Monitoring Drought Tolerance in Oil Palm: Choline Monooxygenase as a Novel Molecular Marker
Abstract
:1. Introduction
2. Results
2.1. Molecular Marker Screening for Oil Palm Drought Tolerance via SSCP
2.2. CMO Gene Expression under Drought Stress Condition via Real-Time PCR
2.3. Characterization of CMO Full-Length Gene
2.4. Evolutionary Correlation of the CMO Gene from Oil Palm Surat Thani 2 with Other Organisms
3. Discussion
4. Materials and Methods
4.1. Molecular Marker Screening of Oil Palm Drought Tolerance via SSCP
4.1.1. DNA Extraction
4.1.2. Primer Design
4.1.3. Single Strand Conformation Polymorphism (SSCP)
4.2. CMO Gene Expression under Drought Stress Condition via Real-Time PCR
4.2.1. Oil Palm Drought Stress Condition
4.2.2. RNA Extraction
4.2.3. cDNA Synthesis
4.2.4. Gene Expression Analysis
4.3. Characterization of CMO Full-Length Gene and Evolutionary Correlation Study
4.3.1. RNA Extraction
4.3.2. Identification of CMO Full-Length Gene
4.4. Evolutionary Correlation Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Corley, R.H.V.; Tinker, P.B. The Oil Palm, 5th ed.; John Wiley & Sons: Chichester, UK, 2015; pp. 110–111. ISBN 9781405189392. [Google Scholar]
- Kuo, H.C.; Su, Y.L.; Yang, H.L.; Chen, T.Y. Establishment and application of PCR-SSCP profile for molecular typing of Cordyceps fungi. Food Biotechnol. 2008, 22, 311–325. [Google Scholar] [CrossRef]
- Sunnucks, P.; Wilson, A.C.C.; Beheregaray, L.B.; Zenger, K.; French, J.; Taylor, A.C. SSCP is not so difficult: The application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol. Ecol. 2000, 9, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Kakavas, V.K.; Plageras, P.; Vlachos, T.A.; Papaioannou, A.; Noulas, V.A. PCR-SSCP: A method for the molecular analysis of genetic diseases. Mol. Biotechnol. 2008, 38, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Nasernakhaei, F.; Rahiminejad, M.R.; Saeidi, H.; Tavassoli, M. Genetic structure and diversity of Triticum monococcum ssp. aegilopoides and T. urartu in Iran. Plant Genet. Resour. 2014, 13, 1–8. [Google Scholar] [CrossRef]
- Csikos, A.; Hodzic, A.; Pasic-Jahus, E.; Javor, A.; Hrković-Porobija, A.; Goletic, T.; Gulyas, G.; Czegledi, L. Applicability and sensitivity of PCR-SSCP method for milk species identification in cheese. Acta Aliment. 2016, 45, 69–76. [Google Scholar] [CrossRef]
- Meng, Y.L.; Wang, Y.M.; Zhang, B.; Nii, N. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions. Cell Res. 2001, 11, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, D.; Hanson, A.D. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 357–384. [Google Scholar] [CrossRef]
- Burnet, M.; Lafontaine, P.J.; Hanson, A.D. Assay, purification, and partial characterization of choline monooxygenase from spinach. Plant Physiol. 1995, 108, 581–588. [Google Scholar] [CrossRef]
- Russell, B.L.; Rathinasabapathi, B.; Hanson, A.D. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol. 1998, 116, 859–865. [Google Scholar] [CrossRef]
- Adam, H.; Jouannic, S.; Morcillo, F.; Richaud, F.; Duval, Y.; Tregear, J.W. MASD box gene in oil palm (Elaeis guineensis): Patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. J. Mol. Evol. 2006, 62, 15–31. [Google Scholar] [CrossRef]
- Adam, H.; Jouannic, S.; Orieux, Y.; Morcillo, F.; Richaud, F.; Duval, Y.; Tregear, J.W. Functional characterization of MADS box genes involved in the determination of oil palm flower structure. J. Exp. Bot. 2007, 58, 1245–1259. [Google Scholar] [CrossRef]
