Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato
Abstract
:1. Introduction
2. Results
2.1. Isolation of AS and BM from Tissue Culture Trials of E. prostrata (EP)
2.2. Morphological and Biochemical Characterization of AS and BM Isolates
2.3. Morphology of AS and BM under Scanning Electron Microscopy
2.4. Antibiotic Sensitivity of AS and BM Isolates
2.5. Molecular Characterization of AS and BM Isolates
2.6. PGP Attributes with AS and BM Isolates
2.7. AS and BM Enhance Wheat and Tomato Crop Productivity
2.7.1. Enhanced Growth of Wheat and Tomato Seeds under In Vitro Seed Priming with AS and BM
2.7.2. AS/BM-Assisted Seed Priming Enhances Wheat Ex Vitro Growth
2.7.3. AS/BM-Assisted Seed Priming Also Enhances Ex Vitro Growth of Tomato
2.7.4. Physiological Growth Profiling Supports AS/BM-Assisted Enhanced Ex Vitro Wheat and Tomato Growth
2.7.5. Field Trials Validate PGP Prospects with AS and BM on Wheat and Tomato
3. Discussion
4. Materials and Methods
4.1. Euphorbia Prostrata (EP) Sampling, Processing, and In Vitro Establishment
4.2. Isolation of Bacterial Endophytes
4.3. Morphological Analyses
4.4. Scanning Electron Microscopy
4.5. Biochemical Methods and Assays
4.6. Enzyme Activity Assays
4.7. Bacterial Motility Test
4.8. Antibiotic Activity Assays
4.9. Molecular Characterization of Bacterial Isolates
4.10. PGP Activity Assays over Bacterial Isolates
4.10.1. Potassium Solubilization Activity
4.10.2. Phosphate Solubilization Activity
4.10.3. ACC Deaminase Activity
4.10.4. Siderophore Production
4.10.5. IAA Production
4.10.6. Ammonia Production
4.10.7. Gibberellic Acid (GA) Production
4.10.8. Zinc Solubilization Assay
4.10.9. Nitrogen Fixation
4.10.10. Hydrogen Cyanide Production
4.10.11. Biofilm Formation
4.11. Seed-Priming Treatments with Bacterial Isolates
4.12. In Vitro and Ex Vitro Validation of PGP Effects on Commercial Crops
4.13. Field Trials and Productivity Profiling
4.14. Plant Physiological Growth Profiling
4.15. Statistical and Computational Approaches
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Bermúdez, M.; Del Pozo, J.C.; Pernas, M. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops. Front. Plant Sci. 2022, 13, 918537. [Google Scholar] [CrossRef] [PubMed]
- FAO. Climate Change and Food Security: Risks and Responses; FAO: Rome, Italy, 2015. [Google Scholar]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Nerkar, G.; Devarumath, S.; Purankar, M.; Kumar, A.; Valarmathi, R.; Devarumath, R.; Appunu, C. Advances in Crop Breeding Through Precision Genome Editing. Front. Genet. 2022, 13, 880195. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Liu, C.L.C.; Kuchma, O.; Krutovsky, K.V. Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Glob. Ecol. Conserv. 2018, 15, e00419. [Google Scholar] [CrossRef]
- Holka, M.; Kowalska, J.; Jakubowska, M. Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change? Agriculture 2022, 12, 1383. [Google Scholar]
- Yu, L.; Liu, S.; Wang, F.; Liu, Y.; Li, M.; Wang, Q.; Dong, S.; Zhao, W.; Tran, L.-S.P.; Sun, Y.; et al. Effects of agricultural activities on energy-carbon-water nexus of the Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 331, 129995. [Google Scholar] [CrossRef]
- Mathur, S.; Waswani, H.; Singh, D.; Ranjan, R. Alternative Fuels for Agriculture Sustainability: Carbon Footprint and Economic Feasibility. AgriEngineering 2022, 4, 993–1015. [Google Scholar] [CrossRef]
- Karwacka, M.; Ciurzyńska, A.; Lenart, A.; Janowicz, M. Sustainable Development in the Agri-Food Sector in Terms of the Carbon Footprint: A Review. Sustainability 2020, 12, 6463. [Google Scholar] [CrossRef]
- Lehtonen, H.; Rämö, J. Development towards low carbon and sustainable agriculture in Finland is possible with moderate changes in land use and diets. Sustain. Sci. 2023, 18, 425–439. [Google Scholar] [CrossRef]
