Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis
Abstract
:1. Introduction
2. Results
2.1. Identification and Cloning of CsaRLs in the Yunkang-10 Variety of Tea
2.2. Analysis of Gene Structure, Protein Motifs, and Conserved Domains of CsaRLs
2.3. Phylogenetic Analysis
2.4. Tissue-Specific Profiling of CsaRL Family Genes in Tea
2.5. Expression Patterns of CsaRL Genes under Different Abiotic Stresses
2.6. Transcriptional Activation Activity of CsaRLs
2.7. Functional Interaction Networks of CsaRL1a Based on Transcriptome Data
3. Discussion
3.1. The Unique Sequence Characteristics of CsaRL Proteins Are Related to Molecular Functions
3.2. Evolution and Functional Annotation of the CsaRL Genes
3.3. CsaRL Is Likely to Play Essential Roles during Tissue Development
3.4. Potential Roles of CsaRL Genes in Response to Different Abiotic Stresses in Tea
3.5. Potential Regulatory Roles of CsaRL1a in Tea
4. Materials and Methods
4.1. Plant Material, Growing Conditions, and Abiotic Stress Treatments
4.2. Identifying and Cloning the Radialis-like Family Genes in the C. sinensis var. assamica cv. Yunkang-10
4.3. Phylogenetic Analysis
4.4. RNA Isolation and Quantitative RT-PCR
4.5. Transcriptional Activation Analysis of the Radialis-like Family Genes in the C. sinensis var. assamica cv. Yunkang-10
4.6. Functional Interaction Networks of Proteins
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoon, Y.; Seo, D.H.; Shin, H.; Kim, H.J.; Kim, C.M.; Jang, G. The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy 2020, 10, 788. [Google Scholar] [CrossRef]
- Manna, M.; Thakur, T.; Mandlik, R.; Deshmukh, D.; Salvi, P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol. Plant. 2021, 172, 847–868. [Google Scholar] [CrossRef]
- Du, H.; Yang, S.; Liang, Z.; Feng, B.; Liu, L.; Huang, Y.B.; Tang, Y.H. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol. 2012, 12, 106–128. [Google Scholar] [CrossRef]
- Li, C.N.; Ng, C.K.Y.; Fan, L.M. MYB transcription factors, active players in abiotic stress signaling. Environ. Exp. Bot. 2015, 114, 80–91. [Google Scholar] [CrossRef]
- Cao, Y.; Li, K.; Li, Y.L.; Zhao, X.P.; Wang, L.H. MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. Biology 2020, 9, 61–77. [Google Scholar] [CrossRef]
- Ogata, K.; Souichi, M.; Haruki, N.; Hironobu, H.; Shoko, Y.; Ruoheng, Z.; Aimoto, S.; Ametani, Y.; Hirata, Z.; Sarai, A.; et al. Comparison of the free and DNA-complexed forms of the DMA-binding domain from c-Myb. Nat. Struct. Biol. 1995, 2, 309–320. [Google Scholar] [CrossRef]
- Jin, H.; Martin, C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol. Biol. 1999, 41, 577–585. [Google Scholar] [CrossRef]
- Stracke, R.; Werber, M.; Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 2001, 4, 447–456. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yang, X.Y.; Kun, M.; Liu, M.H.; Jia, Q.L. The MYB Transcription Factor Superfamily of Arabidopsis: Expression Analysis and Phylogenetic Comparison with the Rice MYB Family. Plant Mol. Biol. 2006, 60, 107–124. [Google Scholar]
- Pagnussat, G.C.; Yu, H.J.; Ngo, Q.; Rajani, S.; Mayalagu, S.; Johnson, C.S.; Sundaresan, V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 2005, 132, 603–614. [Google Scholar] [CrossRef]
