Seed Germination and Seedling Growth Influenced by Genetic Features and Drought Tolerance in a Critically Endangered Maple
Abstract
:1. Introduction
2. Results
2.1. Seed Traits and Germination
2.2. Seedling Survival Rate
2.3. Relative Growth Rate
3. Discussion
3.1. Differences in Seed Traits and Seed Germination
3.2. Growth-Survival Trade-Off
3.3. The Limitations of Our Research
4. Materials and Methods
4.1. Study Species
4.2. Seed Traits and Germination Experiments
4.3. Common Garden Experiments
4.4. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shackelford, N.; Paterno, G.B.; Winkler, D.E.; Erickson, T.E.; Leger, E.A.; Svejcar, L.N.; Breed, M.F.; Faist, A.M.; Harrison, P.A.; Curran, M.F.; et al. Drivers of seedling establishment success in dryland restoration efforts. Nat. Ecol. Evol. 2021, 5, 1283–1290. [Google Scholar] [CrossRef]
- Warwell, M.V.; Shaw, R.G. Phenotypic selection on ponderosa pine seed and seedling traits in the field under three experimentally manipulated drought treatments. Evol. Appl. 2019, 12, 159–174. [Google Scholar] [CrossRef]
- Ge, W.J.; Bu, H.Y.; Wang, X.J.; Martinez, S.A.; Du, G.Z. Inter- and intra-specific difference in the effect of elevation and seed mass on germinability of eight Allium species. Glob. Ecol. Conserv. 2020, 22, e01016. [Google Scholar] [CrossRef]
- Larson, J.E.; Anacker, B.L.; Wanous, S.; Funk, J.L. Ecological strategies begin at germination: Traits, plasticity and survival in the first 4 days of plant life. Funct. Ecol. 2020, 34, 968–979. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L.; et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [Google Scholar] [CrossRef]
- Britton, T.G.; Brodribb, T.J.; Richards, S.A.; Ridley, C.; Hovenden, M.J. Canopy damage during a natural drought depends on species identity, physiology and stand composition. New Phytol. 2022, 233, 2058–2070. [Google Scholar] [CrossRef]
- Peters, J.M.R.; López, R.; Nolf, M.; Hutley, L.B.; Wardlaw, T.; Cernusak, L.A.; Choat, B. Living on the edge: A continental-scale assessment of forest vulnerability to drought. Global Chang. Biol. 2021, 27, 3620–3641. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- De Kauwe, M.G.; Sabot, M.E.B.; Medlyn, B.E.; Pitman, A.J.; Meir, P.; Cernusak, L.A.; Gallagher, R.V.; Ukkola, A.M.; Rifai, S.W.; Choat, B. Towards species-level forecasts of drought-induced tree mortality risk. New Phytol. 2022, 235, 94–110. [Google Scholar] [CrossRef] [PubMed]
- He, M.; He, C.Q.; Ding, N.Z. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 2018, 9, 1771. [Google Scholar] [CrossRef]
- Nutt, K.S.; Burslem, D.F.R.P.; Maycock, C.R.; Ghazoul, J.; Khoo, E.; Hastie, A.Y.L.; Kettle, C.J. Genetic diversity affects seedling survival but not growth or seed germination in the Bornean endemic dipterocarp Parashorea tomentella. Plant Ecol. Divers. 2016, 9, 471–481. [Google Scholar] [CrossRef]
- Charlesworth, D.; Willis, J.H. The genetics of inbreeding depression. Nat. Rev. Genet. 2009, 10, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Fagan, W.F.; Holmes, E.E. Quantifying the extinction vortex. Ecol. Lett. 2006, 9, 51–60. [Google Scholar] [CrossRef]
- Capblancq, T.; Munson, H.; Butnor, J.R.; Keller, S.R. Genomic drivers of early-life fitness in Picea rubens. Conserv. Genet. 2021, 22, 963–976. [Google Scholar] [CrossRef]
- Armbruster, P.; Reed, D.H. Inbreeding depression in benign and stressful environments. Heredity 2005, 95, 235–242. [Google Scholar] [CrossRef]
- Kyriazis, C.C.; Wayne, R.K.; Lohmueller, K.E. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol. Lett. 2021, 5, 33–47. [Google Scholar] [CrossRef]
