Extraction of Polyphenols from Slovenian Hop (Humulus lupulus L.) Aurora Variety Using Deep Eutectic Solvents: Choice of the Extraction Method vs. Structure of the Solvent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of the Deep Eutectic Solvents (DESs)
2.3. Soxhlet Extraction
2.4. Orbital Shaker Extraction (OSE)
2.5. Ultrasound-Assisted Extraction Using Ultrasonic Cleaning Bath (UAE)
2.6. Ultrasonic Homogenizer Extraction (UHE)
2.7. Chromatographic Analysis of Content of Extracted Bitter Acids and Xanthohumol
2.8. Measurements of Densities and Speed of Sound
2.9. Measurements of Viscosity
2.10. Calculations of Adiabatic Compressibility
2.11. Legend to Figure 3, Figure 4 and Figure 5
3. Results
3.1. Extraction of A-Acids
3.1.1. Extractions with Organic Solvents
3.1.2. Extractions with Deep Eutectic Solvents
3.2. Extraction of B-Acids
3.2.1. Extractions with Organic Solvents
3.2.2. Extractions with Deep Eutectic Solvents
3.3. Extraction of Xanthohumol
3.3.1. Extractions with Organic Solvents
3.3.2. Extractions with Deep Eutectic Solvents
3.4. Physicochemical Properties of DES Solvents
3.4.1. Density
3.4.2. Speed of Sound
3.4.3. Adiabatic Compressibility
3.4.4. Viscosity
3.4.5. Structural versus Dilution Role of Water during Preparation of DES
4. Discussion
4.1. Extraction Efficiency of DES Solvents
4.2. Choice of the Optimal Extraction Technique
4.3. Possible Improvements of Extractions Using DES-Based Solvents
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Agieienko, V.; Neklyudov, V.; Buchner, R. Why Does Ethaline Apparently Behave as an Ideal Binary Mixture? J. Phys. Chem. Lett. 2022, 13, 10805–10809. [Google Scholar] [CrossRef]
- Agieienko, V.; Buchner, R. Is ethaline a deep eutectic solvent? Phys. Chem. Chem. Phys. 2022, 24, 5265–5268. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.D.; Liu, S.J. Choline chloride-based deep eutectic solvents (Ch-DESs) as promising green solvents for phenolic compounds extraction from bioresources: State-of-the-art, prospects, and challenges. Biomass Convers. Biorefin. 2022, 12, 2949–2962. [Google Scholar] [CrossRef]
- Zhang, H.; Ferrer, M.L.; Jimenez-Rioboo, R.J.; del Monte, F.; Gutierrez, M.C. Tools for extending the dilution range of the “solvent-in-DES” regime. J. Mol. Liq. 2021, 329, 115573. [Google Scholar] [CrossRef]
- Omar, K.A.; Sadeghi, R. Physicochemical properties of deep eutectic solvents: A review. J. Mol. Liq. 2022, 360, 119524. [Google Scholar] [CrossRef]
- Marcus, Y. Properties of Deep Eutectic Solvents. In Deep Eutectic Solvents; Springer: Berlin/Heidelberg, Germany, 2019; pp. 45–110. [Google Scholar]
- Ijardar, S.P.; Singh, V.; Gardas, R.L. Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Molecules 2022, 27, 1368. [Google Scholar] [CrossRef]
- Yadav, A.; Pandey, S. Densities and Viscosities of (Choline Chloride plus Urea) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range 293.15 K to 363.15 K. J. Chem. Eng. Data 2014, 59, 2221–2229. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef]
- Harifi-Mood, A.R.; Buchner, R. Density, viscosity, and conductivity of choline chloride plus ethylene glycol as a deep eutectic solvent and its binary mixtures with dimethyl sulfoxide. J. Mol. Liq. 2017, 225, 689–695. [Google Scholar] [CrossRef]
- Mjalli, F.S.; Vakili-Nezhaad, G.; Shahbaz, K.; Ainashef, I.M. Application of the Eotvos and Guggenheim empirical rules for predicting the density and surface tension of ionic liquids analogues. Thermochim. Acta 2014, 575, 40–44. [Google Scholar] [CrossRef]
- Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, Y.M.; Al-Wahaibi, T.; Hashim, M.A. Glucose-based deep eutectic solvents: Physical properties. J. Mol. Liq. 2013, 178, 137–141. [Google Scholar] [CrossRef]
- Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol eutectics as sustainable solvent systems. Green Chem. 2011, 13, 82–90. [Google Scholar] [CrossRef]
- Brouwer, T.; Dielis, B.C.; Bock, J.M.; Schuur, B. Hydrophobic Deep Eutectic Solvents for the Recovery of Bio-Based Chemicals: Solid-Liquid Equilibria and Liquid-Liquid Extraction. Processes 2021, 9, 796. [Google Scholar] [CrossRef]
- Dai, Y.T.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Lorenzetti, A.S.; Fiego, M.J.L.; Silva, M.F.; Domini, C.; Gomez, F.J.V. Water behavior study for tailoring fructose-citric acid based natural deep eutectic solvent properties towards antibiotics solubilization. J. Mol. Liq. 2022, 363, 119917. [Google Scholar] [CrossRef]
- Chuo, S.C.; Nasir, H.M.; Mohd-Setapar, S.H.; Mohamed, S.F.; Ahmad, A.; Wani, W.A.; Muddassir, M.; Alarifi, A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 2022, 52, 667–696. [Google Scholar] [CrossRef] [PubMed]
- M’Hiri, N.; Ioannou, I.; Ghoul, M.; Boudhrioua, N.M. Extraction Methods of Citrus Peel Phenolic Compounds. Food Rev. Int. 2014, 30, 265–290. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Palaiologou, E.; Papadakis, E.N.; Makris, D.P.; Biliaderis, C.G.; Mourtzinos, I. Insights on the impact of deep eutectic solvents on the composition of the extracts from lemon (Citrus limon L.) peels analyzed by a novel RP-LC-QTOF-MS/MS method. Eur. Food Res. Technol. 2022, 248, 2913–2927. [Google Scholar] [CrossRef]
- Li, X.; Zhu, F.Y.; Zeng, Z.W. Effects of different extraction methods on antioxidant properties of blueberry anthocyanins. Open Chem. 2021, 19, 138–148. [Google Scholar] [CrossRef]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Ivanović, M.; Grujić, D.; Cerar, J.; Islamčević Razboršek, M.; Topalić-Trivunović, L.; Savić, A.; Kočar, D.; Kolar, M. Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 724. [Google Scholar] [CrossRef]
- Ivanović, M.; Albreht, A.; Krajnc, P.; Vovk, I.; Islamčević Razboršek, M. Sustainable ultrasound-assisted extraction of valuable phenolics from inflorescences of Helichrysum arenarium L. using natural deep eutectic solvents. Ind. Crops Prod. 2021, 160. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Gomez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arab. J. Chem. 2020, 13, 1685–1701. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Pimentel-Mora, S.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents. Food Res. Int. 2020, 137, 109646. [Google Scholar] [CrossRef]
- Islamčević Razboršek, M.; Ivanović, M.; Krajnc, P.; Kolar, M. Choline Chloride Based Natural Deep Eutectic Solvents as Extraction Media for Extracting Phenolic Compounds from Chokeberry (Aronia melanocarpa). Molecules 2020, 25, 1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanović, M.; Islamčević Razboršek, M.; Košir, I.J.; Kolar, M. Response surface methodology: An optimal design applied for maximum ultrasound-assisted extraction efficiency of phenolic acids from Coriandrum sativum L. J. Appl. Bot. Food Qual. 2019, 92, 378–387. [Google Scholar] [CrossRef]
- Ivanović, M.; Alanon, M.E.; Arraez-Roman, D.; Segura-Carretero, A. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef]
- Boateng, I.D. A Critical Review of Emerging Hydrophobic Deep Eutectic Solvents? Applications in Food Chemistry: Trends and Opportunities. J. Agric. Food Chem. 2022, 70, 11860–11879. [Google Scholar] [CrossRef]
