Fungicide-Saving Potential and Economic Advantages of Fungus-Resistant Grapevine Cultivars
Abstract
:1. Introduction
2. Results
2.1. Impact of Seasonal Climatic Conditions on Pathogen Infection Pressure and Resistance Level of FRCs
2.2. Fungicide Saving Potential of FRCs against P. viticola in Field Trials
2.3. Fungicide Saving Potential of FRCs against E. necator in Field Trials
2.4. Analysis of Cost Savings and Environmental Benefits Associated with the Use of FRCs
3. Discussion
4. Materials and Methods
4.1. Grapevine Cultivars Evaluated in Field Experiments and Infections with Downy and Powdery Mildew
4.2. Experimental Sites
4.3. Reduced Fungicide Treatment
4.4. Assessment of Disease Severity and Incidence
4.5. Weather Data
4.6. Economic Evaluations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Organization of Vine and Wine. Distribution of the World’s Grapevine Varieties; OIV—International Organization of Vine and Wine: Paris, France, 2017; ISBN 979-10-91799-89-8. [Google Scholar]
- Gessler, C.; Pertot, I.; Perazzolli, M. Plasmopara Viticola: A Review of Knowledge on Downy Mildew of Grapevine and Effective Disease Management. Phytopathol. Mediterr. 2011, 50, 3–44. [Google Scholar]
- Gadoury, D.M.; Cadle-Davidson, L.; Wilcox, W.F.; Dry, I.B.; Seem, R.C.; Milgroom, M.G. Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol. Plant Pathol. 2012, 13, 1–16. [Google Scholar] [CrossRef]
- Pirrello, C.; Mizzotti, C.; Tomazetti, T.C.; Colombo, M.; Bettinelli, P.; Prodorutti, D.; Peressotti, E.; Zulini, L.; Stefanini, M.; Angeli, G.; et al. Emergent Ascomycetes in Viticulture: An Interdisciplinary Overview. Front. Plant Sci. 2019, 10, 1394. [Google Scholar] [CrossRef]
- Keller, M. Living with Other Organisms. In The Science of Grapevines; Elsevier: Amsterdam, The Netherlands, 2015; pp. 343–367. ISBN 978-0-12-419987-3. [Google Scholar]
- Muthmann, R.; Nadin, P. The Use of Plant Protection Products in the European Union; Office for Official Publications of the European Communities: Luxembourg, 2007; ISBN 92-79-03890-7. [Google Scholar]
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef]
- European Parliament. Directorate General for Parliamentary Research Services. In Directive 2009/128/EC on the Sustainable Use of Pesticides.; Office for Official Publications of the European Communities: Luxembourg, 2018; ISBN 978-92-846-3330-2. [Google Scholar]
- Federal Ministry of Food and Agriculture. Nationaler Aktionsplan; Federal Ministry of Food and Agriculture: Bonn, Germany, 2017; p. 100. [Google Scholar]
- Stokstad, E. A New Leaf. Science 2018, 362, 144–147. [Google Scholar] [CrossRef]
- Fetting, C. The European Green Deal. In ESDN Report; ESDN Office: Vienna, Austria, 2020. [Google Scholar]
- Criel, P.; Lock, K.; Eeckhout, H.V.; Oorts, K.; Smolders, E.; Janssen, C.R. Influence of Soil Properties on Copper Toxicity for Two Soil Invertebrates. Env. Toxicol. Chem. 2008, 27, 1748. [Google Scholar] [CrossRef]
- Jänsch, S.; Römbke, J. Einsatz von Kupfer als Pflanzenschutzmittel-Wirkstoff: Ökologische Auswirkungen der Akkumulation von Kupfer im Boden. UBA Texte 2009, 10, 72. [Google Scholar]
- Fagnano, M.; Agrelli, D.; Pascale, A.; Adamo, P.; Fiorentino, N.; Rocco, C.; Pepe, O.; Ventorino, V. Copper Accumulation in Agricultural Soils: Risks for the Food Chain and Soil Microbial Populations. Sci. Total Environ. 2020, 734, 139434. [Google Scholar] [CrossRef]
