Genetic Diversity of Apple Clonal Rootstocks from the Collection of the Michurinsk State Agrarian University Based on SSR Markers
Abstract
:1. Introduction
2. Results
2.1. SSR Polymorphism and Rootstocks Identification
2.2. Genetic Differentiation and Structure
3. Discussion
4. Materials and Methods
4.1. Plant Material and DNA Extraction
4.2. SSR Analysis
4.3. Data Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fischer, M. New dwarfing and semi-dwarfing Pillnitz apple and pear rootstocks. Acta Hortic. 2001, 557, 55–62. [Google Scholar] [CrossRef]
- Webster, A.D.; Tobutt, K. Breeding and selection of new apple rootstocks at Horticulture Research International-East Malling. Acta Hortic. 2001, 557, 189–192. [Google Scholar] [CrossRef]
- Fazio, G.; Robinson, T.L.; Aldwinckle, H.S. The Geneva apple rootstock breeding program. Plant Breed. Rev. 2015, 39, 379–424. [Google Scholar] [CrossRef]
- Marini, R.P.; Fazio, G. Apple rootstocks: History, physiology, management, and breeding. Hortic. Rev. 2018, 45, 197–312. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Xu, X.; Qiu, C.; Wu, T.; Wei, Q.; Ma, F.; Han, Z. Progress of apple rootstock breeding and its use. Hortic. Plant J. 2019, 5, 183–191. [Google Scholar] [CrossRef]
- Trunov, Y.V.; Soloviev, A.V.; Papikhin, R.V.; Dubrovsky, M.L.; Shamshin, I.N. Perspective apple clonal rootstocks for intensive orchards. Hortic. Vitic. 2020, 2, 34–40. [Google Scholar] [CrossRef]
- Michurin, I.V. The Results of Sixty Years of Work, 5th ed.; OGIZ-Sel’khozgiz: Moscow, Russia, 1949; 672p. (In Russian) [Google Scholar]
- Budagovsky, V.I. Culture of Low-Vigorous Fruit Trees; Kolos: Moscow, Russia, 1976; 303p. (In Russian) [Google Scholar]
- Nybom, H.; Lācis, G. Recent Large-Scale Genotyping and Phenotyping of Plant Genetic Resources of Vegetatively Propagated Crops. Plants 2021, 10, 415. [Google Scholar] [CrossRef]
- Hodel, R.G.; Segovia-Salcedo, M.C.; Landis, J.B.; Crowl, A.A.; Sun, M.; Liu, X.; Gitzendanner, M.A.; Douglas, N.A.; Germain-Aubrey, C.C.; Chen, S.; et al. The report of my death was an exaggeration: A review for researchers using microsatellites in the 21st century. Appl. Plant. Sci. 2016, 4, 1600025. [Google Scholar] [CrossRef]
- Guilford, P.; Prakash, S.; Zhu, J.; Rikkerink, E.; Gardiner, S.; Bassett, H.; Forster, R. Microsatellites in Malus×domestica (apple): Abundance, polymorphism and cultivar identification. Theor. Appl. Genet. 1997, 94, 249–254. [Google Scholar] [CrossRef]
- Gianfranceschi, L.; Seglias, N.; Tarchini, R.; Komjanc, M.; Gessler, C. Simple sequence repeats for the genetic analysis of apple. Theor. Appl. Genet. 1998, 96, 1069–1076. [Google Scholar] [CrossRef]
- Hokanson, S.C.; Szewc-McFadden, A.K.; Lamboy, W.F.; McFerson, J. Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor. Appl. Genet. 1998, 97, 671–683. [Google Scholar] [CrossRef]
- Liebhard, R.; Gianfranceschi, L.; Koller, B.; Ryder, C.D.; Tarchini, R.; Van De Weg, E.; Gessler, C. Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol. Breed. 2002, 10, 217–241. [Google Scholar] [CrossRef]
- Silfverberg-Dilworth, E.; Matasci, C.L.; Van de Weg, W.E.; Van Kaauwen, M.P.W.; Walser, M.; Kodde, L.P.; Soglio, V.; Gianfranceschi, L.; Durel, C.E.; Costa, F.; et al. Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet. Genomes 2006, 2, 202–224. [Google Scholar] [CrossRef]