- Li, D. Natural deep eutectic solvents in phytonutrient extraction and other applications. Front. Plant Sci. 2022, 13, 1004332. [Google Scholar] [CrossRef]
- Kaoui, S.; Chebli, B.; Zaidouni, S.; Basaid, K.; Mir, Y. Deep eutectic solvents as sustainable extraction media for plants and food samples: A review. Sustain. Chem. Pharm. 2023, 31, 100937. [Google Scholar] [CrossRef]
- Sportiello, L.; Favati, F.; Condelli, N.; Di Cairano, M.; Caruso, M.C.; Simonato, B.; Tolve, R.; Galgano, F. Hydrophobic deep eutectic solvents in the food sector: Focus on their use for the extraction of bioactive compounds. Food Chem. 2023, 405, 134703. [Google Scholar] [CrossRef]
- Nam, M.W.; Zhao, J.; Lee, M.S.; Jeong, J.H.; Lee, J. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae. Green Chem. 2015, 17, 1718–1727. [Google Scholar] [CrossRef]
- Serna-Vazquez, J.; Ahmad, M.Z.; Boczkaj, G.; Castro-Munoz, R. Latest Insights on Novel Deep Eutectic Solvents (DES) for Sustainable Extraction of Phenolic Compounds from Natural Sources. Molecules 2021, 26, 5037. [Google Scholar] [CrossRef] [PubMed]
- Nakhle, L.; Kfoury, M.; Mallard, I.; Landy, D.; Greige-Gerges, H. Microextraction of bioactive compounds using deep eutectic solvents: A review. Environ. Chem. Lett. 2021, 19, 3747–3759. [Google Scholar] [CrossRef]
- Ruesgas-Ramon, M.; Figueroa-Espinoza, M.C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food Chem. 2017, 65, 3591–3601. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.Z.; Cui, Q.; Wang, L.T.; Meng, Y.; Yu, L.; Li, Y.Y.; Fu, Y.J. A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchem. J. 2020, 154, 104598. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. Technol. 2018, 48, 228–239. [Google Scholar] [CrossRef]
- Redha, A.A. Review on Extraction of Phenolic Compounds from Natural Sources Using Green Deep Eutectic Solvents. J. Agric. Food Chem. 2021, 69, 878–912. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, I.; Ferreira, O. Enhanced extraction of phenolic compounds using choline chloride based deep eutectic solvents from Juglans regia L. Ind. Crops Prod. 2018, 115, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.C.; Chen, J.; Zhang, H.J.; Li, Z.; Zhao, L.; Qiu, H.D. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef]
- Lakka, A.; Karageorgou, I.; Kaltsa, O.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D. Polyphenol Extraction from Humulus lupulus (Hop) Using a Neoteric Glycerol/L-Alanine Deep Eutectic Solvent: Optimisation, Kinetics and the Effect of Ultrasound-Assisted Pretreatment. AgriEngineering 2019, 1, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Grudniewska, A.; Poplonski, J. Simple and green method for the extraction of xanthohumol from spent hops using deep eutectic solvents. Sep. Purif. Technol. 2020, 250, 117196. [Google Scholar] [CrossRef]
- Grudniewska, A.; Pastyrczyk, N. New insight for spent hops utilization: Simultaneous extraction of protein and xanthohumol using deep eutectic solvents. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Macchioni, V.; Carbone, K.; Cataldo, A.; Fraschini, R.; Bellucci, S. Lactic acid-based deep natural eutectic solvents for the extraction of bioactive metabolites of Humulus lupulus L.: Supramolecular organization, phytochemical profiling and biological activity. Sep. Purif. Technol. 2021, 264, 118039. [Google Scholar] [CrossRef]
- Korber, F.; Vodušek, S. The Legend of Noble Aroma: [Styrian hops]; Slovenian Institute of Hop Research and Brewing: Žalec, Slovenia, 2011. [Google Scholar]
- Dai, Y.T.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- European Brewery Convention. Analytica-EBC, Section 7—Hops, Method 7.7 α- and β-Acids in Hops and Hop Products by HPLC; Fachverlag Hans Carl: Nürnberg, Germany, 2005. [Google Scholar]