- Barg, R.; Sobolev, I.; Eilon, T.; Gur, A.; Chmelnitsky, I.; Shabtai, S.; Grotewold, E.; Salts, Y. The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta 2005, 221, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Xiao, W.; Guo, W.; Yao, X.; Xiao, J.; Ye, Z.; Wang, N.; Jiao, K.; Lei, M.; Peng, Q.; et al. The CYCLOIDEA–RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytol. 2017, 215, 1582–1593. [Google Scholar] [CrossRef] [PubMed]
- Park, D.-Y.; Shim, Y.J.; Gi, E.; Lee, B.D.; An, G.; Kang, K.; Peak, N.-C. The MYB-related transcription factor RADIALIS-LIKE3 (OsRL3) functions in ABA-induced leaf senescence and salt sensitivity in rice. Environ. Exp. Bot. 2018, 156, 86–95. [Google Scholar] [CrossRef]
- Valoroso, M.C.; Paolo, S.D.; Iazzettiet, G.; Aceto, S. Transcriptome-wide identification and expression analysis of DIVARICATA-and RADIALIS-like genes of the mediterranean orchid Orchis italica. Genome Biol. Evol. 2017, 9, 1418–1431. [Google Scholar] [CrossRef]
- Machemer, K.; Shaiman, O.; Salts, Y.; Shabtai, S.; Sobolev, I.; Belausov, E.; Grotewold, E.; Barg, B. Interplay of MYB factors in differential cell expansion, and consequences for tomato fruit development. Plant J. 2011, 68, 337–350. [Google Scholar] [CrossRef]
- Hamaguchi, A.; Yamashino, T.; Nobuya, K.; Takatoshi, K.; Mikiko, K.; Hitoshi, S.; Takeshi, M. A small subfamily of Arabidopsis RADIALIS-LIKE SANT/MYB genes: A link to HOOKLESS1-mediated signal transduction during early morphogenesis. Biosci. Biotechnol. Biochem. 2008, 72, 2687–2696. [Google Scholar] [CrossRef]
- Li, C.N.; Zhou, Y.Y.; Fan, L.M. A novel repressor of floral transition, MEE3, an abiotic stress regulated protein, functions as an activator of FLC by binding to its promoter in Arabidopsis. Environ. Exp. Bot. 2015, 113, 1–10. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, X.; Zuo, K.J.; Zhang, J.Q.; Sun, X.F.; Tang, K.X. Molecular cloning and characterization of a novel Gossypium barbadense L. RAD-like gene. Plant Mol. Biol. Report. 2011, 29, 324–333. [Google Scholar] [CrossRef]
- Huang, X.Y.; Yue, Y.Z.; Sun, J.; Peng, H.; Yang, Z.N.; Bao, M.Z.; Hu, H.R. Characterization of a fertility-related SANT/MYB gene (PhRL) from petunia. Sci. Hortic. 2015, 183, 152–159. [Google Scholar] [CrossRef]
- Fu, Q.T.; Niu, L.J.; Chen, M.S.; Tao, Y.B.; Wang, X.L.; He, H.Y.; Pan, B.Z.; Xu, Z.F. De novo transcriptome assembly and comparative analysis between male and benzyladenine-induced female inflorescence buds of Plukenetia volubilis. J. Plant Physiol. 2018, 221, 107–118. [Google Scholar] [CrossRef]
- Yang, B.C.; Song, Z.H.; Li, C.N.; Jiang, J.H.; Zhou, Y.Y.; Wang, R.P.; Wang, Q.; Ni, C.; Liang, Q.; Chen, H.D.; et al. RSM1, an Arabidopsis MYB protein, interacts with HY5/HYH to modulate seed germination and seedling development in response to abscisic acid and salinity. PLoS Genet. 2018, 14, 1007839. [Google Scholar] [CrossRef]
- Li, M.F.; Liu, J.J.; Zhou, Y.P.; Zhou, S.Q.; Zhang, S.; Tong, H.R.; Zhao, A.H. Transcriptome and metabolome profiling unveiled mechanisms of tea (Camellia sinensis) quality improvement by moderate drought on pre-harvest shoots. Phytochemistry 2020, 180, 112515. [Google Scholar] [CrossRef]
- Zhao, X.; Li, W.F.; Wang, Y.; Ma, Z.H.; Yang, S.J.; Zhou, Q.; Mao, J.; Chen, H.C. Elevated CO2 concentration promotes photosynthesis of grape (Vitis vinifera L. cv. ‘Pinot noir’) plantlet in vitro by regulating RbcS and Rca revealed by proteomic and transcriptomic profiles. BMC Plant Biol. 2019, 19, 42. [Google Scholar] [CrossRef]