- Wilbois, K.-P.; Kauer, R.; Fader, B.; Kienzle, J.; Haug, P.; Fritzsche-Martin, A.; Drescher, N.; Reiners, E.; Röhrig, P. Kupfer als Pflanzenschutzmittel unter Besonderer Berücksichtigung des Ökologischen Landbaus. J. Kult. 2009, 61, 140–152. [Google Scholar]
- Eibach, R.; Zyprian, E.M.; Welter, L.J.; Töpfer, R. The Use of Molecular Markers for Pyramiding Resistance Genes in Grapevine Breeding. Vitis-J. Grapevine Res. 2007, 46, 120–124. [Google Scholar] [CrossRef]
- Merdinoglu, D.; Schneider, C.; Prado, E.; Wiedemann-Merdinoglu, S.; Mestre, P. Breeding for Durable Resistance to Downy and Powdery Mildew in Grapevine. OENO One 2018, 52, 203–209. [Google Scholar] [CrossRef]
- Dry, I.; Riaz, S.; Fuchs, M.; Sosnowski, M.; Thomas, M. Scion Breeding for Resistance to Biotic Stresses. In The Grape Genome; Cantu, D., Walker, M.A., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2019; pp. 319–347. ISBN 978-3-030-18600-5. [Google Scholar]
- Fischer, B.M.; Salakhutdinov, I.; Akkurt, M.; Eibach, R.; Edwards, K.J.; Töpfer, R.; Zyprian, E.M. Quantitative Trait Locus Analysis of Fungal Disease Resistance Factors on a Molecular Map of Grapevine. TAG Theor. Appl. Genet. 2004, 108, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Welter, L.J.; Göktürk-Baydar, N.; Akkurt, M.; Maul, E.; Eibach, R.; Töpfer, R.; Zyprian, E.M. Genetic Mapping and Localization of Quantitative Trait Loci Affecting Fungal Disease Resistance and Leaf Morphology in Grapevine (Vitis vinifera L). Mol. Breed. 2007, 20, 359–374. [Google Scholar] [CrossRef]
- Bellin, D.; Peressotti, E.; Merdinoglu, D.; Wiedemann-Merdinoglu, S.; Adam-Blondon, A.-F.; Cipriani, G.; Morgante, M.; Testolin, R.; Di Gaspero, G. Resistance to Plasmopara viticola in Grapevine ‘Bianca’ Is Controlled by a Major Dominant Gene Causing Localised Necrosis at the Infection Site. Theor. Appl. Genet. 2009, 120, 163–176. [Google Scholar] [CrossRef]
- Di Gaspero, G.; Copetti, D.; Coleman, C.; Castellarin, S.D.; Eibach, R.; Kozma, P.; Lacombe, T.; Gambetta, G.; Zvyagin, A.; Cindrić, P.; et al. Selective Sweep at the Rpv3 Locus during Grapevine Breeding for Downy Mildew Resistance. Theor. Appl. Genet. 2012, 124, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Zyprian, E.; Ochßner, I.; Schwander, F.; Šimon, S.; Hausmann, L.; Bonow-Rex, M.; Moreno-Sanz, P.; Grando, M.S.; Wiedemann-Merdinoglu, S.; Merdinoglu, D.; et al. Quantitative Trait Loci Affecting Pathogen Resistance and Ripening of Grapevines. Mol. Genet. Genom. 2016, 291, 1573–1594. [Google Scholar] [CrossRef]
- Vezzulli, S.; Malacarne, G.; Masuero, D.; Vecchione, A.; Dolzani, C.; Goremykin, V.; Mehari, Z.H.; Banchi, E.; Velasco, R.; Stefanini, M.; et al. The Rpv3-3 Haplotype and Stilbenoid Induction Mediate Downy Mildew Resistance in a Grapevine Interspecific Population. Front. Plant Sci. 2019, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Federal Statistical Office of Germany. Landwirtschaftliche Bodennutzung-Rebflächen; Federal Statistical Office of Germany: Wiesbaden, Germany, 2022; p. 58. [Google Scholar]
- Maul, E.; Töpfer, R.; Röckel, F.; Kecke, S. Vitis International Variety Catalogue. Available online: http://www.vivc.de/ (accessed on 7 February 2023).