- Millero, F.J.; Lo Surdo, A.; Shin, C. The Apparent Molal Volumes and Adiabatic Compressibilities of Aqueous Amino-Acids at 25 °C. J. Phys. Chem. 1978, 82, 784–792. [Google Scholar] [CrossRef]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; p. 692. [Google Scholar]
- Rente, D.; Paiva, A.; Duarte, A.R. The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules 2021, 26, 2336. [Google Scholar] [CrossRef]
- Sarupria, S.; Garde, S. Quantifying Water Density Fluctuations and Compressibility of Hydration Shells of Hydrophobic Solutes and Proteins. Phys. Rev. Lett. 2009, 103, 037803. [Google Scholar] [CrossRef]
- Lee, M.T.; Vishnyakov, A.; Neimark, A.V. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane. J. Chem. Phys. 2016, 144, 014902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, H.D.B.; Marcus, Y. Viscosity B-coefficients of ions in solution. Chem. Rev. 1995, 95, 2695–2724. [Google Scholar] [CrossRef]
- Susaki, M.; Matsumoto, M. Molecular Dynamics Investigation of Hyaluronan in Biolubrication. Polymers 2022, 14, 4031. [Google Scholar] [CrossRef] [PubMed]
- Telis, V.R.N.; Telis-Romero, J.; Mazzotti, H.B.; Gabas, A.L. Viscosity of aqueous carbohydrate solutions at different temperatures and concentrations. Int. J. Food Prop. 2007, 10, 185–195. [Google Scholar] [CrossRef]
- Hill, A.E.; Malisoff, W.M. The mutual solubility of liquids. III. The mutual solubility of phenol and water. IV. The mutual solubility of normal butyl alcohol and water. J. Am. Chem. Soc. 1926, 48, 918–927. [Google Scholar] [CrossRef]
- Hayyan, M.; Hashim, M.A.; Hayyan, A.; Al-Saadi, M.A.; AlNashef, I.M.; Mirghani, M.E.S.; Saheed, O.K. Are deep eutectic solvents benign or toxic? Chemosphere 2013, 90, 2193–2195. [Google Scholar] [CrossRef]
- Hyde, A.M.; Zultanski, S.L.; Waldman, J.H.; Zhong, Y.L.; Shevlin, M.; Peng, F. General Principles and Strategies for Salting-Out Informed by the Hofmeister Series. Org. Process Res. Dev. 2017, 21, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Migliorati, V.; D’Angelo, P. Deep eutectic solvents: A structural point of view on the role of the anion. Chem. Phys. Lett. 2021, 777, 138702. [Google Scholar] [CrossRef]
- Panuszko, A.; Bruzdziak, P.; Smiechowski, M.; Stasiulewicz, M.; Stefaniak, J.; Stangret, J. DMSO hydration redefined: Unraveling the hydrophobic hydration of solutes with a mixed hydrophilic-hydrophobic characteristic. J. Mol. Liq. 2019, 294, 111661. [Google Scholar] [CrossRef]
- Hostnik, G.; Vlachy, V.; Bondarev, D.; Vohlidal, J.; Cerar, J. Salt-specific effects observed in calorimetric studies of alkali and tetraalkylammonium salt solutions of poly(thiophen-3-ylacetic acid). Phys. Chem. Chem. Phys. 2015, 17, 2475–2483. [Google Scholar] [CrossRef] [PubMed]
- Hostnik, G.; Podlipnik, C.; Meriguet, G.; Cerar, J. Specificity of Counterion Binding to a Conjugated Polyelectrolyte: A Combined Molecular Dynamics and NOESY Investigation. Macromolecules 2020, 53, 1119–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janc, T.; Luksic, M.; Vlachy, V.; Rigaud, B.; Rollet, A.L.; Korb, J.P.; Meriguet, G.; Malikova, N. Ion-specificity and surface water dynamics in protein solutions. Phys. Chem. Chem. Phys. 2018, 20, 30340–30350. [Google Scholar] [CrossRef]
- Stangret, J.; Gampe, T. Ionic hydration behavior derived from infrared spectra in HDO. J. Phys. Chem. A 2002, 106, 5393–5402. [Google Scholar] [CrossRef]