- IMWIC. Resilient Crops for Water Limited Environments: Proceedings of a Workshop Held at Cuernavaca, Mexico, 24–28 May 2004; University of Florida: Gainesville, FL, USA, 2004; p. 286. [Google Scholar]
- Shelake, R.M.; Pramanik, D.; Kim, J.-Y. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms 2019, 7, 269. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Verma, J.P. Does plant—Microbe interaction confer stress tolerance in plants: A review? Microbiol. Res. 2018, 207, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; White, J.F. Bioprospecting Desert Plants for Endophytic and Biostimulant Microbes: A Strategy for Enhancing Agricultural Production in a Hotter, Drier Future. Biology 2021, 10, 961. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Meena, M. Bioprospecting of endophytes in medicinal plants of Thar Desert: An attractive resource for biopharmaceuticals. Biotechnol. Rep. 2021, 30, e00629. [Google Scholar] [CrossRef] [PubMed]
- Mitter, E.K.; Tosi, M.; Obregón, D.; Dunfield, K.E.; Germida, J.J. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Front. Sustain. Food Syst. 2021, 5, 606815. [Google Scholar] [CrossRef]
- Agrawal, S.; Bhatt, A. Microbial Endophytes: Emerging Trends and Biotechnological Applications. Curr. Microbiol. 2023, 80, 249. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Ortega, H.E.; Torres-Mendoza, D.; Cubilla-Rios, L. Patents on Endophytic Fungi for Agriculture and Bio- and Phytoremediation Applications. Microorganisms 2020, 8, 1237. [Google Scholar] [CrossRef]
- Beltran-Garcia, M.J.; Martinez-Rodriguez, A.; Olmos-Arriaga, I.; Valdez-Salas, B.; Chavez-Castrillon, Y.Y.; Di Mascio, P.; White, J.F. Probiotic Endophytes for More Sustainable Banana Production. Microorganisms 2021, 9, 1805. [Google Scholar] [CrossRef]
- Seenivasagan, R.; Babalola, O.O. Utilization of Microbial Consortia as Biofertilizers and Biopesticides for the Production of Feasible Agricultural Product. Biology 2021, 10, 1111. [Google Scholar] [CrossRef]
- Nosheen, S.; Ajmal, I.; Song, Y. Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability 2021, 13, 1868. [Google Scholar] [CrossRef]
- Bhandari, M. Flora of the Indian Desert, MPS Repros Rev. ed.; Scientific Publishers: Jodhpur, India, 1990. [Google Scholar]
- Pandey, R.; Shetty, B.; Malhotra, S. Preliminary census of rare and threatened plants of Rajasthan. In Assessment of Threatened Plants of India: Proceedings of the Seminar Held at Dehra Dun, 14–17 September 1981; Jain, S.K., Rao, R.R., Eds.; Botanical Survey of India Department of Environmentc: Howrath, India, 1983. [Google Scholar]
- Notes. Nature 1870, 3, 92–94. [CrossRef]
- Eavis, B.; Cumberbatch, E.S.J.; Medford, D.J.T.A. Factors Influencing Regeneration of Natural Vegetation on Reformed Scotland District Soils of Barbados; Faculty of Food and Agriculture, The University of the West Indies, St Augustine Campus, Trinidad and Tobago, West Indies: Danger Grande, The Republic of Trinidad and Tobago, 1974. [Google Scholar]
- Machado-Estrada, B.; Calderón, J.; Moreno-Sánchez, R.; Rodríguez-Zavala, J.S. Accumulation of arsenic, lead, copper, and zinc, and synthesis of phytochelatins by indigenous plants of a mining impacted area. Environ. Sci. Pollut. Res. 2013, 20, 3946–3955. [Google Scholar] [CrossRef]
- Kaur, J.; Saxena, A.; Berdimurodov, E.; Verma, D.K. Euphorbia prostrata as an eco-friendly corrosion inhibitor for steel: Electrochemical and DFT studies. Chem. Pap. 2022, 77, 957–976. [Google Scholar] [CrossRef]
- Khiralla, A.; Mohamed, I.E.; Tzanova, T.; Schohn, H.; Slezack-Deschaumes, S.; Hehn, A.; André, P.; Carre, G.; Spina, R.; Lobstein, A.; et al. Endophytic fungi associated with Sudanese medicinal plants show cytotoxic and antibiotic potential. FEMS Microbiol. Lett. 2016, 363, fnw089. [Google Scholar] [CrossRef] [PubMed]
