ** | 2.7 * | ns | ns | ns | ns |
Y × V × K | ns | ns | ns | ns | ns | ns |
Y × N × K | 2.9 ** | ns | 3.7 ** | ns | ns | ns |
V × N × K | 3.0 * | 2.8 * | ns | ns | ns | ns |
Y × V × N × K | 3.6 ** | ns | 3.0 ** | ns | ns | ns |
GY | IPAR | RUE | HI | Adj.R2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | SE | p-Level | Value | SE | p-Level | Value | SE | p-Level | ||
QYHZ | 4 × 10−3 | 4.07 × 10−4 | *** | 3.57 | 0.16 | *** | 2.71 | 3.36 | ns | 0.90 |
YLY900 | 1 × 10−3 | 5.99 × 10−4 | *** | 4.15 | 0.34 | *** | 2.93 | 2.21 | ns | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Ye, J.; Zhong, X.; Yang, Q.; Harrison, M.T.; Wang, C.; Huang, L.; Tian, X.; Liu, K.; Zhang, Y. Optimizing Grain Yield and Radiation Use Efficiency through Synergistic Applications of Nitrogen and Potassium Fertilizers in Super Hybrid Rice. Plants 2023, 12, 2858. https://doi.org/10.3390/plants12152858
Deng J, Ye J, Zhong X, Yang Q, Harrison MT, Wang C, Huang L, Tian X, Liu K, Zhang Y. Optimizing Grain Yield and Radiation Use Efficiency through Synergistic Applications of Nitrogen and Potassium Fertilizers in Super Hybrid Rice. Plants. 2023; 12(15):2858. https://doi.org/10.3390/plants12152858
Chicago/Turabian StyleDeng, Jun, Jiayu Ye, Xuefen Zhong, Qingqing Yang, Matthew Tom Harrison, Chunhu Wang, Liying Huang, Xiaohai Tian, Ke Liu, and Yunbo Zhang. 2023. "Optimizing Grain Yield and Radiation Use Efficiency through Synergistic Applications of Nitrogen and Potassium Fertilizers in Super Hybrid Rice" Plants 12, no. 15: 2858. https://doi.org/10.3390/plants12152858
APA StyleDeng, J., Ye, J., Zhong, X., Yang, Q., Harrison, M. T., Wang, C., Huang, L., Tian, X., Liu, K., & Zhang, Y. (2023). Optimizing Grain Yield and Radiation Use Efficiency through Synergistic Applications of Nitrogen and Potassium Fertilizers in Super Hybrid Rice. Plants, 12(15), 2858. https://doi.org/10.3390/plants12152858