- Celton, J.M.; Tustin, D.S.; Chagné, D.; Gardiner, S.E. Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet. Genomes 2009, 5, 93–107. [Google Scholar] [CrossRef]
- Gasic, K.; Han, Y.; Kertbundit, S.; Shulaev, V.; Iezzoni, A.F.; Stover, E.W.; Bell, R.L.; Wisniewski, M.E.; Korban, S.S. Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol. Breeding 2009, 23, 397–411. [Google Scholar] [CrossRef]
- Van Treuren, R.; Kemp, H.; Ernsting, G.; Jongejans, B.; Houtman, H.; Visser, L. Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: Application in collection management and variety identification. Genet. Resour. Crop Evol. 2010, 57, 853–865. [Google Scholar] [CrossRef]
- Gross, B.; Volk, G.M.; Richards, C.M.; Henk, A.D.; Forsline, P.; Szewc-Mcfadden, A.K.; Fazio, G.; Chao, C.T. Diversity captured in the USDA-ARS National Plant Germplasm System apple core collection. J. Amer. Soc. Hortic. Sci. 2013, 138, 375–381. [Google Scholar] [CrossRef]
- Garkava-Gustavsson, L.; Mujaju, C.; Sehic, J.; Zborowska, A.; Backes, G.M.; Hietaranta, T.; Antonius, K. Genetic diversity in Swedish and Finnish heirloom apple cultivars revealed with SSR markers. Sci. Hortic. 2013, 162, 43–48. [Google Scholar] [CrossRef]
- Lassois, L.; Denancé, C.; Ravon, E.; Guyader, A.; Guisnel, R.; Hibrand-Saint-Oyant, L.; Poncet, C.; Lasserre-Zuber, P.; Feugey, L.; Durel, C.E. Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers. Plant Mol. Biol. Rep. 2016, 34, 827–844. [Google Scholar] [CrossRef]
- Urrestarazu, J.; Denancé, C.; Ravon, E.; Guyader, A.; Guisnel, R.; Feugey, L.; Poncet, C.; Lateur, M.; Houben, P.; Ordidge, M.; et al. Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol. 2016, 16, 130. [Google Scholar] [CrossRef] [PubMed]
- Larsen, B.; Toldam-Andersen, T.B.; Pedersen, C.; Ørgaard, M. Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection. Tree Genet. Genomes 2017, 13, 14. [Google Scholar] [CrossRef]
- Marconi, G.; Ferradini, N.; Russi, L.; Concezzi, L.; Veronesi, F.; Albertini, E. Genetic characterization of the apple germplasm collection in central Italy: The value of local varieties. Front. Plant Sci. 2018, 9, 1460. [Google Scholar] [CrossRef] [PubMed]
- Testolin, R.; Foria, S.; Baccichet, I.; Messina, R.; Danuso, F.; Losa, A.; Scarbolo, E.; Stocco, M.; Cipriani, G. Genotyping apple (Malus × domestica Borkh.) heirloom germplasm collected and maintained by the Regional Administration of Friuli Venezia Giulia (Italy). Sci. Hortic. 2019, 252, 229–237. [Google Scholar] [CrossRef]
- Baric, S.; Storti, A.; Hofer, M.; Guerra, W.; Dalla Via, J. Molecular genetic identification of apple cultivars based on microsatellite DNA analysis. I. The database of 600 validated profiles. Erwerbs-Obstbau 2020, 62, 117–154. [Google Scholar] [CrossRef]
- Meland, M.; Aksic, M.F.; Frøynes, O.; Konjic, A.; Lasic, L.; Pojskic, N.; Gasi, F. Genetic identity and diversity of apple accessions within a candidate collection for the Norwegian National Clonal Germplasm Repository. Horticulturae 2022, 8, 630. [Google Scholar] [CrossRef]