- Buckley, J.; Daly, R.; Cobbold, C.A.; Burgess, K.; Mable, B.K. Changing environments and genetic variation: Natural variation in inbreeding does not compromise short-term physiological responses. Proc. R. Soc. B-Biol. Sci. 2019, 286, 20192109. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.P.; Liu, D.T.; Wariss, H.M.; Zhang, R.G.; Tao, L.D.; Milne, R.I.; Sun, W.B. Demographic history and identification of threats revealed by population genomic analysis provide insights into conservation for an endangered maple. Mol. Ecol. 2022, 31, 767–779. [Google Scholar] [CrossRef]
- Puy, J.; Carmona, C.P.; Dvořáková, H.; Latzel, V.; de Bello, F. Diversity of parental environments increases phenotypic variation in Arabidopsis populations more than genetic diversity but similarly affects productivity. Ann. Bot. 2020, 127, 425–436. [Google Scholar] [CrossRef]
- Kamakura, R.P.; DeWald, L.E.; Sniezko, R.A.; Elliott, M.; Chastagner, G.A. Using differences in abiotic factors between seed origin and common garden sites to predict performance of Pacific madrone (Arbutus menziesii Pursh). For. Ecol. Manag. 2021, 497, 119487. [Google Scholar] [CrossRef]
- Westerband, A.C.; Bialic-Murphy, L.; Weisenberger, L.A.; Barton, K.E. Intraspecific variation in seedling drought tolerance and associated traits in a critically endangered, endemic Hawaiian shrub. Plant Ecol. Divers. 2020, 13, 159–174. [Google Scholar] [CrossRef]
- de Pedro, M.; Mayol, M.; González-Martínez, S.C.; Regalado, I.; Riba, M. Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness-related traits. Am. J. Bot. 2022, 109, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Sun, W.B.; Chen, Y.S.; Luo, G.F.; Dan, G.L. Seedling Raising and Cultivation Method of a Rare and Endangered Plant Acer yangbiense. China Patent CN101595831B, 1 June 2011. [Google Scholar]
- Yang, J.; Tao, L.D.; Yang, J.R.; Wu, C.F.; Sun, W.B. Integrated conservation of Acer yangbiense: A case study for conservation methods of plant species with extremely small populations. Plants People Planet 2023, 5, 574–580. [Google Scholar] [CrossRef]
- Kanazashi, A.; Nagamitsu, T.; Suzuki, W. Seed dormancy and germination characteristics in relation to the regeneration of Acer pycnanthum, a vulnerable tree species in Japan. J. For. Res. 2015, 20, 160–166. [Google Scholar] [CrossRef]
- Seiwa, K. Advantages of early germination for growth and survival of seedlings of Acer mono under different overstorey phenologies in deciduous broad-leaved forests. J. Ecol. 1998, 86, 219–228. [Google Scholar] [CrossRef]
- Li, Z.Q.; Lau, W.K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- D’Aguillo, M.; Donohue, K. Changes in phenology can alter patterns of natural selection: The joint evolution of germination time and postgermination traits. New Phytol. 2023, 238, 405–421. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, Y.B.; Li, Y.H.; Huang, J.P.; Ma, Z.G.; Wang, Z.L.; Wang, S.P.; Wang, Y.; Zhang, Y. Causes and changes of drought in China: Research progress and prospects. J. Meteorol. Res. 2020, 34, 460–481. [Google Scholar] [CrossRef]
- Booy, G.; Hendriks, R.J.J.; Smulders, M.J.M.; Van Groenendael, J.M.; Vosman, B. Genetic diversity and the survival of populations. Plant Biol. 2000, 2, 379–395. [Google Scholar] [CrossRef]
- Hens, H.; Pakanen, V.-M.; Jäkäläniemi, A.; Tuomi, J.; Kvist, L. Low population viability in small endangered orchid populations: Genetic variation, seedling recruitment and stochasticity. Biol. Conserv. 2017, 210, 174–183. [Google Scholar] [CrossRef]
- González-Díaz, P.; Gazol, A.; Valbuena-Carabaña, M.; Sangüesa-Barreda, G.; Moreno-Urbano, A.; Zavala, M.A.; Julio Camarero, J. Remaking a stand: Links between genetic diversity and tree growth in expanding Mountain pine populations. For. Ecol. Manag. 2020, 472, 118244. [Google Scholar] [CrossRef]