- Kippes, N.; VanGessel, C.; Hamilton, J.; Akpinar, A.; Budak, H.; Dubcovsky, J.; Stephen, P. Effect of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods. BMC Plant Biol. 2020, 20, 297. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Islam, S.; Juhasz, A.; Yang, R.H.; She, M.Y.; Alhabbar, Z.; Zhang, J.J.; Ma, W.J. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front. Genet. 2020, 11, 583785. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, X.B.; Sun, Q.X.; Yan, C.X.; Wang, J.; Yuan, C.L.; Li, C.J.; Shen, S.H.; Liu, F.Z. Comparative Transcriptome Analysis Reveals Molecular Defensive Mechanism of Arachis hypogaea in Response to Salt Stress. Int. J. Genom. 2020, 2020, 6524093. [Google Scholar] [CrossRef] [PubMed]
- Teixeira da Silva, J.A.; Hidvégi, H.; Gulyáset, A.; Tóth, B.; Dobránszki, J. Transcriptomic Response of In Vitro Potato (Solanum tuberosum L.) to Piezoelectric Ultrasound. Plant Mol. Biol. Report. 2020, 38, 404–418. [Google Scholar] [CrossRef]
- Li, J.; Jia, X.C.; Liu, L.Y.; Cao, X.M.; Xiong, Y.F.; Yang, Y.D.; Zhou, H.Q.; Yi, M.; Li, M. Comparative biochemical and transcriptome analysis provides insights into the regulatory mechanism of striped leaf albinism in arecanut (Areca catechu L.). Ind. Crops Prod. 2020, 154, 112734. [Google Scholar] [CrossRef]
- Rodgers-Melnick, E.; Mane, S.P.; Dharmawardhana, P.; Slavov, G.T.; Crasta, O.R.; Strauss, S.H.; Brunner, A.M.; Difazio, S.P. Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res. 2012, 22, 95–105. [Google Scholar] [CrossRef]
- Petzold, H.E.; Chanda, B.; Zhao, C.S.; Rigoulot, S.B.; Beers, E.P.; Brunner, A.M. Divaricata and radialis interacting factor (drif) also interacts with WOX and KNOX proteins associated with wood formation in Populus trichocarpa. Plant J. 2018, 93, 1076–1087. [Google Scholar] [CrossRef]
- Madrigal, Y.; Alzate, J.F.; González, F.; Mora, N.P. Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in non-core eudicots. Am. J. Bot. 2019, 106, 334–351. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Zhang, J.B.; Zhang, W.H. Evolution of RAD-and DIV-like genes in plants. Int. J. Mol. Sci. 2017, 18, 1961–1980. [Google Scholar] [CrossRef] [PubMed]
- Baxter, C.E.L.; Costa, M.M.R.; Coen, E.S. Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant J. 2007, 52, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Boyden, G.S.; Donoghue, M.J.; Howarth, D.G. Duplications and expression of RADIALIS-like genes in Dipsacales. Int. J. Plant Sci. 2012, 173, 971–983. [Google Scholar] [CrossRef]
- Xia, E.-H.; Zhang, H.-B.; Sheng, J.; Li, K.; Zhang, Q.-J.; Kim, C.; Zhang, Y.; Liu, Y.; Zhu, T.; Li, W.; et al. The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Mol. Plant 2017, 10, 866–877. [Google Scholar] [CrossRef]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, W.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef]
- Pearson, W.R. An introduction to sequence similarity (“homology”) searching. Curr. Protoc. Bioinform. 2013, 42, 3.1.1–3.1.8. [Google Scholar] [CrossRef]
- Hernández-Santoyo, A.; Tenorio, Y.; Altuzar, V.; Vivanco-Cid, H. Protein-protein and protein-ligand docking. In Protein Engineering-Technology and Application; Ogawa, T., Ed.; IntechOpen: Rijeka, Croatia, 2013; pp. 63–81. [Google Scholar]