- Töpfer, R.; Trapp, O. A Cool Climate Perspective on Grapevine Breeding: Climate Change and Sustainability Are Driving Forces for Changing Varieties in a Traditional Market. Theor. Appl. Genet. 2022, 135, 3947–3960. [Google Scholar] [CrossRef]
- Schneider, C.; Onimus, C.; Prado, E.; Dumas, V.; Wiedemann-Merdinoglu, S.; Dorne, M.A.; Lacombe, M.C.; Piron, M.C.; Umar-Faruk, A.; Duchêne, E.; et al. INRA-ResDur: The French Grapevine Breeding Programme for Durable Resistance to Downy and Powdery Mildew. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS), Leuven, Belgium, 15–20 July 2018; OpenAgrar: Greifswald, Germany, 2019; pp. 207–214. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen Population Genetics, Evolutionary Potential, and Durable Resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef]
- Pink, D.A.C.; Hand, P. Plant Resistance and Strategies for Breeding Resistant Varieties. Plant Prot. Sci. 2002, 38, S9–S14. [Google Scholar] [CrossRef]
- Peressotti, E.; Wiedemann-Merdinoglu, S.; Delmotte, F.; Bellin, D.; Di Gaspero, G.; Testolin, R.; Merdinoglu, D.; Mestre, P. Breakdown of Resistance to Grapevine Downy Mildew upon Limited Deployment of a Resistant Variety. BMC Plant Biol. 2010, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Venuti, S.; Copetti, D.; Foria, S.; Falginella, L.; Hoffmann, S.; Bellin, D.; Cindrić, P.; Kozma, P.; Scalabrin, S.; Morgante, M.; et al. Historical Introgression of the Downy Mildew Resistance Gene Rpv12 from the Asian Species Vitis Amurensis into Grapevine Varieties. PLoS ONE 2013, 8, e61228. [Google Scholar] [CrossRef]
- Delmotte, F.; Mestre, P.; Schneider, C.; Kassemeyer, H.-H.; Kozma, P.; Richart-Cervera, S.; Rouxel, M.; Delière, L. Rapid and Multiregional Adaptation to Host Partial Resistance in a Plant Pathogenic Oomycete: Evidence from European Populations of Plasmopara viticola, the Causal Agent of Grapevine Downy Mildew. Infect. Genet. Evol. 2014, 27, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Eisenmann, B.; Czemmel, S.; Ziegler, T.; Buchholz, G.; Kortekamp, A.; Trapp, O.; Rausch, T.; Dry, I.; Bogs, J. Rpv3–1 Mediated Resistance to Grapevine Downy Mildew Is Associated with Specific Host Transcriptional Responses and the Accumulation of Stilbenes. BMC Plant Biol. 2019, 19, 343. [Google Scholar] [CrossRef] [PubMed]
- Feechan, A.; Anderson, C.; Torregrosa, L.; Jermakow, A.; Mestre, P.; Wiedemann-Merdinoglu, S.; Merdinoglu, D.; Walker, A.R.; Cadle-Davidson, L.; Reisch, B.; et al. Genetic Dissection of a TIR-NB-LRR Locus from the Wild North American Grapevine Species Muscadinia rotundifolia Identifies Paralogous Genes Conferring Resistance to Major Fungal and Oomycete Pathogens in Cultivated Grapevine. Plant J. 2013, 76, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Pedneault, K.; Provost, C. Fungus Resistant Grape Varieties as a Suitable Alternative for Organic Wine Production: Benefits, Limits, and Challenges. Sci. Hortic. 2016, 208, 57–77. [Google Scholar] [CrossRef]
- Casanova-Gascón, J.; Ferrer-Martín, C.; Bernad-Eustaquio, A.; Elbaile-Mur, A.; Ayuso-Rodríguez, J.M.; Torres-Sánchez, S.; Jarne-Casasús, A.; Martín-Ramos, P. Behavior of Vine Varieties Resistant to Fungal Diseases in the Somontano Region. Agronomy 2019, 9, 738. [Google Scholar] [CrossRef]
- Wingerter, C.; Eisenmann, B.; Weber, P.; Dry, I.; Bogs, J. Grapevine Rpv3-, Rpv10- and Rpv12-Mediated Defense Responses against Plasmopara viticola and the Impact of Their Deployment on Fungicide Use in Viticulture. BMC Plant Biol 2021, 21, 470. [Google Scholar] [CrossRef] [PubMed]