- Liao, M.C.; Zhao, Y.; Yang, X.Y.; Yang, L.; Liu, E.H.; Lu, B.; Wang, J.Y.; Liu, X.P.; Chang, Y.Z.; Duan, L. A greener and sustainable route for medicinal plant analysis: Recycle utilization of hydrophobic deep eutectic solvent. Microchem. J. 2022, 178, 107372. [Google Scholar] [CrossRef]
- Chaumont, A.; Engler, E.; Schurhammer, R. Is Charge Scaling Really Mandatory when Developing Fixed-Charge Atomistic Force Fields for Deep Eutectic Solvents? J. Phys. Chem. B 2020, 124, 7239–7250. [Google Scholar] [CrossRef]
- Fuad, F.M.; Nadzir, M.M.; Harun-Kamaruddin, A. Hydrophilic natural deep eutectic solvent: A review on physicochemical properties and extractability of bioactive compounds. J. Mol. Liq. 2021, 339, 116923. [Google Scholar] [CrossRef]
Abbreviation | Composition of DES 1 | Molar Ratio |
---|---|---|
ChCl-Glu | Choline chloride:Glucose:Water | 2:1:1 |
ChCl-Fruc | Choline chloride:Fructose:Water | 2:1:1 |
ChCl-LA | Choline chloride:Lactic acid | 1:1 |
ChCl-TA | Choline chloride:Tartaric acid | 2:1 |
ChCl-Gly | Choline chloride:Glycerol | 1:1 |
ChCl-EG | Choline chloride:Ethylene glycol | 1:2 |
ChCl-U | Choline chloride:Urea | 1:1 |
ChCl-DMU | Choline chloride:1,3-dimethylurea | 1:2 |
ChCl-Phe | Choline chloride:Phenol | 1:3 |
ChCl-BSA | Choline chloride:Benzenesulfonic acid | 1:1 |
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | |
---|---|---|---|---|---|---|
Type of solvents: | Organic | Organic | Organic | DES | DES | DES |
Type of extraction: | Soxhlet | Orbital shaker | UAE * | Orbital shaker | UAE * | UHE * |
Abbreviation used: | OSs-Soxhlet | OSs-OSE | OSs-UAE | DESs-OSE | DESs-UAE | DESs-UHE |
Samples | 1 diethyl ether 2 hexane 3 ethyl acetate 4 methanol 5 acetone | 6 toluene 7 diethyl ether 8 hexane 9 ethyl acetate 10 methanol 11 acetone 12 ethanol 13 methanol–water 14 ethanol–water 15 acetone–water | 16 toluene 17 diethyl ether 18 hexane 19 ethyl acetate 20 methanol 21 acetone 22 ethanol 23 methanol–water 24 ethanol–water 25 acetone–water | 26 ChCl-Glu 27 ChCl-Fru 28 ChCl-LA 29 ChCl-TA 30 ChCl-Gly 31 ChCl-EG 32 ChCl-U 33 ChCl-DMU 34 ChCl-Phe 35 ChCl-BSA | 36 ChCl-Glu 37 ChCl-Fru 38 ChCl-LA 39 ChCl-TA 40 ChCl-Gly 41 ChCl-EG 42 ChCl-U 43 ChCl-DMU 44 ChCl-Phe 45 ChCl-BSA | 46 ChCl-Glu 47 ChCl-Fru 48 ChCl-LA 49 ChCl-TA 50 ChCl-Gly 51 ChCl-EG 52 ChCl-U 53 ChCl-DMU 54 ChCl-Phe 55 ChCl-BSA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metaj, I.; Hajdini, D.; Gliha, K.; Košir, I.J.; Ocvirk, M.; Kolar, M.; Cerar, J. Extraction of Polyphenols from Slovenian Hop (Humulus lupulus L.) Aurora Variety Using Deep Eutectic Solvents: Choice of the Extraction Method vs. Structure of the Solvent. Plants 2023, 12, 2890. https://doi.org/10.3390/plants12162890
Metaj I, Hajdini D, Gliha K, Košir IJ, Ocvirk M, Kolar M, Cerar J. Extraction of Polyphenols from Slovenian Hop (Humulus lupulus L.) Aurora Variety Using Deep Eutectic Solvents: Choice of the Extraction Method vs. Structure of the Solvent. Plants. 2023; 12(16):2890. https://doi.org/10.3390/plants12162890
Chicago/Turabian StyleMetaj, Ilir, Drilon Hajdini, Kaja Gliha, Iztok Jože Košir, Miha Ocvirk, Mitja Kolar, and Janez Cerar. 2023. "Extraction of Polyphenols from Slovenian Hop (Humulus lupulus L.) Aurora Variety Using Deep Eutectic Solvents: Choice of the Extraction Method vs. Structure of the Solvent" Plants 12, no. 16: 2890. https://doi.org/10.3390/plants12162890
APA StyleMetaj, I., Hajdini, D., Gliha, K., Košir, I. J., Ocvirk, M., Kolar, M., & Cerar, J. (2023). Extraction of Polyphenols from Slovenian Hop (Humulus lupulus L.) Aurora Variety Using Deep Eutectic Solvents: Choice of the Extraction Method vs. Structure of the Solvent. Plants, 12(16), 2890. https://doi.org/10.3390/plants12162890