Genetic Diversity and Relationship of Shanlan Upland Rice Were Revealed Based on 214 Upland Rice SSR Markers
Abstract
:1. Introduction
2. Results
2.1. Development of Polymorphic SSR Primers
2.2. Gene Flow among Upland Rice Populations from Different Geographical Origin
2.3. Genetic Diversity of Upland Rice from Different Geographical Sources
2.4. Genetic Similarity Analysis of Upland Rice from Different Geographical Sources
2.5. Analysis of Molecular Variance
2.6. Cluster Analysis and Principal Coordinate Analysis of Upland Rice from Different Geographical Sources
3. Discussion
4. Materials and Methods
4.1. Experimental Materials and DNA Extraction
4.2. Primer Screening and Genetic Diversity Analysis
4.3. Molecular Variance Analysis (AMOVA) and Gene Flow Estimation
4.4. Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyu, J.; Huang, L.; Zhang, S.; Zhang, Y.; He, W.; Zeng, P.; Zeng, Y.; Huang, G.; Zhang, J.; Ning, M.; et al. Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nat. Commun. 2020, 11, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, J.; Li, B.; He, W.; Zhang, S.; Gou, Z.; Zhang, J.; Meng, L.; Li, X.; Tao, D.; Huang, W.; et al. A genomic perspective on the important genetic mechanisms of upland adaptation of rice. BMC Plant Biol. 2014, 14, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Han, Y.; Liu, L.; Chen, Y.; Du, Y.; Zhang, J.; Sun, H.; Zhao, Q. qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. J. Exp. Bot. 2015, 66, 2723–2732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Q.; Chen, L.; Mei, H.; Wei, H.; Feng, F.; Wang, P.; Xia, H.; Li, T.; Luo, L. Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J. Exp. Bot. 2015, 66, 4749–4757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Z.; Zhao, Y.; Xu, P.; Yu, D. Microbial Diversity of Upland Rice Roots and Their Influence on Rice Growth and Drought Tolerance. Microorganisms 2020, 8, 1329. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, C.; Niu, X.; Wang, L.; Li, L.; Yuan, Q.; Pei, X. Research on lncRNA related to drought resistance of Shanlan upland rice. BMC Genom. 2022, 23, 336. [Google Scholar] [CrossRef]
- Yang, X.; Niu, X.; Li, L.; Wang, L.; Liu, C.; Liu, J.; Yuan, Q.; Pei, X. Understanding the molecular mechanism of drought resistance in Shanlan upland rice by transcriptome and phenotype analyses. Int. J. Biol. Macromol. 2023, 231, 123387. [Google Scholar] [CrossRef]
- Xu, X.; Yang, Q.; Lin, B.; Zeng, L.; Wang, G.; Chen, T. Identification of Resistance to Bacterial Blight of Rice Germplasm in Hainan Island. Guangdong Agric. Sci. 1991, 2, 26–27, (In Chinese with English Abstract), (In Chinese with English Abstract). [Google Scholar]
- Yuan, N.; Wei, X.; Xue, D.; Yang, Q. The Origin and Evolution of Upland Rice in Li Ethnic Communities in Hainan Province. J. Plant Genet. Resour. 2013, 14, 202–207, (In Chinese with English Abstract). [Google Scholar]