- Chasapis, C.T.; Konstantinoudis, G. Protein isoelectric point distribution in the interactomes across the domains of life. Biophys. Chem. 2020, 256, 106269. [Google Scholar] [CrossRef]
- Corona, D.F.V.; Tamkun, J.W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 2004, 1677, 113–119. [Google Scholar] [CrossRef]
- Oh, I.-H.; Reddy, E.P. The myb gene family in cell growth, differentiation and apoptosis. Oncogene 1999, 18, 3017–3033. [Google Scholar] [CrossRef]
- Quinn, P.G. Mechanisms of basal and kinase-inducible transcription activation by CREB. Prog. Nucleic Acid Res. Mol. Biol. 2002, 72, 269–305. [Google Scholar]
- Servillo, G.; Della Fazia, M.A.; Sassone-Corsi, P. Coupling cAMP Signaling to Transcription in the Liver: Pivotal Role of CREB and CREM. Exp. Cell Res. 2002, 275, 143–154. [Google Scholar] [CrossRef]
- Zhong, J.; Kellogg, E.A. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales. Am. J. Bot. 2015, 102, 1260–1267. [Google Scholar] [CrossRef]
- Engelhardt, B.E.; Jordan, M.I.; Repo, S.T.; Brenner, S.T. Phylogenetic molecular function annotation. J. Phys. Conf. Ser. 2009, 180, 012024. [Google Scholar] [CrossRef] [PubMed]
- SA, S.J.; Wu, H.Y.; Zhang, X.P.; Zhen, R.; Yao, X.L. Light-responding Gene StRSM 1 Mediated by Chlorophyll-binding Protein CP24 Regulates Chlorophyll Accumulation. Biotechnol. Bull. 2021, 37, 198. [Google Scholar]
- Gavazzi, F.; Pigna, G.; Braglia, L.; Gianì, S.; Breviario, D.; Morello, L. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development. BMC Plant Biol. 2017, 17, 237. [Google Scholar] [CrossRef]
- Ashihara, H.; Deng, W.W.; Mullen, W.; Crozier, A. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 2010, 71, 559–566. [Google Scholar] [CrossRef]
- Li, C.F.; Zhu, Y.; Yu, Y.; Zhao, Q.Y.; Wang, S.J.; Wang, X.C.; Yao, M.Z.; Luo, D.; Li, X.; Chen, L.; et al. Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genom. 2015, 16, 560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, X.; Zou, K.J.; Sun, X.F.; Tang, K.X. Molecular cloning and expression analysis of a novel SANT/MYB gene from Gossypium barbadense. Mol. Biol. Rep. 2011, 38, 2329–2336. [Google Scholar] [CrossRef] [PubMed]
- Frizzi, A.; Huang, S.S. Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol. J. 2010, 8, 655–677. [Google Scholar] [CrossRef]
- Jia, J.; Lu, W.Q.; Zhong, C.C.; Zhou, R.; Xu, J.J.; Liu, W.; Gou, X.H.; Wang, Q.H.; Yin, J.L.; Xu, C.; et al. The 25–26 nt Small RNAs in Phytophthora parasitica Are Associated with Efficient Silencing of Homologous Endogenous Genes. Front. Microbiol. 2017, 8, 773. [Google Scholar] [CrossRef]
- Muhammad Aslam, M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.L.; Saqib, H.S.A.; Yuan, W.; Xu, W.F.; Zhang, Q. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar] [CrossRef]
- Xiong, L.; Ishitani, M.; Zhu, J.K. Interaction of osmotic stress, temperature, and abscisic acid in the regulation of gene expression in Arabidopsis. Plant Physiol. 1999, 119, 205–212. [Google Scholar] [CrossRef]