- Tito de Morais, C.; Kettle, C.J.; Philipson, C.D.; Maycock, C.R.; Burslem, D.F.R.P.; Khoo, E.; Ghazoul, J. Exploring the role of genetic diversity and relatedness in tree seedling growth and mortality: A multispecies study in a Bornean rainforest. J. Ecol. 2020, 108, 1174–1185. [Google Scholar] [CrossRef]
- Qin, J.H.; Fan, C.Y.; Geng, Y.; Zhang, C.Y.; Zhao, X.H.; Gao, L.S. Drivers of tree demographic trade-offs in a temperate forest. For. Ecosyst. 2022, 9, 100044. [Google Scholar] [CrossRef]
- Ensslin, A.; Godefroid, S. Ex situ cultivation impacts on plant traits and drought stress response in a multi-species experiment. Biol. Conserv. 2020, 248, 108630. [Google Scholar] [CrossRef]
- Xu, T.Z.; Chen, Y.S.; de Jong, P.C.; Oterdoom, H.J.; Chang, C.-S. Aceraceae. In Flora of China; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2008; Volume 11, pp. 515–553. [Google Scholar]
- Barstow, M. Acer yangbiense. The IUCN Red List of Threatened Species 2020: E.T191463A1984196. Available online: https://www.iucnredlist.org/species/191463/1984196 (accessed on 4 July 2023).
- Ministry of Ecology and Environment, Chinese Academy of Sciences. Red List of China’s Biodiversity—Higher Plants. 2013. Available online: http://www.mee.gov.cn/gkml/hbb/bgg/201309/W020130917614244055331.pdf./2019/9/27 (accessed on 29 May 2023).
- Tao, L.D.; Han, C.Y.; Song, K.; Sun, W.B. A tree species with an extremely small population: Recategorizing the Critically Endangered Acer yangbiense. Oryx 2020, 54, 474–477. [Google Scholar] [CrossRef]
- Tao, L.D. Population Ecology Studies of Two PSESP Plants, and the Reproductive Biology and SSR Primers of Acer yangbiense; University of Chinese Academy of Sciences: Beijing, China, 2018; pp. 14–42. [Google Scholar]
- Liu, D.T.; Yang, J.B.; Chen, S.Y.; Sun, W.B. Potential distribution of threatened maples in China under climate change: Implications for conservation. Glob. Ecol. Conserv. 2022, 40, e02337. [Google Scholar] [CrossRef]
- Phillips-Mao, L.; Galatowitsch, S.M.; Snyder, S.A.; Haight, R.G. Model-based scenario planning to develop climate change adaptation strategies for rare plant populations in grassland reserves. Biol. Conserv. 2016, 193, 103–114. [Google Scholar] [CrossRef]
- Wu, H.; Meng, H.J.; Wang, S.T.; Wei, X.Z.; Jiang, M.X. Geographic patterns and environmental drivers of seed traits of a relict tree species. For. Ecol. Manag. 2018, 422, 59–68. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Qi, Q.; Zhang, D.J.; Tong, S.Z.; Wang, X.H.; An, Y.; Lu, X.G. Effect of priming on Carex Schmidtii seed germination and seedling growth: Implications for tussock wetland restoration. Ecol. Eng. 2021, 171, 106389. [Google Scholar] [CrossRef]
- Richardson, W.C.; Whitaker, D.R.; Sant, K.P.; Barney, N.S.; Call, R.S.; Roundy, B.A.; Aanderud, Z.T.; Madsen, M.D. Use of auto-germ to model germination timing in the sagebrush-steppe. Ecol. Evol. 2018, 8, 11533–11542. [Google Scholar] [CrossRef]
- Lyu, S.; Alexander, J.M. Competition contributes to both warm and cool range edges. Nat. Commun. 2022, 13, 2502. [Google Scholar] [CrossRef] [PubMed]
- Custer, N.A.; Schwinning, S.; DeFalco, L.A.; Esque, T.C. Local climate adaptations in two ubiquitous Mojave Desert shrub species, Ambrosia dumosa and Larrea tridentata. J. Ecol. 2022, 110, 1072–1089. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R. RStudio. Available online: http://www.rstudio.com (accessed on 11 June 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org (accessed on 11 June 2022).