- Jouannic, S.; Collin, M.; Vidal, B.; Verdeil, J.L.; Tregear, J.W. A class I KNOX gene from the palm species Elaeis guineensis (Arecaceae) is associated with meristem function and a distinct mode of leaf dissection. New Phytol. 2007, 174, 551–568. [Google Scholar] [CrossRef] [PubMed]
- Rasid, O.A.; Wan Nur Syuhada, W.S.; Nor Hanin, A.; Masura, S.S.; Zulqarnain, M.; Ho, C.L.; Sambanthamurthi, R.; Suhaimi, N. RT-PCR amplification and cloning of partial DNA sequence coding for oil palm (Elaeis oleifera) phytoene synthase gene. Asia Pac. J. Mol. Biol. Biotechnol. 2008, 16, 17–24. [Google Scholar]
- Beulé, T.; Camps, C.; Debiesse, S.; Tranchant, C.; Dussert, S.; Sabau, X.; Jaligot, E.; Alwee, S.S.R.S.; Tregear, J.W. Transcriptome analysis reveals differentially expressed genes associated with the mantled homeotic flowering abnormality in oil palm (Elaeis guineensis). Tree Genet. Genomes 2011, 7, 169–182. [Google Scholar] [CrossRef]
- Ohara, O.; Dorit, R.L.; Gilbert, W. One-sided polymerase chain reaction: The amplification of cDNA. Proc. Natl. Acad. Sci. USA 1989, 86, 5673–5677. [Google Scholar] [CrossRef] [PubMed]
- Cormack, R.S.; Somssich, I.E. Rapid amplification of genomic ends (RAGE) as a simple method to clone flanking genomic DNA. Gene 1997, 194, 273–276. [Google Scholar] [CrossRef]
- Beales, N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr. Rev. Food Sci. Food Saf. 2004, 3, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Boudsocq, M.; Laurière, C. Osmotic signaling in plants: Multiple pathways mediated by emerging kinase families. Plant Physiol. 2005, 138, 1185–1194. [Google Scholar] [CrossRef]
- Valliyodan, B.; Nguyen, H.T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 2006, 9, 189–195. [Google Scholar] [CrossRef]
- Nuanlaong, S.; Wuthisuthimethavee, S.; Azzeme, A.M.; Suraninpong, P. Optimized method for the identification of candidate genes and molecular maker development related to drought tolerance in oil palm (Elaeis guineensis Jacq.). Plants 2022, 11, 2317. [Google Scholar] [CrossRef]
- Mir, R.R.; Zaman-Allah, M.; Sreenivasulu, N.; Trethowan, R.; Varshney, R.K. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 2012, 125, 625–645. [Google Scholar] [CrossRef] [PubMed]
- Thudi, M.; Gaur, P.M.; Krishnamurthy, L.; Mir, R.R.; Kudapa, H.; Fikre, A.; Kimurto, P.; Tripathi, S.; Solen, K.R.; Mulwa, R.; et al. Genomics-assisted breeding for drought tolerance in chickpea. Funct. Plant Biol. 2014, 41, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Crouch, J.H. Marker-assisted selection in plant breeding: From publications to practice. Crop Sci. 2008, 48, 391–407. [Google Scholar] [CrossRef]
- Kakavas, V.K. Sensitivity and applications of the PCR Single-Strand Conformation Polymorphism method. Mol. Biol. Rep. 2021, 48, 3629–3635. [Google Scholar] [CrossRef] [PubMed]
- Orita, M.; Iwahana, H.; Kanazawa, H.; Hayashi, K.; Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 1989, 86, 2766–2770. [Google Scholar] [CrossRef] [PubMed]
- Badi, M.A.; Al-Shuhaib, M.B.; Aljubouri, T.R.; Al-Thuwaini, T.M.; Dawud, H.H.; Hussein, T.H.; Al-Nafii, A.T.; Abdulmalek, D.; Altamemi, M.K.; Fadhil, I.A.; et al. Rapid and optimized protocol for efficient PCR-SSCP genotyping for wide ranges of species. Biologia 2021, 76, 2413–2420. [Google Scholar] [CrossRef]
- Kuhn, D.N.; Motamayor, J.C.; Meerow, A.W.; Borrone, J.W.; Schnell, R.J. SSCP markers provide a useful alternative to microsatellites in genotyping and estimating genetic diversity in populations and germplasm collections of plant specialty crops. Electrophoresis 2008, 29, 4096–4108. [Google Scholar] [CrossRef]