- Raimundo, J.; Sobral, R.; Bailey, P.; Azevedo, H.; Galego, L.; Alimeida, J.; Coen, E.; Costa, M.M.R. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in A ntirrhinum flower asymmetry. Plant J. 2013, 7, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Djemal, R.; Khoudi, H. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum). Protoplasma 2015, 252, 1461–1473. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Lin, H.Z.; Hu, J.; Ye, Y.J.; Li, J.M.; Hao, Z.L.; Hao, X.Y.; Sun, Y.; Yang, Y.J.; Wang, X.C. Expression patterns of alpha-amylase and beta-amylase genes provide insights into the molecular mechanisms underlying the responses of tea plants (Camellia sinensis) to stress and postharvest processing treatments. Planta 2019, 250, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Li, G.L.; Lin, Z.M.; Zhang, H.; Liu, Z.H.; Xu, Y.Q.; Qiu, Y.X.; Qiu, S.X.; Tang, H. Anthocyanin Accumulation in the Leaves of the Purple Sweet Potato (Ipomoea batatas L.) Cultivars. Molecules 2019, 24, 3743–3756. [Google Scholar] [CrossRef]
- Ding, L.N.; Li, M.; Wang, W.J.; Cao, J. Advances in plant GDSL lipases: From sequences to functional mechanisms. Acta Physiol. Plant. 2019, 41, 151–162. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2020, 49, D412–D419. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef]
- Philip, J.; Binns, D.; Chang, H.Y.; Matthew, F.; Li, W.Z.; Craig, M.; Hamish, M.; John, M.; Alex, M.; Gift, N.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene Name | Gene ID of CSA | Chromosome Location | Cloned CDS (bp) | Description | Gene ID of CSS | Per. Ident |
---|---|---|---|---|---|---|
CsaRL4a | CSA010734.1 | Sc0004192 | 306 | CssRL4 | XM_028226341.1 | 99.67% |
CsaRL4b | CSA017368.1 | xfSc0000195 | 306 | CssRL4 | XM_028226341.1 | 99.67% |
CsaRL1b | CSA011543.1 | xpSc0053403 | 243 | CssRL1 | XM_028228795.1 | 99.56% |
CsaRL3a | CSA018425.1 | Sc0000237 | 243 | CssRL3 | XM_028202285.1 | 99.59% |
CsaRL4c | CSA017695.1 | Sc0000652 | 267 | CssRL4-X2 | XM_028206360.1 | 99.25% |
CsaRL1a | CSA027066.1 | Sc0000099 | 234 | CssRL1 | XM_028228795.1 | 89.24% |
CsaRL3b | CSA032285.1 | Sc0000093 | 294 | CssRL3 | XM_028202939.1 | 98.98% |
CsaRL3c | CSA011662.1 | Sc0001335 | 294 | CssRL3 | XM_028230429.1 | 98.98% |
Name | Cloned Protein (aa) | MW (kDa) | pI | Aliphatic Index | GRAVY | Localization |
---|---|---|---|---|---|---|
CsaRL4a | 101 | 11.38 | 8.01 | 49.31 | −1.111 | Nucleus. |
CsaRL4b | 101 | 11.38 | 8.01 | 49.31 | −1.111 | Nucleus. |
CsaRL1a | 77 | 8.83 | 8.03 | 60.91 | −0.892 | Nucleus. |
CsaRL3a | 80 | 8.99 | 9.03 | 54.88 | −0.907 | Nucleus. |
CsaRL4c | 88 | 9.94 | 8.01 | 58.75 | −0.873 | Nucleus. |
CsaRL1b | 80 | 8.81 | 6.83 | 57.38 | −0.775 | Nucleus. |
CsaRL3b | 97 | 11.11 | 5.67 | 68.35 | −0.777 | Nucleus. |
CsaRL3c | 97 | 11.23 | 9.76 | 73.51 | −0.972 | Nucleus. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wen, B.; Yang, Y.; Long, S.; Liu, J.; Li, M. Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis. Plants 2023, 12, 3039. https://doi.org/10.3390/plants12173039
Wang S, Wen B, Yang Y, Long S, Liu J, Li M. Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis. Plants. 2023; 12(17):3039. https://doi.org/10.3390/plants12173039
Chicago/Turabian StyleWang, Shaoying, Beibei Wen, Yun Yang, Shanshan Long, Jianjun Liu, and Meifeng Li. 2023. "Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis" Plants 12, no. 17: 3039. https://doi.org/10.3390/plants12173039
APA StyleWang, S., Wen, B., Yang, Y., Long, S., Liu, J., & Li, M. (2023). Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis. Plants, 12(17), 3039. https://doi.org/10.3390/plants12173039