- Kamel, N.M.; Abdel-Motaal, F.F.; El-Zayat, S.A. Endophytic fungi from the medicinal herb Euphorbia geniculata as a potential source for bioactive metabolites. Arch. Microbiol. 2020, 202, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.-C.; Yu, B.-Y.; Li, X. Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. Afr. J. Biotechnol. 2008, 7, 3505–3510. [Google Scholar]
- Dinango, V.N.; Eke, P.; Youmbi, D.Y.; Kepngop Kouokap, L.R.; Toghueo Kouipou, R.M.; Tamghe, G.G.; Nguemnang Mabou, L.C.; Wakam, L.N.; Boyom, F.F. Endophytic bacteria derived from the desert-spurge (Euphorbia antiquorum L.) suppress Fusarium verticillioides, the causative agent of maize ear and root rot. Rhizosphere 2022, 23, 100562. [Google Scholar] [CrossRef]
- Youmbi, D.Y.; Eke, P.; Kouokap, L.R.K.; Dinango, V.N.; Tamghe, G.G.; Wakam, L.N.; Boyom, F.F. Endophytic bacteria from Euphorbia antiquorum L. protect Solanum lycopersicum L. against bacterial wilt caused by Ralstonia solanacearum. Egypt. J. Biol. Pest. Control 2022, 32, 77. [Google Scholar] [CrossRef]
- Khaksar, G.; Siswanto, D.; Treesubsuntorn, C.; Thiravetyan, P. Euphorbia milii-Endophytic Bacteria Interactions Affect Hormonal Levels of the Native Host Differently under Various Airborne Pollutants. Mol. Plant-Microbe Interact. 2016, 29, 663–673. [Google Scholar] [CrossRef]
- Khaksar, G.; Treesubsuntorn, C.; Thiravetyan, P. Euphorbia milii-native bacteria interactions under airborne formaldehyde stress: Effect of epiphyte and endophyte inoculation in relation to IAA, ethylene and ROS levels. Plant Physiol. Biochem. 2017, 111, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Jan, F.G.; Hamayun, M.; Hussain, A.; Jan, G.; Ali, S.; Khan, S.A.; Lee, I.-J. Endophytic Candida membranifaciens from Euphorbia milii L. Alleviate Salt Stress Damages in Maize. Agronomy 2022, 12, 2263. [Google Scholar] [CrossRef]
- Shaker, K.H.; Zohair, M.M.; Hassan, A.Z.; Sweelam, H.-t.M.; Ashour, W.E. LC–MS/MS and GC–MS based phytochemical perspectives and antimicrobial effects of endophytic fungus Chaetomium ovatoascomatis isolated from Euphorbia milii. Arch. Microbiol. 2022, 204, 661. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Ramakrishna, N.; Arunachalam, S.; Sathiavelu, M. Isolation, Screening and Optimization of Laccase-Producing Endophytic Fungi from Euphorbia milii. Arab. J. Sci. Eng. 2019, 44, 51–64. [Google Scholar] [CrossRef]
- Akpotu, M.O.; Eze, P.M.; Ajaghaku, D.L.; Okoye, F.B.C.; Esimone, C.O. Antimicrobial activity of endophytic fungi isolated from Catharanthus roseus and Euphorbia hirta. Planta Med. 2015, 81, PM_145. [Google Scholar] [CrossRef]
- Syed, B.; Prasad, M.N.N.; Rao, H.C.Y.; Rakshith, D.; Maithri, B.; Kavitha, K.S.; Azmath, P.; Kavitha, H.U.; Harini, B.P.; Kumar, K.; et al. Actinomycetic Symbionts Inhabiting Euphorbia hirta L. with Antimicrobial Potentials. J. Biol. Act. Prod. Nat. 2015, 5, 419–426. [Google Scholar] [CrossRef]
- Gautam, V.S.; Nishad, J.H.; Kumari, P.; Singh, A.; Verma, S.K.; Sharma, V.K.; Kumar, J.; Kharwar, R.N. Isolation and functional characterization of a fungal plant symbiont Nigrospora sphaerica, associated to Euphorbia hirta L. Indian. Phytopathol. 2022, 75, 345–355. [Google Scholar] [CrossRef]
- Gautam, V.S.; Singh, A.; Kumari, P.; Nishad, J.H.; Kumar, J.; Yadav, M.; Bharti, R.; Prajapati, P.; Kharwar, R.N. Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Arch. Microbiol. 2022, 204, 140. [Google Scholar] [CrossRef]
- Uma Anitha, K.P.G.; Mythili, S. Antioxidant and hepatoprotective potentials of novel endophytic fungus Achaetomium sp., from Euphorbia hirta. Asian Pac. J. Trop. Med. 2017, 10, 588–593. [Google Scholar] [CrossRef]
- Ismail; Hamayun, M.; Hussain, A.; Iqbal, A.; Khan, S.A.; Lee, I.-J. Endophytic Fungus Aspergillus japonicus Mediates Host Plant Growth under Normal and Heat Stress Conditions. BioMed Res. Int. 2018, 2018, 7696831. [Google Scholar] [CrossRef]