- Oraguzie, N.C.; Yamamoto, T.; Soejima, J.; Suzuki, T.; De Silva, H.N. DNA fingerprinting of apple (Malus spp.) rootstocks using Simple Sequence Repeats. Plant Breeding 2005, 124, 197–202. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, Q.; Liu, S.; Wei, Q.; Jin, W.; Cheng, Z.; Xue, X.; Yang, T. Genetic diversity of 41 apple rootstocks based on Simple Sequence Repeat markers. J. Amer. Soc. Hortic. Sci. 2012, 137, 51–56. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, L.; Shu, J.; Wang, M.; Li, H.; Shu, H.; Wang, X.; Sun, Q.; Zhang, S. Root breeding in the post-genomics era: From concept to practice in apple. Plants 2022, 11, 1408. [Google Scholar] [CrossRef]
- Bus, V.G.M.; Chagne, D.; Bassett, H.C.M.; Bowatte, D.; Calenge, F.; Celton, J.M.; Durel, C.E.; Malone, M.T.; Patocchi, A.; Ranatunga, A.C.; et al. Genome mapping of three major resistance genes to woolly apple aphid (Eriosoma lanigerum Hausm.). Tree Genet. Genomes 2008, 4, 223–236. [Google Scholar] [CrossRef]
- Fahrentrapp, J.; Broggini, G.A.; Kellerhals, M.; Peil, A.; Richter, K.; Zini, E.; Gessler, C. A candidate gene for fire blight resistance in Malus× robusta 5 is coding for a CC–NBS–LRR. Tree Genet. Genomes 2013, 9, 237–251. [Google Scholar] [CrossRef]
- Moriya, S.; Iwanami, H.; Takahashi, S.; Kotoda, N.; Suzaki, K.; Yamamoto, T.; Abe, K. Genetic mapping of the crown gall resistance gene of the wild apple Malus sieboldii. Tree Genet. Genomes 2010, 6, 195–203. [Google Scholar] [CrossRef]
- Cummins, J.N.; Aldwinckle, H.S. Breeding Apple Rootstocks. Plant Breeding Rev. 1983, 1, 294–394. [Google Scholar] [CrossRef]
- Trutneva, L.N. Heat resistance of varieties and red-leaf and green-leaf rootstocks in apple variety-rootstock combinations. Russ. Agricult. Sci. 2011, 37, 376–377. [Google Scholar] [CrossRef]
- Kviklys, D.; Lanauskas, J.; Ūselis, N.; Viškelis, J.; Viškelienė, A.; Buskienė, L.; Staugaitis, G.; Mažeika, R.; Samuolienė, G. Rootstock vigour and leaf colour affect apple tree nutrition. Zemdirbyste-Agriculture 2017, 104, 185–190. [Google Scholar] [CrossRef]
- Vinatzer, B.A.; Patocchi, A.; Tartarini, S.; Gianfranceschi, L.; Sansavini, S.; Gessler, C. Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed. 2004, 123, 321–326. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Nagy, S.; Poczai, P.; Cernák, I.; Gorji, A.M.; Hegedus, G.; Taller, J. PICcalc: An online program to calculate polymorphic information content for molecular genetic studies. Biochem. Genet. 2012, 50, 670–672. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 2012, 4, 359–361. [Google Scholar] [CrossRef]
Locus | Number of Alleles | Allele Size Range, (bp) | Ho | He | PIC | Rare Alleles | Unique Alleles | Number of Genotypes |
---|---|---|---|---|---|---|---|---|
CH03d01 | 11 | 89–110 | 0.24 | 0.59 | 0.57 | 4 | 3 | 18 |
CH02c02a | 21 | 130–247 | 0.76 | 0.87 | 0.86 | 8 | 7 | 41 |
CH01f02 | 12 | 172–207 | 0.74 | 0.70 | 0.67 | 6 | 3 | 24 |
CH01f03b | 8 | 136–176 | 0.77 | 0.71 | 0.66 | 3 | 1 | 12 |
CH02c09 | 8 | 233–257 | 0.44 | 0.77 | 0.73 | 2 | 1 | 18 |
CH03d07 | 11 | 170–229 | 0.83 | 0.82 | 0.79 | 3 | 3 | 26 |
CH05e04 | 7 | 134–258 | 0.84 | 0.81 | 0.78 | 0 | 1 | 18 |
CHVf1 | 10 | 132–171 | 0.82 | 0.85 | 0.83 | 3 | 0 | 32 |
CH04e05 | 14 | 176–229 | 0.85 | 0.83 | 0.81 | 4 | 4 | 32 |