- Blaeser, M.; Weltzien, H.C. Epidemiologische Studien an Plasmopara viticola zur Verbesserung der Spritzterminbestimmung/Epidemiological Studies to Improve the Control of Grapevine Downy Mildew (Plasmopara viticola). Z. Pflanzenkrankh. Pflanzenschutz/J. Plant Dis. Prot. 1979, 86, 489–498. [Google Scholar]
- Savary, S.; Delbac, L.; Rochas, A.; Taisant, G.; Willocquet, L. Analysis of Nonlinear Relationships in Dual Epidemics, and Its Application to the Management of Grapevine Downy and Powdery Mildews. Phytopathology 2009, 99, 930–942. [Google Scholar] [CrossRef]
- Fedorina, J.; Tikhonova, N.; Ukhatova, Y.; Ivanov, R.; Khlestkina, E. Grapevine Gene Systems for Resistance to Gray Mold Botrytis Cinerea and Powdery Mildew Erysiphe necator. Agronomy 2022, 12, 499. [Google Scholar] [CrossRef]
- Valori, R.; Costa, C.; Figorilli, S.; Ortenzi, L.; Manganiello, R.; Ciccoritti, R.; Cecchini, F.; Morassut, M.; Bevilacqua, N.; Colatosti, G.; et al. Advanced Forecasting Modeling to Early Predict Powdery Mildew First Appearance in Different Vines Cultivars. Sustainability 2023, 15, 2837. [Google Scholar] [CrossRef]
- Cadle-Davidson, L.; Mahanil, S.; Gadoury, D.M.; Kozma, P.; Reisch, B. Natural Infection of Run1-Positive Vines by Naïve Genotypes of Erysiphe necator. VITIS-J. Grapevine Res. 2011, 50, 173–175. [Google Scholar] [CrossRef]
- Caffier, V.; Lasserre-Zuber, P.; Giraud, M.; Lascostes, M.; Stievenard, R.; Lemarquand, A.; van de Weg, E.; Expert, P.; Denancé, C.; Didelot, F.; et al. Erosion of Quantitative Host Resistance in the Apple × Venturia inaequalis Pathosystem. Infect. Genet. Evol. 2014, 27, 481–489. [Google Scholar] [CrossRef]
- Caffier, V.; Le Cam, B.; Al Rifaï, M.; Bellanger, M.-N.; Comby, M.; Denancé, C.; Didelot, F.; Expert, P.; Kerdraon, T.; Lemarquand, A.; et al. Slow Erosion of a Quantitative Apple Resistance to Venturia inaequalis Based on an Isolate-Specific Quantitative Trait Locus. Infect. Genet. Evol. 2016, 44, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Andrivon, D.; Pilet, F.; Montarry, J.; Hafidi, M.; Corbière, R.; Achbani, E.H.; Pellé, R.; Ellissèche, D. Adaptation of Phytophthora Infestans to Partial Resistance in Potato: Evidence from French and Moroccan Populations. Phytopathology 2007, 97, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, C.; Zukic, S.; Manthey, T.; Malhó, R.; Buchholz, G.; Figueiredo, A. Subtilisin like Proteins in the War between Grapevine and Plasmopara viticola Isolates with Contrasting Aggressiveness. Eur. J. Plant Pathol. 2020, 159, 433–439. [Google Scholar] [CrossRef]
- Vezzulli, S.; Vecchione, A.; Stefanini, M.; Zulini, L. Downy Mildew Resistance Evaluation in 28 Grapevine Hybrids Promising for Breeding Programs in Trentino Region (Italy). Eur. J. Plant Pathol. 2018, 150, 485–495. [Google Scholar] [CrossRef]
- Zini, E.; Dolzani, C.; Stefanini, M.; Gratl, V.; Bettinelli, P.; Nicolini, D.; Betta, G.; Dorigatti, C.; Velasco, R.; Letschka, T.; et al. R-Loci Arrangement Versus Downy and Powdery Mildew Resistance Level: A Vitis Hybrid Survey. Int. J. Mol. Sci. 2019, 20, 3526. [Google Scholar] [CrossRef]
- Bettiga, L. Grape Pest Management, 3rd ed.; University of California—Agriculture and Natural Resources: Los Angeles, CA, USA, 2013; ISBN 978-1-60107-800-1. [Google Scholar]