- Cai, X.-Y.; Li, N.; Li, Y.; Zhang, R.-J.; Lin, P.; Liu, L.; Ye, H.-Y.; Wu, W.-S.; Zhao, M. An epigenetic modifier enhances the generation of anti-phytopathogenic compounds from the endophytic fungus Chaetomium globosporum of Euphorbia humifusa. Phytochemistry 2022, 203, 113426. [Google Scholar] [CrossRef] [PubMed]
- Bensaci, O.A.; Daoud, H.; Lombarkia, N.; Rouabah, K. Formulation of the endophytic fungus Cladosporium oxysporum Berk. and MA Curtis, isolated from Euphorbia bupleuroides subsp. luteola, as a new biocontrol tool against the black bean aphid (Aphis fabae Scop.). J. Plant Prot. Res. 2015, 55, 80–87. [Google Scholar] [CrossRef]
- Eke, P.; Kumar, A.; Sahu, K.P.; Wakam, L.N.; Sheoran, N.; Ashajyothi, M.; Patel, A.; Fekam, F.B. Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiol. Res. 2019, 228, 126302. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Mudgal, G.; Chand, K.; Singh, G.B.; Perveen, K.; Bukhari, N.A.; Debnath, S.; Mohan, T.C.; Charukesi, R.; Singh, G. An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention. Sci. Rep. 2022, 12, 21330. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Mudgal, G.; Negi, A.; Tamang, J.; Singh, S.; Singh, G.B.; Bose, K.J.C.; Debnath, S.; Wadaan, M.A.; Farooq Khan, M.; et al. Reactive Black-5, Congo Red and Methyl Orange: Chemical Degradation of Azo-Dyes by Agrobacterium. Water 2023, 15, 1664. [Google Scholar] [CrossRef]
- Kaur, J.; Mudgal, G. An efficient and quick protocol for in vitro multiplication of snake plant, Sansevieria trifasciata var. Laurentii [Prain]. Plant Cell Tissue Organ Cult. (PCTOC) 2021, 147, 405–411. [Google Scholar] [CrossRef]
- Mudgal, G.; Kaur, J.; Chand, K.; Parashar, M.; Dhar, S.K.; Singh, G.B.; Gururani, M.A. Mitigating the Mistletoe Menace: Biotechnological and Smart Management Approaches. Biology 2022, 11, 1645. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.; Kant, A.; Bhowmick, P.; Malakar, A.; Purkaystha, S.; Jena, B.K.; Mudgal, G.; Rahimi, M.; Helal, M.M.U.; Hasan, R.; et al. The Enhanced Affinity of WRKY Reinforces Drought Tolerance in Solanum lycopersicum L.: An Innovative Bioinformatics Study. Plants 2023, 12, 762. [Google Scholar] [CrossRef]
- Siva, R.; Rajasekaran, C.; Mudgal, G. Induction of somatic embryogenesis and organogenesis in Oldenlandia umbellata L., a dye-yielding medicinal plant. Plant Cell Tissue Organ Cult. 2009, 98, 205–211. [Google Scholar] [CrossRef]
- Singh, G.B.; Mudgal, G.; Vinayak, A.; Kaur, J.; Chand, K.; Parashar, M.; Verma, A.K.; Goswami, A.; Sharma, S. Molecular Communications between Plants and Microbes. In Plant-Microbial Interactions and Smart Agricultural Biotechnology; CRC Press: Boca Raton, FL, USA, 2021; pp. 147–184. [Google Scholar]
- iNaturalist. Prostrate Sandmat Euphorbia Prostrata. Available online: https://www.inaturalist.org/taxa/200053-Euphorbia-prostrata (accessed on 8 April 2023).
- Kew. Euphorbia Prostrata Aiton. Hortic. Kew-Plants World Onine 1789, 2. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:101913-2 (accessed on 8 April 2023).
- Bátori, Z.; Erdős, L.; Somlyay, L. Euphorbia prostrata (Euphorbiaceae), a new alien in the Carpathian Basin. Acta Bot. Hung. 2012, 54, 235–243. [Google Scholar] [CrossRef]
- Leister, C.; Hügler, M. Genome Analysis of Enterobacter asburiae and Lelliottia spp. Proliferating in Oligotrophic Drinking Water Reservoirs and Lakes. Appl. Environ. Microbiol. 2022, 88, e00471-22. [Google Scholar] [CrossRef] [PubMed]
- Mbarki, S.; Sytar, O.; Cerda, A.; Zivcak, M.; Rastogi, A.; He, X.; Zoghlami, A.; Abdelly, C.; Brestic, M. Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In Salinity Responses and Tolerance in Plants; Kumar, V., Wani, S., Suprasanna, P., Tran, L.S., Eds.; Springer: Cham, Switzerland, 2018; Volume 1, pp. 85–136. [Google Scholar]
- Huang, W.-Y.; Cai, Y.-Z.; Xing, J.; Corke, H.; Sun, M. A potential antioxidant resource: Endophytic fungi from medicinal plants. Econ. Bot. 2007, 61, 14–30. [Google Scholar] [CrossRef]
- Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. Cell Mol. Biol. 2014, 77, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Izard, D.; Gavini, F.; Trinel, P.A.; Leclerc, H. Deoxyribonucleic Acid Relatedness Between Enterobacter cloacae and Enterobacter amnigenus sp. nov. Microbiology 1981, 31, 35–42. [Google Scholar] [CrossRef]
- Casin, I.; Grimont, F.; Grimont, P.A.D. Deoxyribonucleic acid relatedness between Haemophilus aegyptius and Haemophilus influenzas. Ann. De L’institut Pasteur/Microbiol. 1986, 137, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Farmer, J.J.; Davis, B.R.; Hickman-Brenner, F.W.; McWhorter, A.; Huntley-Carter, G.P.; Asbury, M.A.; Riddle, C.; Wathen-Grady, H.G.; Elias, C.; Fanning, G.R. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 1985, 21, 46–76. [Google Scholar] [CrossRef]
- Brady, C.; Cleenwerck, I.; Venter, S.; Coutinho, T.; De Vos, P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst. Appl. Microbiol. 2013, 36, 309–319. [Google Scholar] [CrossRef]
- Liu, S.; Tang, Y. Identification and characterization of a new Enterobacter onion bulb decay caused by Lelliottia amnigena in China. Appl. Microbiol. 2016, 2, 1–7. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Krueger, K.; Roesler, U.; Weinreich, J.; Schierack, P. Assessment of species and antimicrobial resistance among Enterobacteriaceae isolated from mallard duck faeces. Environ. Monit. Assess. 2015, 187, 127. [Google Scholar] [CrossRef]
- Fadare, F.T.; Okoh, A.I. Distribution and molecular characterization of ESBL, pAmpC β-lactamases, and non-β-lactam encoding genes in Enterobacteriaceae isolated from hospital wastewater in Eastern Cape Province, South Africa. PLoS ONE 2021, 16, e0254753. [Google Scholar] [CrossRef] [PubMed]
- Stock, I.; Wiedemann, B. Natural antibiotic susceptibility of Enterobacter amnigenus, Enterobacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin. Microbiol. Infect. 2002, 8, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Literak, I.; Manga, I.; Wojczulanis-Jakubas, K.; Chroma, M.; Jamborova, I.; Dobiasova, H.; Sedlakova, M.H.; Cizek, A. Enterobacter cloacae with a novel variant of ACT AmpC beta-lactamase originating from glaucous gull (Larus hyperboreus) in Svalbard. Vet. Microbiol. 2014, 171, 432–435. [Google Scholar] [CrossRef]
- Thakur, P.; Gauba, P. Genomic characterization of Lelliottia amnigena PTJIIT1005, a nitrate tolerant strain isolated from water sample of Yamuna River, Delhi, India. Microbiol. Resour. Announc. 2022, 11, e00229-22. [Google Scholar] [CrossRef] [PubMed]
- Leal-Negredo, A.; Castelló-Abieta, C.; Leiva, P.S.; Fernández, J. Urinary tract infection by Lelliottia amnigena (Enterobacter amnigenus): An uncommon pathogen. Rev. Esp. Quim. 2017, 30, 483–484. [Google Scholar]
- Legese, M.H.; Asrat, D.; Swedberg, G.; Hasan, B.; Mekasha, A.; Getahun, T.; Worku, M.; Shimber, E.T.; Getahun, S.; Ayalew, T.; et al. Sepsis: Emerging pathogens and antimicrobial resistance in Ethiopian referral hospitals. Antimicrob. Resist. Infect. Control 2022, 11, 83. [Google Scholar] [CrossRef]
- Bingöl, A.; Er, A.; İpek, Z.Z.; Kayış, Ş. Bacterial examination of wild and cultured fish present in the same aquatic ecosystem, and the antibiotic resistance of the isolated bacteria. Genet. Aquat. Org. 2022, 6. [Google Scholar] [CrossRef]
- Martín Guerra, J.M.; Martín Asenjo, M.; Dueñas Gutiérrez, C.J. Pyonephrosis by Lelliottia amnigena. Med. Clin. 2018, 151, 419–420. [Google Scholar] [CrossRef]
- Li, A.; Yan, C.; Zhang, L.; Liu, S.; Feng, C.; Zhang, L.; Dong, F.; Sheng, X.; Wang, L.; Zhang, Y.; et al. Characterization and identification of a novel chromosomal class C β-lactamase, LAQ-1, and comparative genomic analysis of a multidrug resistance plasmid in Lelliottia amnigena P13. Front. Microbiol. 2022, 13, 990736. [Google Scholar] [CrossRef]