- Zheng, C.; Chen, H.; Huang, D. Studies on agronomic characteristics and drought-resistant physiological characteristics of Shanlan upland rice in Hainan province. Chin. J. Trop. Crops 1997, 2, 85–91, (In Chinese with English Abstract). [Google Scholar]
- Sun, X.; Xiong, H.; Jiang, C.; Zhang, D.; Yang, Z.; Huang, Y.; Zhu, W.; Ma, S.; Duan, J.; Wang, X.; et al. Natural variation of DROT1 confers drought adaptation in upland rice. Nat. Commun. 2022, 13, 4265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Hua, L.; Fei, J.; Wang, F.; Liao, Y.; Fang, W.; Chen, F.; Teng, N. Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genom. 2016, 17, 585, [published correction appears in BMC Genom. 2016, 17, 714]. [Google Scholar] [CrossRef] [Green Version]
- Ereful, N.C.; Laurena, A.; Liu, L.-Y.; Kao, S.-M.; Tsai, E.; Greenland, A.; Powell, W.; Mackay, I.; Leung, H. Unraveling regulatory divergence, heterotic malleability, and allelic imbalance switching in rice due to drought stress. Sci. Rep. 2021, 11, 13489, [published correction appears in Sci. Rep. 2021, 11, 17364]. [Google Scholar] [CrossRef]
- Chavhan, R.; Sable, S.; Narwade, A.; Hinge, V.; Kalbande, B.; Mukherjee, A.; Chakrabarty, P.; Kadam, U.S. Multiplex molecular marker-assisted analysis of significant pathogens of cotton (Gossypium sp.). Biocatal. Agric. Biotechnol. 2023, 47, 102557. [Google Scholar] [CrossRef]
- Hinge, V.R.; Shaikh, I.M.; Chavhan, R.L.; Deshmukh, A.S.; Shelake, R.M.; Ghuge, S.A.; Dethe, A.M.; Suprasanna, P.; Kadam, U.S. Assessment of genetic diversity and volatile content of commercially grown banana (Musa spp.) cultivars. Sci. Rep. 2022, 12, 7979. [Google Scholar] [CrossRef]
- Barreneche, T.; de la Concepción, M.C.; Blouin-Delmas, M.; Ordidge, M.; Nybom, H.; Lacis, G.; Feldmane, D.; Sedlak, J.; Meland, M.; Kaldmäe, H.; et al. SSR-Based Analysis of Genetic Diversity and Structure of Sweet Cherry (Prunus avium L.) from 19 Countries in Europe. Plants 2021, 10, 1983. [Google Scholar] [CrossRef]
- Su, M.; Zhang, C.; Feng, S. Identification and genetic diversity analysis of hybrid offspring of azalea based on EST-SSR markers. Sci. Rep. 2022, 12, 15239. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, D.; Song, Z.; Tan, Y.; Guo, X.; Wang, D. Genetic Diversity Analysis and Core Germplasm Collection Construction of Camellia oleifera Based on Fruit Phenotype and SSR Data. Genes 2022, 13, 2351. [Google Scholar] [CrossRef]
- Jasim Aljumaili, S.; Rafii, M.Y.; Latif, M.A.; Sakimin, S.Z.; Arolu, I.W.; Miah, G. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers. Biomed. Res. Int. 2018, 2018, 7658032. [Google Scholar] [CrossRef] [Green Version]
- Hassan, D.A.; Hama-Ali, E.O. Evaluation of gene flow and genetic diversity in rice accessions across Kurdistan region-iraq using SSR markers. Mol. Biol. Rep. 2022, 49, 1007–1016. [Google Scholar] [CrossRef]