- Saifert, L.; Sánchez-Mora, F.D.; Assumpção, W.T.; Zanghelini, J.A.; Giacometti, R.; Novak, E.I.; Vesco, L.L.D.; Nodari, R.O.; Eibach, R.; Welter, L.J. Marker-Assisted Pyramiding of Resistance Loci to Grape Downy Mildew. Pesqui. Agropecuária Bras. 2018, 53, 602–610. [Google Scholar] [CrossRef]
- Jermini, M.; Blaise, P.; Gessler, C. Quantification of the Influence of the Downy Mildew (Plasmopara viticola) Epidemics on the Compensatory Capacities of Vitis vinifera “Merlot” to Limit the Qualitative Yield Damage. VITIS-J. Grapevine Res. 2010, 49, 153–160. [Google Scholar] [CrossRef]
- Jermini, M.; Blaise, P.; Gessler, C. Quantitative Effect of Leaf Damage Caused by Downy Mildew (Plasmopara viticola) on Growth and Yield Quality of Grapevine “Merlot” (Vitis vinifera). VITIS-J. Grapevine Res. 2010, 49, 77–85. [Google Scholar] [CrossRef]
- Calonnec, A.; Cartolaro, P.; Poupot, C.; Dubourdieu, D.; Darriet, P. Effects of Uncinula necator on the Yield and Quality of Grapes (Vitis vinifera) and Wine. Plant Pathol. 2004, 53, 434–445. [Google Scholar] [CrossRef]
- Stummer, B.E.; Francis, I.L.; Zanker, T.; Lattey, K.A.; Scott, E.S. Effects of Powdery Mildew on the Sensory Properties and Composition of Chardonnay Juice and Wine When Grape Sugar Ripeness Is Standardised. Aust. J. Grape Wine Res. 2005, 11, 66–76. [Google Scholar] [CrossRef]
- Commenil, P.; Brunet, L.; Audran, J.-C. The Development of the Grape Berry Cuticle in Relation to Susceptibility to Bunch Rot Disease. J. Exp. Bot. 1997, 48, 1599–1607. [Google Scholar] [CrossRef]
- Brizzolara, S.; Minnocci, A.; Yembaturova, E.; Tonutti, P. Ultrastructural Analysis of Berry Skin from Four Grapes Varieties at Harvest and in Relation to Postharvest Dehydration. OENO One 2020, 54, 1021–1031. [Google Scholar] [CrossRef]
- European Union Legislation L327. Off. J. Eur. Union 2018, 61, 60.
- Demeter, e.V. Richtlinien 2023 Erzeugung und Verarbeitung Richtlinien für die Zertifizierung “Demeter” und “Biodynamisch” 2023. Available online: https://www.demeter.de/sites/default/files/2022-12/RiLi_2023_mit_Inhaltsverzeichnis.pdf (accessed on 30 July 2023).
- Ecovin, e.V. Richtlinie des ECOVIN Bundesverbandes Ökologischer Weinbau e.V. zur Erzeugung von Biotrauben, -traubensaft, -wein, -sekt, -weinessig, -weindestillaten und Nebenprodukten aus der Bioweinherstellung 2021. Available online: https://www.ecovin.de/wp-content/uploads/2021/05/ECOVIN_Richtlinie_2021_15.Fassung.pdf (accessed on 30 July 2023).
- Bioland, e.V. Amendments to the Standards 2023. Available online: https://www.bioland.de/fileadmin/user_upload/Verband/Dokumente/Richtlinien_fuer_Erzeuger_und_Hersteller/Bioland-Richtlinien_englisch_2023-07.pdf (accessed on 30 July 2023).
- Oberhofer, J. Abwärts–Agrarbericht. Dtsch. Weinbau 2021, 19, 14–22. [Google Scholar]
- Lanyon, D.M.; Cass, A.; Hansen, D. The Effect of Soil Properties on Vine Performance; CSIRO Land and Water Technical Report; CSIRO Land & Water: Clayton, Australia, 2004. [Google Scholar]
- Hamza, M.A.; Al-Adawi, S.S.; Al-Hinai, K.A. Effect of Combined Soil Water and External Load on Soil Compaction. Soil Res. 2011, 49, 135. [Google Scholar] [CrossRef]
- Quezada, C.; Soriano, M.A.; Díaz, J.; Merino, R.; Chandía, A.; Campos, J.; Sandoval, M. Influence of Soil Physical Properties on Grapevine Yield and Maturity Components in an Ultic Palexeralf Soils, Central-Southern, Chile. Open J. Soil Sci. 2014, 04, 127–135. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Phaenologische Entwicklungsstadien der Weinrebe Vitis vinifera L. ssp. vinifera. Codierung und Beschreibung nach der erweiterten BBCH-Skala. Vitic. Enol. Sci. 1994, 49, 66–70. [Google Scholar]