- Osei, R.; Yang, C.; Cui, L.; Ma, T.; Li, Z.; Boamah, S. Isolation, identification, and pathogenicity of Lelliottia amnigena causing soft rot of potato tuber in China. Microb. Pathog. 2022, 164, 105441. [Google Scholar] [CrossRef]
- Abd-Elhafeez, E.; AlKhazindar, M.; Sayed, E. Isolation and characterization of Enterobacter strains causing potato soft rot disease in Egypt. Minia Sci. Bull. 2018, 29, 1–13. [Google Scholar]
- Kachhadia, R.; Kapadia, C.; Singh, S.; Gandhi, K.; Jajda, H.; Alfarraj, S.; Ansari, M.J.; Danish, S.; Datta, R. Quorum Sensing Inhibitory and Quenching Activity of Bacillus cereus RC1 Extracts on Soft Rot-Causing Bacteria Lelliottia amnigena. ACS Omega 2022, 7, 25291–25308. [Google Scholar] [CrossRef] [PubMed]
- Reitter, C.; Petzoldt, H.; Korth, A.; Schwab, F.; Stange, C.; Hambsch, B.; Tiehm, A.; Lagkouvardos, I.; Gescher, J.; Hügler, M. Seasonal dynamics in the number and composition of coliform bacteria in drinking water reservoirs. Sci. Total Environ. 2021, 787, 147539. [Google Scholar] [CrossRef]
- El-Akhdar, I.; Elsakhawy, T.; Abo-Koura, H.A. Alleviation of Salt Stress on Wheat (Triticum aestivum L.) by Plant Growth Promoting Bacteria strains Bacillus halotolerans MSR-H4 and Lelliottia amnigena MSR-M49. J. Adv. Microbiol. 2020, 20, 44–58. [Google Scholar] [CrossRef]
- Ates, Ö.; Kivanc, M. Isolation of ACC deaminase producing rhizobacteria from wheat rhizosphere and determinating of plant growth activities under salt stress conditions. Appl. Ecol. Environ. Res. 2020, 18, 5997–6008. [Google Scholar] [CrossRef]
- Salman, Ö.; Bayram, F.R.; Boyraz, N.; Koçak, R. Determination of the Antagonistic Effects of Some Rhizospheric Bacteria against Macrophomina phaseolina under In Vitro Conditions. Turk. J. Agric. Food Sci. Technol. 2021, 9, 2474–2479. [Google Scholar] [CrossRef]
- Wang, F.-F.; Liu, G.-P.; Zhang, F.; Li, Z.-M.; Yang, X.-L.; Yang, C.-D.; Shen, J.-L.; He, J.-Z.; Li, B.L.; Zeng, J.-G. Natural selenium stress influences the changes of antibiotic resistome in seleniferous forest soils. Environ. Microbiome 2022, 17, 26. [Google Scholar] [CrossRef] [PubMed]
- Tideman, J.; Hawker, J.S. In vitro Propagation of Latex-producing Plants. Ann. Bot. 1982, 49, 273–279. [Google Scholar] [CrossRef]
- Lee, C.; Yeckes, J.; Thomas, J. Tissue-culture propagation of euphorbia-lathyris and asclepias-erosa. HortScience 1982, 17, 533. [Google Scholar]
- Ripley, K.P.; Preece, J.E. Micropropagation of Euphorbia lathyris L. Plant Cell Tissue Organ. Cult. 1986, 5, 213–218. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Chakrabarty, D.; Hahn, E.J.; Paek, K.Y. Reversion of inflorescence development in Euphorbia millii and its application to large-scale micropropagation in an air-lift bioreactor. J. Hortic. Sci. Biotechnol. 2005, 80, 581–587. [Google Scholar] [CrossRef]
- Menéndez, E.; Ramirez-Bahena, M.H.; Peix, A.; Tejedor, C.; Mulas, R.; González-Andrés, F.; Martínez-Molina, E.; Velázquez, E. Analysis of Cultivable Endophytic Bacteria in Roots of Maize in a Soil from León Province in Mainland Spain. In Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction; Springer International Publishing: Cham, Switzerland, 2016; pp. 45–53. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Sahoo, B.; Ningthoujam, R.; Chaudhuri, S. Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits. Int. Microbiol. 2019, 22, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Cappuccino, J.; Sherman, N. Biochemical activities of microorganisms. In Microbiology, A Laboratory Manual; The Benjamin/Cummings Publishing Co.: Redwood City, CA, USA, 1992; pp. 188–247. [Google Scholar]
- Kang, K.H.; Kim, J.K. Degradation characteristics of a novel multi-enzyme-possessing Bacillus licheniformis TK3-Y strain for the treatment of high-salinity fish wastes and green seaweeds. Fish. Aquat. Sci. 2015, 18, 349–357. [Google Scholar] [CrossRef]