COL | 8 | 215–243 | 0.26 | 0.66 | 0.60 | 2 | 2 | 14 |
CH01h01 | 10 | 104–130 | 0.64 | 0.78 | 0.75 | 4 | 2 | 20 |
CH04f10 | 21 | 175–317 | 0.86 | 0.88 | 0.87 | 11 | 4 | 46 |
CH01h10 | 9 | 92–118 | 0.77 | 0.66 | 0.62 | 3 | 3 | 14 |
CH03d08 | 10 | 129–175 | 0.84 | 0.86 | 0.85 | 2 | 0 | 31 |
CH03a09 | 10 | 121–143 | 0.82 | 0.75 | 0.72 | 2 | 2 | 22 |
CH02d08 | 12 | 215–259 | 0.67 | 0.65 | 0.61 | 6 | 3 | 21 |
CH02d12 | 10 | 174–202 | 0.82 | 0.77 | 0.73 | 3 | 3 | 18 |
CH03c02 | 7 | 106–134 | 0.44 | 0.70 | 0.65 | 1 | 1 | 14 |
All | 199 | - | - | - | - | 67 | 43 | - |
Average | 11.1 | - | 0.69 | 0.76 | 0.73 | 3.72 | 2.39 | 23.39 |
Source of Variation | d.f. | Sum of Squares | Estimated Variability | Percentage of Variation | p (Rand ≥ Data) |
---|---|---|---|---|---|
Structure group based | |||||
Among groups | 1 | 89.24 | 2.36 | 14 | 0.01 |
Within groups | 62 | 865.39 | 13.96 | 86 | 0.01 |
Total | 63 | 954.63 | 16.32 | 100 | 0.01 |
Leaf pigmentation based | |||||
Among groups | 1 | 29.33 | 0.33 | 2 | 0.01 |
Within groups | 85 | 1266.49 | 14.90 | 98 | 0.01 |
Total | 86 | 1295.82 | 15.23 | 100 | 0.01 |
Dwarfing ability based | |||||
Among groups | 3 | 50.77 | 0.10 | 1 | 0.09 |
Within groups | 83 | 1245.04 | 15.00 | 99 | 0.09 |
Total | 86 | 1295.82 | 15.10 | 100 | 0.09 |
№ | Accession | Parentage | Leaf Pigmentation * | Dwarfing Ability ** |
---|---|---|---|---|
1 | Budagovsky 9 (Paradizka Budagovskogo, PB, B9, Bud9) | M8 × Krasniy Shtandart (Red Flag) | + | D |
2 | 54-118 | B9 × 13-14 | + | I |
3 | 57-146 | B9 open pollination | + | D |
4 | 57-490 | B9 × 13-14 | + | I/V |
5 | 57-491 | B9 × 13-14 | + | D |
6 | 57-545 | B9 × 13-14 | + | I |
7 | 58-238 | B9 × Naliv Aliy | + | I |
8 | 60-160 | B9 × 49-290 | + | D/SD |
9 | 62-223 | Anoka × B9 | – | I |
10 | 62-396 (B10) | 13-14 × B9 | + | SD |
11 | 64-143 | B9 × 57-290 | – | I |
12 | 67-5(32) | 54-83 open pollination | + | SD/I |
13 | 69-4-450 | B9 × M. niedzwetzkyana | + | D/SD |
14 | 69-6-217 | B9 × Kitayka Rozovaya | – | SD |
15 | 69-28-11 | 58-257 × B9 | – | I |
16 | 70-6-8 | 54-83 × 57-344 | – | I |
17 | 70-20-20 | 57-469 × 57-344 | + | I/V |
18 | 71-3-49 | 58-257 × B9 | – | I |
19 | 71-3-88 | 58-257 × B9 | – | I |
20 | 71-3-137 | 58-257 × B9 | – | I |
21 | 71-3-150 | 58-257 × B9 | – | I |
22 | 71-3-195 | 58-257 × B9 | – | I |
23 | 71-7-22 | 57-531 × 57-233 | – | VD |
24 | 73-9-3 | 57-545 × 57-366 | + | SD |
25 | 75-11-232 | B9 open pollination | + | SD |
26 | 75-11-280 | B9 open pollination | + | D |
27 | 75-12-23 | A2 open pollination | – | D |
28 | 76-3-6 | M27 × B9 | + | VD/D |
29 | Malysh Budagovskogo (MB, 76-6-6) | 57-344 × 57-490 | + | VD |
30 | 76-6-13 | 57-344 × 57-490 | + | VD |
31 | 82-26-2 | - | + | SD/I |
32 | 82-27-6 | - | – | SD/I |
33 | 85-2-11 | 3-4-98 × 54-118 | – | I |
34 | 85-11-9 | 70-5-10 × 54-118 | – | D |
35 | 86-6-12 | - | – | I |
36 | 87-7-12 | 54-118 × B9 | + | I |
37 | 98-7-77 | 62-396 × 58-199 | + | I |
38 | 2-3-2 | 82-27-6 open pollination | – | SD |
39 | 2-3-3 | 82-27-6 open pollination | – | SD |
40 | 2-3-8 | 82-27-6 open pollination | – | D |
41 | 2-3-14 | 82-27-6 open pollination | – | D |
42 | 2-3-17 | 82-27-6 open pollination | – | I |
43 | 2-3-19 | 82-27-6 open pollination | – | I |
44 | 2-3-44 | 82-27-6 open pollination | – | SD/I |