- European and Mediterranean Plant Protection Organization (EPPO). Guideline for the Efficacy Evaluation of Fungicides; European and Mediterranean Plant Protection Organization (EPPO): Paris, France, 1991. [Google Scholar]
- KTBL. KTBL-Datensammlung Weinbau Und Kellerwirtschaft; Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL): Darmstadt, Germany, 2017; ISBN 3-945088-42-9. [Google Scholar]
2019 PPTs | 2020 PPTs | 2021 PPTs | |||||||
---|---|---|---|---|---|---|---|---|---|
9 | 2 | 4 | 12 | 2 | 4 | 14 | 2 | 4 | |
Amount of Cu (kg) per ha | 1.81 | 0.50 | 0.81 | 1.73 | 0.42 | 0.77 | 2.35 | 0.50 | 0.90 |
Relative amount of Cu compared to standard PPTs per ha (%) | 100 | 28 | 45 | 100 | 24 | 44 | 100 | 21 | 38 |
Amount of S (kg) per ha | 22.85 | 8.00 | 12.00 | 30.83 | 8.00 | 11.98 | 29.61 | 7.96 | 11.94 |
Relative amount of S compared to standard PPTs per ha (%) | 100 | 35 | 52 | 100 | 26 | 39 | 100 | 73 | 40 |
Winery 1 (conv.) | Winery 2 (conv.) | Winery 3 (eco.) | Winery 4 (eco.) | |||||
---|---|---|---|---|---|---|---|---|
SCs | FRCs | SCs | FRCs | SCs | FRCs | SCs | FRCs | |
Number of PPTs | 11 | 4 | 10 | 4 | 14 | 3–6 | 15 | 5 |
Amount of Cu (kg/ha) | - | - | - | - | 3 | 0.8–1.75 | 3.7 | 1.3 |
Working hours (h/ha) | 7.1 | 2.4 | 3.9 | 1.6 | 10.7 | 2.6 | 5.4 | 2.4 |
Total costs for PPTs (EUR/ha) | 1438 | 472 | 1494 | 672 | 1232 | 311 | 964 | 478 |
Reduction of number of PPTs in FRCs (%) | 64 | 60 | 57–79 | 67 | ||||
Reduction of Cu in FRCs (%) | - | - | 42–73 | 65 | ||||
Reduction of working hours in FRCs (%) | 66 | 59 | 76 | 65 | ||||
Reduction of total costs in FRCs (%) | 67 | 55 | 75 | 50 |
Winery 1 (conv.) | Winery 2 (conv.) | Winery 3 (eco.) | Winery 4 (eco.) | |||||
---|---|---|---|---|---|---|---|---|
SCs | FRCs | SCs | FRCs | SCs | FRCs | SCs | FRCs | |
Number of PPTs | 9 | 3–4 | 8 | 2–3 | 11 | 4 | 10 | 5 |
Amount of Cu (kg/ha) | - | - | - | - | 1.6 | 0.65 | 1.24 | 0.6 |
Working hours (h/ha) | 5.6 | 2.6 | 3.44 | 1.1 | 6.9 | 1.9 | 2.5 | 1.6 |
Total costs for PPTs (EUR/ha) | 1002 | 541 | 692 | 233 | 827 | 231 | 477 | 233 |
Reduction of number of PPTs in FRCs (%) | 56–67 | 63–75 | 64 | 50 | ||||
Reduction of Cu in FRCs (%) | - | - | 59 | 52 | ||||
Reduction of working hours in FRCs (%) | 54 | 68 | 73 | 36 | ||||
Reduction of total costs in FRCs (%) | 46 | 66 | 72 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eisenmann, B.; Wingerter, C.; Dressler, M.; Freund, C.; Kortekamp, A.; Bogs, J. Fungicide-Saving Potential and Economic Advantages of Fungus-Resistant Grapevine Cultivars. Plants 2023, 12, 3120. https://doi.org/10.3390/plants12173120
Eisenmann B, Wingerter C, Dressler M, Freund C, Kortekamp A, Bogs J. Fungicide-Saving Potential and Economic Advantages of Fungus-Resistant Grapevine Cultivars. Plants. 2023; 12(17):3120. https://doi.org/10.3390/plants12173120
Chicago/Turabian StyleEisenmann, Birgit, Chantal Wingerter, Marc Dressler, Christine Freund, Andreas Kortekamp, and Jochen Bogs. 2023. "Fungicide-Saving Potential and Economic Advantages of Fungus-Resistant Grapevine Cultivars" Plants 12, no. 17: 3120. https://doi.org/10.3390/plants12173120
APA StyleEisenmann, B., Wingerter, C., Dressler, M., Freund, C., Kortekamp, A., & Bogs, J. (2023). Fungicide-Saving Potential and Economic Advantages of Fungus-Resistant Grapevine Cultivars. Plants, 12(17), 3120. https://doi.org/10.3390/plants12173120