- Ceballos, F.C.; Gürün, K.; Altınışık, N.E.; Gemici, H.C.; Karamurat, C.; Koptekin, D.; Vural, K.B.; Mapelli, I.; Sağlıcan, E.; Sürer, E.; et al. Human inbreeding has decreased in time through the Holocene. Curr. Biol. 2021, 31, 3925–3934.E8. [Google Scholar] [CrossRef]
- Harrison, S.; LaForgia, M. Seedling traits predict drought-induced mortality linked to diversity loss. Proc. Natl. Acad. Sci. USA 2019, 116, 5576–5581. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests, R Package Version 0.7.0. Available online: https://rpkgs.datanovia.com/rstatix (accessed on 7 August 2021).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. Available online: https://CRAN.R-project.org/package=sjPlot (accessed on 14 February 2023).
M | SeedM | cv% | SeedW | cv% | SeedL | cv% | WingW | cv% | WingL | cv% |
---|---|---|---|---|---|---|---|---|---|---|
BDH2 | 0.17 ± 0.02 bc | 13.95 | 9.55 ± 0.46 b | 4.83 | 10.26 ± 0.53 bc | 5.21 | 14.58 ± 1.04 b | 7.12 | 40.17 ± 2.67 a | 6.64 |
BDH3 | 0.21 ± 0.03 a | 13.55 | 10.27 ± 0.49 a | 4.81 | 10.77 ± 0.88 ab | 8.17 | 16.23 ± 1.44 a | 8.86 | 35.88 ± 2.96 b | 8.26 |
CR5 | 0.18 ± 0.03 b | 16.83 | 8.58 ± 0.66 c | 7.72 | 9.32 ± 1.19 d | 12.77 | 16.14 ± 1.07 a | 6.61 | 32.95 ± 3.42 d | 10.39 |
CR10 | 0.17 ± 0.03 b | 15.28 | 9.54 ± 0.48 b | 5.05 | 11.13 ± 0.84 a | 7.53 | 15.98 ± 1.16 a | 7.25 | 37.12 ± 2.63 d | 7.08 |
DYD1 | 0.10 ± 0.01 de | 8.91 | 7.86 ± 0.36 d | 4.61 | 8.74 ± 0.47 d | 5.42 | 10.30 ± 0.61 de | 5.95 | 30.93 ± 1.87 d | 6.03 |
DYD2 | 0.08 ± 0.01 e | 11.04 | 6.71 ± 0.38 e | 5.67 | 7.75 ± 0.45 e | 5.80 | 10.81 ± 0.66 de | 6.13 | 27.79 ± 1.69 e | 6.08 |
DYD3 | 0.08 ± 0.01 e | 17.45 | 6.55 ± 0.32 e | 4.92 | 7.90 ± 0.34 e | 4.30 | 9.97 ± 0.82 e | 8.20 | 26.74 ± 2.18 e | 8.14 |
DYS1 | 0.15 ± 0.01 c | 7.00 | 8.04 ± 0.70 d | 8.67 | 8.94 ± 0.87 d | 9.74 | 10.84 ± 1.18 d | 10.91 | 33.07 ± 3.11 cd | 9.40 |
MLT1 | 0.17 ± 0.03 bc | 18.21 | 9.62 ± 0.54 b | 5.64 | 11.31 ± 0.62 a | 5.47 | 14.73 ± 1.16 b | 7.88 | 35.19 ± 2.58 bc | 7.33 |
XC1 | 0.12 ± 0.02 d | 14.37 | 8.16 ± 0.37 d | 4.50 | 10.06 ± 0.76 c | 7.54 | 12.46 ± 0.89 c | 7.16 | 28.66 ± 2.04 e | 7.12 |
Mean | 0.14 | 13.66 | 8.49 | 5.64 | 9.62 | 7.20 | 13.20 | 7.61 | 32.85 | 7.65 |
M | T0 (Day) | GR (%) | GP (%) | GI | Cv (%) | T10 (Day) | T50 (Day) | T90 (Day) |
---|---|---|---|---|---|---|---|---|