- Luo, D.; Niu, X.; Yu, J.; Yan, J.; Gou, X.; Lu, B.R.; Liu, Y. Rice choline monooxygenase (OsCMO) protein functions in enhancing glycine betaine biosynthesis in transgenic tobacco but does not accumulate in rice (Oryza sativa L. ssp. japonica). Plant Cell Rep. 2012, 31, 1625–1635. [Google Scholar] [CrossRef]
- Agboma, P.C.; Peltonen-Sainio, P.; Hinkkanen, R.; Pehu, E. Effect of foliar application of glycinebetaine on yield components of drought stressed tobacco plants. Exp. Agric. 1997, 33, 345–352. [Google Scholar] [CrossRef]
- Gorham, J.; Jokinen, K. Glycine betaine treatment improves cotton yields in field trials in Pakistan. In Proceedings of the World Cotton Research Conference, Athens, Greece, 6–12 September 1998; pp. 624–627. [Google Scholar]
- Cao, D.; Lin, Z.; Huang, L.; Damaris, R.N.; Yang, P. Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology. BMC Genom. 2021, 22, 171. [Google Scholar] [CrossRef]
- Vastarelli, P.; Moschella, A.; Pacifico, D.; Mandolino, G. Water stress in Beta vulgaris: Osmotic adjustment response and gene expression analysis in ssp. vulgaris and maritime. Am. J. Plant Sci. 2013, 4, 11–16. [Google Scholar] [CrossRef]
- Chen, T.H.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell Environ. 2011, 34, 1–20. [Google Scholar] [CrossRef]
- Rathinasabapathi, B. Metabolic engineering for stress tolerance: Installing osmoprotectant synthesis pathways. Ann. Bot. 2000, 86, 709–716. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Fitzgerald, T.L.; Waters, D.L.E.; Henry, R.J. Betaine aldehyde dehydrogenase in plants. Plant Biol. 2009, 11, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zeng, H.; Li, X.; Xu, L.; Wang, Y.; Tang, W.; Han, L. Isolation and characterization of the betain aldehyde dehydrogenase gene in Ophiopogon japonicus. Open Biotechnol. J. 2010, 4, 18–25. [Google Scholar] [CrossRef]
- Rathinasabapathi, B.; Burnet, M.; Russell, B.L.; Gage, D.A.; Liao, P.C.; Nye, G.J.; Scott, P.; Golbeck, J.H.; Hanson, A.D. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: Prosthetic group characterization and cDNA cloning. Proc. Natl. Acad. Sci. USA 1997, 94, 3454–3458. [Google Scholar] [CrossRef]
- Kweon, O.; Kim, S.J.; Baek, S.; Chae, J.C.; Adjei, M.D.; Baek, D.H.; Kim, Y.C.; Cerniglia, C.E. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochem. 2008, 9, 11. [Google Scholar] [CrossRef]
- Diaz, J.L.; Heckels, J.E. Antigenic variation of outer membrane protein I1 in colonial variants of Neisseria gonorrhoeae P9. J. Gen. Microbiol. 1983, 128, 585–591. [Google Scholar] [CrossRef]
- Eby, D.M.; Beharry, Z.M.; Coulter, E.D.; Kurtz, D.M.; Neidle, E.L. Characterization and evolution of anthranilate 1,2-dioxygenase from Acinetobacter sp. strain ADP1. J. Bacteriol. 2001, 183, 109–118. [Google Scholar] [CrossRef]
- Hibino, T.; Waditee, R.; Araki, E.; Ishikawa, H.; Aoki, K.; Tanaka, Y.; Takabe, T. Functional characterization of choline monooxygenase, an enzyme. Biol. Chem. 2002, 277, 41352–41360. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Al-Suhaibani, N.; Nawab Ali, N.; Akmal, M.; Alotaibi, M.; Yahya Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Leonardo Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, C.; Li, L.; Reynolds, M.; Mao, X.; Jing, R. Exploitation of drought tolerance-related genes for crop improvement. Int. J. Mol. Sci. 2021, 22, 10265. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Department of Agriculture. Academic Documents on Oil Palm; Department of Agriculture: Bangkok, Thailand, 2004; p. 188.