- Ghasemi, Y.; RSOUL, A.S.; Ebrahiminezhad, A.; Kazemi, A.; Shahbazi, M.; Talebnia, N. Screening and isolation of extracellular protease producing bacteria from the Maharloo Salt Lake. Iran. J. Pharm. Sci. 2011, 7, 175–180. [Google Scholar]
- Bharadwaj, P.S.; Udupa, P.M. Isolation, purification and characterization of pectinase enzyme from Streptomyces thermocarboxydus. J. Clin. Microbiol. Biochem. Biochem. Technol. Technol. 2019, 5, 001–006. [Google Scholar]
- Abd-Elhalem, B.T.; El-Sawy, M.; Gamal, R.F.; Abou-Taleb, K.A. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann. Agric. Sci. 2015, 60, 193–202. [Google Scholar] [CrossRef]
- PHE. UK Standards for Microbiology Investigations—Motility Test, Bacteriology–Test Procedures, TP 21, Issue no: 4. Bacteriology; Standards Unit, National Infection Service: London, UK, 2018. [Google Scholar]
- Hudzicki, J. Kirby-Bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 2009, 15, 55–63. [Google Scholar]
- CLSI. Performance for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Dworkin, M.; Foster, J. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 1958, 75, 592. [Google Scholar] [CrossRef] [PubMed]
- Cabaj, A.; Kosakowska, A. Iron-dependent growth of and siderophore production by two heterotrophic bacteria isolated from brackish water of the southern Baltic Sea. Microbiol. Res. 2009, 164, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Xu, J. A simple double-layered chrome azurol S agar (SD-CASA) plate assay to optimize the production of siderophores by a potential biocontrol agent Bacillus. Afr. J. Microbiol. Res. 2011, 5, 4321–4327. [Google Scholar]
- Bent, E.; Tuzun, S.; Chanway, C.P.; Enebak, S. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can. J. Microbiol. 2001, 47, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951, 26, 192. [Google Scholar] [CrossRef] [PubMed]
- Borrow, A.; Brian, P.; Chester, V.; Curtis, P.; Hemming, H.; Henehan, C.; Jeffreys, E.; Lloyd, P.; Nixon, I.; Norris, G. Gibberellic acid, a metabolic product of the fungus Gibberella fujikuroi: Some observations on its production and isolation. J. Sci. Food Agric. 1955, 6, 340–348. [Google Scholar] [CrossRef]
- Saravanan, V.S.; Subramoniam, S.R.; Raj, S.A. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (ZSB) isolates. Braz. J. Microbiol. 2004, 35, 121–125. [Google Scholar] [CrossRef]
- Pandey, P.K.; Samanta, R.; Yadav, R.N.S. Plant beneficial endophytic bacteria from the ethnomedicinal Mussaenda roxburghii (Akshap) of Eastern Himalayan Province, India. Adv. Biol. 2015, 2015, 580510. [Google Scholar] [CrossRef]
- Lorck, H. Production of hydrocyanic acid by bacteria. Physiol. Plant. 1948, 1, 142–146. [Google Scholar] [CrossRef]
- Sultan, A.; Nabiel, Y.J.A.J.o.C.; Microbiology, E. Tube method and Congo red agar versus tissue culture plate method for detection of biofilm production by uropathogens isolated from midstream urine: Which one could be better? Afr. J. Clin. Exp. Microbiol. 2019, 20, 60–66. [Google Scholar] [CrossRef]
- Antognoni, F.; Mandrioli, R.; Potente, G.; Taneyo Saa, D.L.; Gianotti, A. Changes in carotenoids, phenolic acids and antioxidant capacity in bread wheat doughs fermented with different lactic acid bacteria strains. Food Chem. 2019, 292, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Copaciu, F.; Opriş, O.; Niinemets, Ü.; Copolovici, L. Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves. Water Air Soil. Pollut. 2016, 227, 196. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.H.; Houborg, R.; McCabe, M.F. Response of Chlorophyll, Carotenoid and SPAD-502 Measurement to Salinity and Nutrient Stress in Wheat (Triticum aestivum L.). Agronomy 2017, 7, 61. [Google Scholar] [CrossRef]
- Wright, E.S.; Yilmaz, L.S.; Noguera, D.R. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 2012, 78, 717–725. [Google Scholar] [CrossRef]
- UN-DESA. The Sustainable Development Goals Report 2022. Available online: https://unstats.un.org/sdgs/report/2022/ (accessed on 30 July 2022).