45 | 2-3-49 | 82-27-6 open pollination | – | SD |
46 | 2-9-49 | 82-26-2 open pollination | – | SD |
47 | 2-9-56 | 82-26-2 open pollination | + | D/SD |
48 | 2-9-77 | 82-26-2 open pollination | – | SD |
49 | 2-9-90 | 82-26-2 open pollination | + | D |
50 | 2-9-94 | 82-26-2 open pollination | + | SD |
51 | 2-9-96 | 82-26-2 open pollination | + | SD |
52 | 2-9-102 | 82-26-2 open pollination | + | I |
53 | 2-12-10 | 82-11-5 open pollination | + | I |
54 | 2-12-15 | 82-11-5 open pollination | + | I |
55 | 2-12-27 | 82-11-5 open pollination | + | SD/I |
56 | 2-12-34 | 82-11-5 open pollination | + | D/SD |
57 | 2-12-36 | 82-11-5 open pollination | + | D/SD |
58 | 2-14-2 | 82-26-52 × 60-160 | + | VD/D |
59 | 2-15-2 | 85-8-12 open pollination | – | SD/I |
60 | 2-15-15 | 85-8-12 open pollination | – | SD/I |
61 | 3-3-4 | 85-6-5 × Spartan | – | I |
62 | 3-4-7 | 62-396 open pollination | + | SD |
63 | 3-10-3 | 82-11-2 × Wealthy | – | I |
64 | 4-2-3 | 82-52-6 × 82-26-2 | + | I |
65 | 4-2-41 | 82-52-6 × 82-26-2 | + | D |
66 | 4-2-50 | 82-52-6 × 82-26-2 | – | I |
67 | 4-6-5 | 83-11-10 open pollination | + | SD/I |
68 | 5-21-27 | 82-27-6 × Zhigulevskoe | – | I |
69 | 5-21-93 | 82-27-6 × Zhigulevskoe | – | I |
70 | 5-24-1 | 82-26-2 × Orlik | – | I |
71 | 5-26-127 | - | – | D |
72 | 5-27-1 | Zhigulevskoe × 82-26-2 | + | I |
73 | 5-28-11 | 82-57-8 × M. baccata | + | SD |
74 | 9-1-1 | 57-157 × Stroevskoe | – | VD |
75 | 9-1-2 | 57-157 × Stroevskoe | + | D/SD |
76 | 9-1-3 | 57-157 × Stroevskoe | + | D/SD |
77 | 9-1-4 | 57-157 × Stroevskoe | + | SD |
78 | 9-1-5 | 57-157 × Stroevskoe | – | SD |
79 | 9-1-9 | 57-157 × Stroevskoe | + | SD |
80 | 14-1 | M. sieboldii open pollination | – | I |
81 | Babarabskaya yablonya (BY) | M. turkmenorum | – | I |
82 | M9 T337 | M9 clone | – | D |
83 | MM106 | M1 × Northern Spy | – | I |
84 | G16 | Ottawa 3 × M. floribunda | – | D |
85 | K-1 | Borovinka × M9 | – | SD |
86 | B7-35 | M4 × M9 | – | D/SD |
87 | 7-8-5 (Ural-5) | 57-469 open pollination | + | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boris, K.V.; Trifonova, A.A.; Dubrovsky, M.L.; Shamshin, I.N.; Kudryavtsev, A.M. Genetic Diversity of Apple Clonal Rootstocks from the Collection of the Michurinsk State Agrarian University Based on SSR Markers. Plants 2023, 12, 2991. https://doi.org/10.3390/plants12162991
Boris KV, Trifonova AA, Dubrovsky ML, Shamshin IN, Kudryavtsev AM. Genetic Diversity of Apple Clonal Rootstocks from the Collection of the Michurinsk State Agrarian University Based on SSR Markers. Plants. 2023; 12(16):2991. https://doi.org/10.3390/plants12162991
Chicago/Turabian StyleBoris, Ksenia V., Aya A. Trifonova, Maksim L. Dubrovsky, Ivan N. Shamshin, and Aleksander M. Kudryavtsev. 2023. "Genetic Diversity of Apple Clonal Rootstocks from the Collection of the Michurinsk State Agrarian University Based on SSR Markers" Plants 12, no. 16: 2991. https://doi.org/10.3390/plants12162991
APA StyleBoris, K. V., Trifonova, A. A., Dubrovsky, M. L., Shamshin, I. N., & Kudryavtsev, A. M. (2023). Genetic Diversity of Apple Clonal Rootstocks from the Collection of the Michurinsk State Agrarian University Based on SSR Markers. Plants, 12(16), 2991. https://doi.org/10.3390/plants12162991