- Liu, C.; Cui, D.; Jiao, A.; Ma, X.; Li, X.; Han, B.; Chen, H.; Ruan, R.; Wang, Y.; Han, L. Kam Sweet Rice (Oryza sativa L.) Is a Special Ecotypic Rice in Southeast Guizhou, China as Revealed by Genetic Diversity Analysis. Front. Plant Sci. 2022, 13, 830556. [Google Scholar] [CrossRef]
- Dagnon, Y.D.; Palanga, K.K.; Bammite, D.; Bodian, A.; Akabassi, G.C.; Foncéka, D.; Tozo, K. Genetic diversity and population structure of cowpea [Vigna unguiculata (L.) Walp.] accessions from Togo using SSR markers. PLoS ONE. 2022, 17, e0252362. [Google Scholar] [CrossRef] [PubMed]
- Dido, A.A.; Krishna, M.S.R.; Assefa, E.; Degefu, D.T.; Singh, B.J.K.; Tesfaye, K. Genetic diversity, population structure and relationship of Ethiopian barley (Hordeum vulgare L.) landraces as revealed by SSR markers. J. Genet. 2022, 101, 9. [Google Scholar] [CrossRef] [PubMed]
- Özkan, G.; Haliloğlu, K.; Türkoğlu, A.; Özturk, H.I.; Elkoca, E.; Poczai, P. Determining Genetic Diversity and Population Structure of Common Bean (Phaseolus vulgaris L.) Landraces from Türkiye Using SSR Markers. Genes 2022, 13, 1410. [Google Scholar] [CrossRef]
- Catarcione, G.; Paolacci, A.R.; Alicandri, E.; Gramiccia, E.; Taviani, P.; Rea, R.; Costanza, M.T.; De Lorenzis, G.; Puccio, G.; Mercati, F.; et al. Genetic Diversity and Population Structure of Common Bean (Phaseolus vulgaris L.) Landraces in the Lazio Region of Italy. Plants 2023, 12, 744. [Google Scholar] [CrossRef]
- Mathiang, E.A.; Sa, K.J.; Park, H.; Kim, Y.J.; Lee, J.K. Genetic Diversity and Population Structure of Normal Maize Germplasm Collected in South Sudan Revealed by SSR Markers. Plants 2022, 11, 2787. [Google Scholar] [CrossRef]
- Chen, G.L. Some problems on the history of rice farming in Hainan. Agric. Archaeol. 2003, 1, 89–93, (In Chinese with English Abstract). [Google Scholar]
- Lam, M.; Chen, C.Y.; Li, Z.; Martin, A.R.; Bryois, J.; Ma, X.; Gaspar, H.; Ikeda, M.; Benyamin, B.; Huang, H.; et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 2019, 51, 1670–1678. [Google Scholar] [CrossRef]
- Song, X.; Ge, T.; Li, Y.; Hou, X. Genome-wide identification of SSR and SNP markers from the non-heading Chinese cabbage for comparative genomic analyses. BMC Genom. 2015, 16, 328. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Korol, A.B.; Fahima, T.; Nevo, E. Microsatellites within genes: Structure, function, and evolution. Mol. Biol. Evol. 2004, 21, 991–1007. [Google Scholar] [CrossRef]
- Burstin, J.; Salloignon, P.; Chabert-Martinello, M.; Magnin-Robert, J.-B.; Siol, M.; Jacquin, F.; Chauveau, A.; Pont, C.; Aubert, G.; Delaitre, C.; et al. Genetic diversity and trait genomic prediction in a pea diversity panel. BMC Genom. 2015, 16, 105. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Yang, Y.; Guan, Y.; Xu, Z.; Wang, J.; Yun, Y.; Yan, X.; Tang, Q. Genetic Diversity of Shanlan Upland Rice (Oryza sativa L.) and Association Analysis of SSR Markers Linked to Agronomic Traits. Biomed. Res. Int. 2021, 2021, 7588652. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Choudhury, D.R.; Tiwari, G.; Singh, A.K.; Kumar, S.; Srinivasan, K.; Tyagi, R.K.; Sharma, A.D.; Singh, R. Genetic diversity trend in Indian rice varieties: An analysis using SSR markers. BMC Genet. 2016, 17, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasumathy, S.K.; Alagu, M. SSR marker-based genetic diversity analysis and SNP haplotyping of genes associating abiotic and biotic stress tolerance, rice growth and development and yield across 93 rice landraces. Mol. Biol. Rep. 2021, 48, 5943–5953. [Google Scholar] [CrossRef]
- Monteverde, E.; Gutierrez, L.; Blanco, P.; de Vida, F.P.; Rosas, J.E.; Bonnecarrère, V.; Quero, G.; McCouch, S. Integrating Molecular Markers and Environmental Covariates To Interpret Genotype by Environment Interaction in Rice (Oryza sativa L.) Grown in Subtropical Areas. G3 (Bethesda) 2019, 9, 1519–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; An, G.; Weber, A.P.M.; Zhang, D. Prospects for rice in 2050. Plant Cell Environ. 2023, 46, 1037–1045. [Google Scholar] [CrossRef]
- Barley, A.J.; Cordes, J.E.; Walker, J.M.; Thomson, R.C. Genetic diversity and the origins of parthenogenesis in the teiid lizard Aspidoscelis laredoensis. Mol. Ecol. 2022, 31, 266–278. [Google Scholar] [CrossRef]
- Zhan, X. Ethnic origin relationship between Li Nationality and Baiyue Nationality. In See the History and Culture of the Li Nationality; Nanhai Series; Jinan University Press: Guangzhou, China, 2012; pp. 2–147, (In Chinese with English Abstract). [Google Scholar]
- Ziya Motalebipour, E.; Kafkas, S.; Khodaeiaminjan, M.; Çoban, N.; Gözel, H. Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species. BMC Genom. 2016, 17, 998. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.J.; Yu, Y.; Yuan, Y.M.; Huang, H.W.; Yan, C. Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis. Ann. Bot. 2005, 95, 843–851. [Google Scholar] [CrossRef] [Green Version]
Locus | Na | Ne | I | Ho | He | F | PIC | Fis | Fit | Fst | Nm |
---|---|---|---|---|---|---|---|---|---|---|---|
LRJ49 | 12.000 | 3.947 | 1.652 | 0.084 | 0.747 | 0.887 | 0.712 | 0.869 | 0.879 | 0.074 | 3.145 |
LRJ50 | 10.000 | 4.162 | 1.624 | 0.093 | 0.760 | 0.877 | 0.721 | 0.885 | 0.892 | 0.058 | 4.039 |
LRJ51 | 16.000 | 7.579 | 2.241 | 0.151 | 0.868 | 0.826 | 0.854 | 0.811 | 0.815 | 0.025 | 9.834 |
LRJ53 | 20.000 | 2.499 | 1.578 | 0.061 | 0.600 | 0.898 | 0.585 | 0.897 | 0.898 | 0.012 | 21.093 |
LRJ54 | 16.000 | 3.814 | 1.719 | 0.094 | 0.738 | 0.873 | 0.704 | 0.869 | 0.873 | 0.031 | 7.748 |
LRJ62 | 23.000 | 5.830 | 2.194 | 0.099 | 0.828 | 0.881 | 0.809 | 0.874 | 0.877 | 0.030 | 8.002 |
LRJ65 | 17.000 | 6.989 | 2.309 | 0.113 | 0.857 | 0.868 | 0.845 | 0.877 | 0.881 | 0.031 | 7.938 |
LRJ71 | 11.000 | 4.396 | 1.790 | 0.123 | 0.772 | 0.841 | 0.747 | 0.838 | 0.840 | 0.009 | 26.146 |