Assay Classes | Activity/Assays | Characteristics | |
---|---|---|---|
Morphology and Growth Responses | AS | BM | |
Gram reaction | -ve | -ve | |
Shape in LM and SEM | Rod-shaped | Rod-shaped | |
Colony on NA | Smooth, irregularly shaped, pale white, and motile | Clustered motile, irregularly shaped, pale white | |
Colony on MSA | Smooth and white | Smooth and white | |
Colony on LBA | Smooth, irregularly shaped, off-white, and motile | Clustered motile, irregularly shaped, yellowish-brown | |
Standard biochemical responses | |||
Catalase test | + | + | |
Methyl red | + | + | |
Indole test | + | + | |
Citrate utilization | + | + | |
Voges Proskauer | - | - | |
Starch hydrolysis | - | - | |
Urease test | - | - | |
Oxidase test | - | - | |
Nitrate reduction | - | - | |
Motility test | + | + | |
Hydrogen sulfide test | - | - | |
Tween-20 hydrolysis | - | - | |
Tween-80 hydrolysis | - | - | |
α-ketolactose utilization | - | - | |
Carbohydrate utilization | |||
Glucose | - | + | |
Sucrose | + | + | |
Starch | - | - | |
Mannitol | - | - | |
Lactose | + | + | |
Dextrose | + | + | |
Fructose | - | - | |
Gelatin | - | - | |
Arabinose | - | - | |
Adonitol | - | - | |
Sorbitol | - | - | |
Rhamnose | - | - | |
Growth in NaCl | |||
0% | + | + | |
1% | + | + | |
2% | + | + | |
3% | + | + | |
4% | + | + | |
5% | + | + | |
Enzyme activities | |||
Cellulase | - | - | |
Protease | - | - | |
Lipase | - | - | |
Pectinase | - | - | |
Amylase | - | - |
Cat# | Antibiotic (Concentration) | AS | BM | ||
---|---|---|---|---|---|
Inhibition Zone (mm) | Response | Inhibition Zone (mm) | Response | ||
SD039 | Trimethoprim (5 μg) | 30 ± 0.32 | S++ | 25 ± 0.15 | S++ |
SD031 | Streptomycin (10 μg) | 0 | R | 0 | R |
SD181 | Spectinomycin (10 μg) | 27 ± 1.23 | S++ | 35 ± 0.8 | S+++ |
SD028 | Penicillin G (10 units) | 0 | R | 0 | R |
SD133 | Tetracycline (10 μg) | 12.5 ± 0.45 | S+ | 16 ± 0.16 | S+ |
SD006 | Chloramphenicol (30 μg) | 0 | R | 0 | R |
SD016 | Gentamicin (10 μg) | 17.5 ± 0.15 | S+ | 27.5 ± 0.25 | S++ |
SD002 | Ampicillin (10 μg) | 0 | R | 0 | R |
PGP Traits | 48 h | 96 h | 144 h | 192 h | 240 h | |||||
---|---|---|---|---|---|---|---|---|---|---|
AS | BM | AS | BM | AS | BM | AS | BM | AS | BM | |
Potassium solubilization | - | - | - | - | - | - | - | - | - | - |
Phosphate solubilization index (cm) | - | - | - | - | - | - | 1.25 ± 0.25 | - | - | - |
ACC deaminase | - | - | - | - | - | - | - | - | - | - |
Siderophore % | - | - | - | - | - | - | - | - | - | - |
IAA (μg/mL) | 18.06 ± 0.36 | 20.35 ± 0.11 | 15.29 ± 0.49 | 38.16 ± 0.20 | 28.02 ± 1.66 | 79.49 ± 0.33 | 37.70 ± 0.25 | 88.50 ± 0.33 | 33.29 ± 0.45 | 74.42 ± 1.69 |
Ammonia production (µmol/mL) | 18.78 ± 1.02 | 24.16 ± 1.45 | 24.12 ± 0.29 | 26.18 ± 0.55 | 41.52 ± 0.83 | 42.67 | 29.08 ± 2.21 | 33.19 ± 1.05 | 28.92 ± 0.45 | 36.54 ± 0.19 |
Giberellic acid (μg/mL) | 35.23 ± 0.35 | 40.09 ± 0.36 | 48.59 ± 0.79 | 53.37 ± 0.85 | 379.5 ± 0.1 | 452.34 ± 0.67 | 288 ± 1.8 | 243.47 ± 0.19 | 69.86 ± 0.45 | 69.92 ± 1.6 |
Zinc solubilization | - | + | - | + | - | + | - | + | - | + |
Zinc solubilization (μg/mL) | - | 204.3 | - | 274.4 | - | 192.8 | - | 228.5 | - | 182.9 |
N2-Fixation | + | + | + | + | + | + | + | + | + | + |
HCN production | - | - | - | - | - | - | - | - | - | - |
Biofilm production | - | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parashar, M.; Dhar, S.K.; Kaur, J.; Chauhan, A.; Tamang, J.; Singh, G.B.; Lyudmila, A.; Perveen, K.; Khan, F.; Bukhari, N.A.; et al. Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato. Plants 2023, 12, 3081. https://doi.org/10.3390/plants12173081
Parashar M, Dhar SK, Kaur J, Chauhan A, Tamang J, Singh GB, Lyudmila A, Perveen K, Khan F, Bukhari NA, et al. Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato. Plants. 2023; 12(17):3081. https://doi.org/10.3390/plants12173081
Chicago/Turabian StyleParashar, Manisha, Sanjoy Kumar Dhar, Jaspreet Kaur, Arjun Chauhan, Jeewan Tamang, Gajendra Bahadur Singh, Asyakina Lyudmila, Kahkashan Perveen, Faheema Khan, Najat A. Bukhari, and et al. 2023. "Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato" Plants 12, no. 17: 3081. https://doi.org/10.3390/plants12173081
APA StyleParashar, M., Dhar, S. K., Kaur, J., Chauhan, A., Tamang, J., Singh, G. B., Lyudmila, A., Perveen, K., Khan, F., Bukhari, N. A., Mudgal, G., & Gururani, M. A. (2023). Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato. Plants, 12(17), 3081. https://doi.org/10.3390/plants12173081