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Corre, F.; Henry, Y.; Rode, A.; Hartmann, C. Em gene during somatic embryogenesis in the monocot Triticum aestivum L. Plant Sci. 1996, 117, 139–149. [Google Scholar] [CrossRef]
Primer | Forward Primer (5′ ≥ 3′) | Reverse Primer (5′ ≥ 3′) | PCR Product (Base Pair) |
---|---|---|---|
CMO-03 | CCT CCC AAA TTA TGT GGT TC | TGC TTT TGA TCC CAG CCT AT | 282 |
Primer Name | Nucleotide Sequence |
---|---|
3′ forward primer (F: 5′ ---> 3′) | |
CMO1 | GAG AAG GTA AGT ATT CAA AGA TGT G |
CMO2 | GGC TGG GAT CAA AAG CAG TGT ATG C |
5′ reverse primer (5′ ---> 3′) | |
CMO3 | GAT CCC AGC CTA TCA AAG CCA AC |
CMO4 | GGT CAA GCC CAA TGG GAC GAC TAG |
CMO5 | GAA GAC CGT TAG GTC CGT TAC A |
CMO6 | CCT CTT CAG ATT CTA TAG CCG C |
CMO7 | CCC AGC CTA TCA AAG CCA ACT TC |
Similarity | Accession No. | E Value | Similarity (%) |
---|---|---|---|
Predicted: Elaeis guineensis choline monooxygenase, chloroplastic (LOC105049342), mRNA | XM_010928966.1 | 0.0 | 99 |
Predicted: Phoenix dactylifera choline monooxygenase, chloroplastic (LOC103715608), mRNA | XM_008803292.2 | 0.0 | 94 |
Variety | Parent | Yield (Ton/0.16 hectare/year) | % Oil | Foliar Length (m) | Average Bunch Weight (kg) | Average Height/Year (cm) | Drought Tolerance | Countries |
---|---|---|---|---|---|---|---|---|
CPI Hybrid | Chumphon Dura × Chumphon Pisifera | 5.0–6.0 | >25.0 | 6.0–7.0 | >22.0 | 40.0 | Tolerance | Thailand |
Ghana (Themba) | Deli × Ghana | 5.45 | 27.5 | 8.0 | 21.3 | 58.0 | Moderate tolerance | Costa Rica |
La Mé (S1 parent) | Deli × La Mé | 4.89 | 25.5 | 9.0 | 21.4 | 53.0 | Moderate tolerance | Thailand |
DLM Advance | Deli × La Mé | 5.0 | 26–28 | 4.1–6.5 | >22.0 | 36.0–40.0 | Tolerance | Africa |
DLY Millennium | Deli × La Mé | 5.0 | 24–26 | 4.3–6.5 | >22.0 | 36.0–40.0 | Tolerance | Africa |
Golden Tenera (KB) | Ulu Remis Dura and Banting Dura × SP540 and Dumy AVROS | 4.5–5.0 | 26–30 | 7.5–8.0 | >22.0 | 50.0 | Tolerance | Thailand |
PSU | Deli × AVROS | >4.0 | 27 | 7.0–8.0 | 21.4 | 35.0–40.0 | Tolerance | Thailand |
Nigeria Black | Deli × Nigeria black | 30 | 7.6–8.0 | >22.0 | 50.0–55.0 | Moderate tolerance | Costa Rica | |
Nong Ped | Deli × Yangambi from Malasia | 5.3–6.5 | 28–30 | 6.0–6.5 | >22.0 | 30.0 | Moderate | Malaysia |
Univanich | Deli × Yangambi | 4.0 | 24–29 | 6.0–8.0 | >22.0 | 50.0–60.0 | Moderate | Thailand |
Suratthani 2 | Deli × La Mé | 3.6–5.0 | 23 | 4.3 | 17.4 | 48.0 | Tolerance | Thailand |
Step | PCR Condition | No. of Cycles | No. of Replications |
---|---|---|---|
4.1.3 primer selection | 94 °C for 3 s, 94 °C for 30 s, 40–60 °C for 30 s, 72 °C for 60 s, and 72 °C for 7 min, and cooling at 4 °C. | 40 cycles | 2 |
4.1.3 SNPs validate | 94 °C for 3 min, 94 °C for 30 s, 50 °C for 30 s, 72 °C for 1 min, 72 °C for 7 min, and cooling at 4 °C. | 40 cycles | 4 |
4.2.3 cDNA verified | 95 °C for 4 min, 95 °C for 30 s, 55 °C for 30 s, 75 °C for 1 min, and cooling at 4 °C | 35 cycles | 2 |
4.2.4 gene expression analysis | 95 °C for 2 min, 95 °C for 30 s, 60 °C for 30 s, 72 °C for 1 min, and cooling at 4°C. | 40 cycles | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suraninpong, P.; Thongkhao, K.; Azzeme, A.M.; Suksa-Ard, P. Monitoring Drought Tolerance in Oil Palm: Choline Monooxygenase as a Novel Molecular Marker. Plants 2023, 12, 3089. https://doi.org/10.3390/plants12173089
Suraninpong P, Thongkhao K, Azzeme AM, Suksa-Ard P. Monitoring Drought Tolerance in Oil Palm: Choline Monooxygenase as a Novel Molecular Marker. Plants. 2023; 12(17):3089. https://doi.org/10.3390/plants12173089
Chicago/Turabian StyleSuraninpong, Potjamarn, Kannika Thongkhao, Azzreena Mohamad Azzeme, and Padungsak Suksa-Ard. 2023. "Monitoring Drought Tolerance in Oil Palm: Choline Monooxygenase as a Novel Molecular Marker" Plants 12, no. 17: 3089. https://doi.org/10.3390/plants12173089
APA StyleSuraninpong, P., Thongkhao, K., Azzeme, A. M., & Suksa-Ard, P. (2023). Monitoring Drought Tolerance in Oil Palm: Choline Monooxygenase as a Novel Molecular Marker. Plants, 12(17), 3089. https://doi.org/10.3390/plants12173089