LRJ73 | 11.000 | 3.353 | 1.552 | 0.098 | 0.702 | 0.860 | 0.663 | 0.860 | 0.861 | 0.008 | 32.639 |
LRJ81 | 9.000 | 3.451 | 1.499 | 0.065 | 0.710 | 0.908 | 0.666 | 0.904 | 0.907 | 0.030 | 7.971 |
LRJ88 | 11.000 | 3.030 | 1.447 | 0.066 | 0.670 | 0.902 | 0.625 | 0.915 | 0.915 | 0.009 | 26.846 |
LRJ89 | 8.000 | 2.194 | 1.136 | 0.079 | 0.544 | 0.854 | 0.513 | 0.867 | 0.870 | 0.024 | 10.149 |
Mean | 13.667 | 4.270 | 1.728 | 0.094 | 0.733 | 0.873 | 0.704 | 0.872 | 0.876 | 0.028 | 13.796 |
Philippines | Guangdong (China) | Guangxi (China) | Guizhou (China) | Hainan (China) | Hunan (China) | Cambodia | Laos | Myanmar | Malaysia | Thailand | India | Indonesia | Vietnam | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Philippines | - | 6.302 | 6.932 | 5.698 | 4.766 | 4.518 | 3.394 | 12.174 | 6.668 | 7.35 | 6.356 | 3.678 | 10.337 | 2.103 |
Guangdong (China) | 0.038 | - | 7.58 | 5.064 | 5.958 | 4.349 | 2.656 | 5.489 | 5.201 | 3.887 | 4.883 | 3.006 | 7.396 | 2.327 |
Guangxi (China) | 0.035 | 0.032 | - | 3.477 | 5.353 | 3.66 | 3.881 | 6.969 | 5.2 | 4.664 | 6.306 | 4.402 | 7.241 | 3.278 |
Guizhou (China) | 0.042 | 0.047 | 0.067 | - | 5.086 | 5.004 | 1.952 | 5.327 | 3.784 | 3.497 | 3.973 | 2.153 | 5.919 | 1.298 |
Hainan (China) | 0.05 | 0.04 | 0.045 | 0.047 | - | 6.343 | 2.412 | 4.657 | 3.375 | 4.059 | 4.465 | 3.586 | 5.133 | 1.79 |
Hunan (China) | 0.052 | 0.054 | 0.064 | 0.048 | 0.038 | - | 2.177 | 4.167 | 3.191 | 3.889 | 4.225 | 2.873 | 4.122 | 1.64 |
Cambodia | 0.069 | 0.086 | 0.061 | 0.114 | 0.094 | 0.103 | - | 4.905 | 4.312 | 2.924 | 4.008 | 5.595 | 4.069 | 2.131 |
Laos | 0.02 | 0.044 | 0.035 | 0.045 | 0.051 | 0.057 | 0.048 | - | 7.699 | 6.81 | 9.764 | 4.796 | 12.376 | 2.368 |
Myanmar | 0.036 | 0.046 | 0.046 | 0.062 | 0.069 | 0.073 | 0.055 | 0.031 | - | 3.555 | 5.75 | 3.904 | 10.075 | 1.954 |
Malaysia | 0.033 | 0.06 | 0.051 | 0.067 | 0.058 | 0.06 | 0.079 | 0.035 | 0.066 | - | 5.14 | 3.169 | 4.499 | 1.843 |
Thailand | 0.038 | 0.049 | 0.038 | 0.059 | 0.053 | 0.056 | 0.059 | 0.025 | 0.042 | 0.046 | - | 4.643 | 7.31 | 2.538 |
India | 0.064 | 0.077 | 0.054 | 0.104 | 0.065 | 0.08 | 0.043 | 0.05 | 0.06 | 0.073 | 0.051 | - | 3.894 | 2.183 |
Indonesia | 0.024 | 0.033 | 0.033 | 0.041 | 0.046 | 0.057 | 0.058 | 0.02 | 0.024 | 0.053 | 0.033 | 0.06 | - | 2.577 |
Vietnam | 0.106 | 0.097 | 0.071 | 0.161 | 0.123 | 0.132 | 0.105 | 0.096 | 0.113 | 0.119 | 0.09 | 0.103 | 0.088 | - |
Sample Plot | Na | Ne | I | Ho | He | F | |
---|---|---|---|---|---|---|---|
Philippines | Mean | 6.583 | 4.512 | 1.621 | 0.032 | 0.754 | 0.957 |
SE | 0.543 | 0.449 | 0.092 | 0.011 | 0.024 | 0.014 | |
Guangdong | Mean | 4.500 | 3.248 | 1.276 | 0.039 | 0.669 | 0.942 |
(China) | SE | 0.337 | 0.265 | 0.080 | 0.012 | 0.027 | 0.018 |
Guangxi | Mean | 5.833 | 3.501 | 1.400 | 0.089 | 0.674 | 0.876 |
(China) | SE | 0.575 | 0.359 | 0.107 | 0.015 | 0.038 | 0.019 |
Guizhou | Mean | 7.333 | 3.729 | 1.482 | 0.162 | 0.684 | 0.768 |