BDH2 | 45 | 29 | 12 | 2.46 | 13.88 | 58.7 | 68.9 | 84.1 |
BDH3 | 45 | 11 | 5 | 1.05 | 16.31 | 50.1 | 62.9 | 81.1 |
CR5 | 45 | 33 | 29 | 2.71 | 12.83 | 59.5 | 76.1 | 84.1 |
CR10 | 41 | 82 | 46 | 8.36 | 16.73 | 47.5 | 56.9 | 73.0 |
DYD1 | 43 | 45 | 14 | 4.06 | 17.10 | 52.1 | 65.1 | 82.3 |
DYD2 | 41 | 63 | 24 | 5.71 | 13.04 | 54.4 | 66.3 | 77.2 |
DYD3 | 43 | 18 | 9 | 1.78 | 18.45 | 48.4 | 58.7 | 79.8 |
DYS1 | 43 | 49 | 41 | 4.93 | 15.83 | 47.7 | 58.7 | 71.5 |
MLT1 | 51 | 24 | 10 | 2.15 | 13.54 | 55.2 | 65.6 | 80.3 |
XC | 41 | 60 | 35 | 7.42 | 14.15 | 24.2 | 46.9 | 57.2 |
Mean | 44 | 41 | 23 | 4.06 | 15.19 ± 0.58 | 49.79 ± 0.01 | 62.60 ± 2.99 | 77.07 ± 2.37 |
M | D | HetRate | NHom | FROH | Group1 | Group2 | Group3 | Group4 |
---|---|---|---|---|---|---|---|---|
BDH2 | 0 | 0.46 | 1164 | 0.15 | OTD | HHE | HHO | LF |
BDH3 | 0 | 0.51 | 1072 | 0.12 | OTD | HHE | HHO | LF |
CR5 | 1 | 0.40 | 1135 | 0.12 | CRR | HHE | HHO | LF |
CR10 | 1 | / | / | / | CRR | / | / | / |
DYD1 | 0 | 0.39 | 1005 | 0.21 | OTD | HHE | LHO | LF |
DYD2 | 0 | 0.45 | 961 | 0.12 | OTD | HHE | LHO | LF |
DYD3 | 0 | 0.39 | 970 | 0.20 | OTD | HHE | LHO | LF |
DYS1 | 0 | 0.27 | 1198 | 0.39 | OTD | LHE | HHO | HF |
MLT1 | 0 | 0.23 | 591 | 0.61 | OTD | LHE | LHO | HF |
XC1 | 0 | 0.34 | 1235 | 0.32 | OTD | LHE | HHO | HF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Yang, J.; Tao, L.; Ma, Y.; Sun, W. Seed Germination and Seedling Growth Influenced by Genetic Features and Drought Tolerance in a Critically Endangered Maple. Plants 2023, 12, 3140. https://doi.org/10.3390/plants12173140
Liu D, Yang J, Tao L, Ma Y, Sun W. Seed Germination and Seedling Growth Influenced by Genetic Features and Drought Tolerance in a Critically Endangered Maple. Plants. 2023; 12(17):3140. https://doi.org/10.3390/plants12173140
Chicago/Turabian StyleLiu, Detuan, Jiajun Yang, Lidan Tao, Yongpeng Ma, and Weibang Sun. 2023. "Seed Germination and Seedling Growth Influenced by Genetic Features and Drought Tolerance in a Critically Endangered Maple" Plants 12, no. 17: 3140. https://doi.org/10.3390/plants12173140
APA StyleLiu, D., Yang, J., Tao, L., Ma, Y., & Sun, W. (2023). Seed Germination and Seedling Growth Influenced by Genetic Features and Drought Tolerance in a Critically Endangered Maple. Plants, 12(17), 3140. https://doi.org/10.3390/plants12173140