(China) | SE | 0.829 | 0.492 | 0.125 | 0.021 | 0.034 | 0.025 |
Hainan | Mean | 6.583 | 3.008 | 1.268 | 0.076 | 0.630 | 0.882 |
(China) | SE | 0.657 | 0.296 | 0.095 | 0.011 | 0.036 | 0.012 |
Hunan | Mean | 4.167 | 3.055 | 1.145 | 0.131 | 0.613 | 0.789 |
(China) | SE | 0.588 | 0.420 | 0.122 | 0.027 | 0.046 | 0.041 |
Cambodia | Mean | 4.167 | 3.092 | 1.158 | 0.031 | 0.592 | 0.945 |
SE | 0.423 | 0.374 | 0.148 | 0.016 | 0.071 | 0.028 | |
Laos | Mean | 7.917 | 4.223 | 1.556 | 0.081 | 0.704 | 0.887 |
SE | 0.933 | 0.688 | 0.137 | 0.014 | 0.041 | 0.016 | |
Myanmar | Mean | 4.833 | 3.978 | 1.427 | 0.012 | 0.713 | 0.983 |
SE | 0.322 | 0.424 | 0.091 | 0.012 | 0.033 | 0.017 | |
Malaysia | Mean | 4.417 | 3.398 | 1.282 | 0.205 | 0.668 | 0.702 |
SE | 0.379 | 0.344 | 0.097 | 0.032 | 0.036 | 0.045 | |
Thailand | Mean | 4.750 | 3.546 | 1.307 | 0.075 | 0.656 | 0.878 |
SE | 0.494 | 0.399 | 0.135 | 0.028 | 0.055 | 0.049 | |
India | Mean | 4.917 | 3.076 | 1.193 | 0.072 | 0.588 | 0.876 |
SE | 0.596 | 0.372 | 0.156 | 0.015 | 0.069 | 0.031 | |
Indonesia | Mean | 7.250 | 4.466 | 1.625 | 0.067 | 0.740 | 0.907 |
SE | 0.592 | 0.537 | 0.103 | 0.014 | 0.029 | 0.022 | |
Vietnam | Mean | 2.333 | 1.952 | 0.714 | 0.042 | 0.453 | 0.860 |
SE | 0.142 | 0.157 | 0.072 | 0.028 | 0.040 | 0.101 | |
Total | Mean | 5.399 | 3.485 | 1.318 | 0.080 | 0.653 | 0.875 |
SE | 0.186 | 0.118 | 0.034 | 0.006 | 0.013 | 0.011 |
Source | df | SS | MS | Est. Var. | PV% | Fst | Fis | Fit |
---|---|---|---|---|---|---|---|---|
Among Pops | 1 | 40.418 | 40.418 | 0.197 | 4.340% | |||
Among Indiv | 212 | 1726.285 | 8.143 | 3.791 | 83.333% | |||
Within Indiv | 214 | 120.000 | 0.561 | 0.561 | 12.326% | |||
Total | 427 | 1886.703 | 4.549 | 100% | 0.043 *** | 0.871 *** | 0.877 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Huang, Y.; Yang, X.; Su, M.; Xiong, H.; Dai, Y.; Wu, W.; Pei, X.; Yuan, Q. Genetic Diversity and Relationship of Shanlan Upland Rice Were Revealed Based on 214 Upland Rice SSR Markers. Plants 2023, 12, 2876. https://doi.org/10.3390/plants12152876
Li R, Huang Y, Yang X, Su M, Xiong H, Dai Y, Wu W, Pei X, Yuan Q. Genetic Diversity and Relationship of Shanlan Upland Rice Were Revealed Based on 214 Upland Rice SSR Markers. Plants. 2023; 12(15):2876. https://doi.org/10.3390/plants12152876
Chicago/Turabian StyleLi, Rongju, Yinling Huang, Xinsen Yang, Meng Su, Huaiyang Xiong, Yang Dai, Wei Wu, Xinwu Pei, and Qianhua Yuan. 2023. "Genetic Diversity and Relationship of Shanlan Upland Rice Were Revealed Based on 214 Upland Rice SSR Markers" Plants 12, no. 15: 2876. https://doi.org/10.3390/plants12152876
APA StyleLi, R., Huang, Y., Yang, X., Su, M., Xiong, H., Dai, Y., Wu, W., Pei, X., & Yuan, Q. (2023). Genetic Diversity and Relationship of Shanlan Upland Rice Were Revealed Based on 214 Upland Rice SSR Markers. Plants, 12(15), 2876. https://doi.org/10.3390/plants12152876