Bioactive Compounds from BRS Violet Grape Pomace: An Approach of Extraction and Microencapsulation, Stability Protection and Food Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microcapsule Stability and Encapsulation Efficiency (EE)
2.2. Microcapsule Application in Gelatin
3. Materials and Methods
3.1. Raw Material and Reagents
3.2. Extract Encapsulation and Encapsulation Efficiency (EE)
3.3. Analysis of the Bioactive Compounds of the Extracts
3.4. Encapsulated Content Stability during Storage
3.5. Gelatin Application
3.6. Color Parameters
3.7. Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karaman, H.T.; Küskü, D.Y.; Söylemezoğlu, G. Phenolic compounds and antioxidant capacities in grape berry skin, seed and stems of six wine grape varieties grown in Turkey. Acta Sci. Pol. Hortorum Cultus 2021, 20, 15–25. [Google Scholar] [CrossRef]
- Pinto, T.; Aires, A.; Cosme, F.; Bacelar, E.; Morais, M.C.; Oliveira, I.; Ferreira-Cardoso, J.; Anjos, R.; Vilela, A.; Gonçalves, B. Bioactive (Poly)phenols, Volatile Compounds from Vegetables, Medicinal and Aromatic Plants. Foods 2021, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.; He, X.; Li, H.; Wu, S.; Li, S.; Deng, G. Biological Activities of Polyphenols from Grapes. In Polyphenols in Human Health and Disease; Academic Press: London, UK, 2014; Volume 1, pp. 47–58. [Google Scholar]
- Romanini, E.B.; Rodrigues, L.M.; Finger, A.; Chierrito, T.P.C.; Scapim, M.R.S.; Madrona, G.S. Ultrasound assisted extraction of bioactive compounds from BRS Violet grape pomace followed by alginate-Ca2+ encapsulation. Food Chem. 2021, 338, 128101. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Clément, C.; Tisserant, L.P.; Crouzet, J.; Courot, É. Use of grapevine cell cultures for the production of phytostilbenes of cosmetic interest. C. R. Chim. 2016, 19, 1062–1070. [Google Scholar] [CrossRef]
- Kammerer, D.R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Res. Int. 2014, 65, 2–12. [Google Scholar] [CrossRef]
- Mejia, J.A.A.; Ricci, A.; Figueiredo, A.S.; Versari, A.; Cassano, A.; Parpinello, G.P.; De Pinho, M.N. Recovery of Phenolic Compounds from Red Grape Pomace Extract through Nanofiltration Membranes. Foods 2020, 9, 1649. [Google Scholar] [CrossRef]
- Galmarini, M.V.; Maury, C.; Mehinagic, E.; Sanchez, V.; Baeza, R.I.; Mignot, S.; Zamora, M.C.; Chirife, J. Stability of Individual Phenolic Compounds and Antioxidant Activity during Storage of a Red Wine Powder. Food Bioprocess Technol. 2013, 6, 3585–3595. [Google Scholar] [CrossRef]
- Davidov-Pardo, G.; Arozarena, I.; Marín-Arroyo, M.R. Optimization of a Wall Material Formulation to Microencapsulate a Grape Seed Extract Using a Mixture Design of Experiments. Food Bioprocess Technol. 2012, 6, 941–951. [Google Scholar] [CrossRef]
- Wilkowska, A.; Ambroziak, W.; Czyzowska, A.; Adamiec, J. Effect of Microencapsulation by Spray Drying and Freeze Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds. Pol. J. Food Nutr. Sci. 2016, 66, 11–16. [Google Scholar] [CrossRef]
- Aizpurua-Olaizola, O.; Navarro, P.; Vallejo, A.; Olivares, M.; Etxebarria, N.; Usobiaga, A. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes. Food Chem. 2016, 190, 614–621. [Google Scholar] [CrossRef]
- Khazaei, K.M.; Jafari, S.M.; Ghorbani, M.; Kakhki, A.H. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydr. Polym. 2014, 105, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, C.C.; Germer, S.P.M.; Alvim, I.D.; de Aguirre, J.M. Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Dry. Technol. 2013, 31, 470–478. [Google Scholar] [CrossRef]
- Fredes, C.; Becerra, C.; Parada, J.; Robert, P. The Microencapsulation of Maqui (Aristotelia chilensis (Mol.) Stuntz) Juice by Spray-Drying and Freeze-Drying Produces Powders with Similar Anthocyanin Stability and Bioaccessibility. Molecules 2018, 23, 1227. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.; Bak, J.H.; Yoo, B. Rheological characterizations of concentrated binary gum mixtures with xanthan gum and galactomannans. Int. J. Biol. Macromol. 2018, 114, 263–269. [Google Scholar] [CrossRef]
- Antigo, J.L.D.; da Silva, J.M.; Bergamasco, R.C.; Madrona, G.S. Microencapsulation of beet dye (Beta vulgaris L.) using maltodextrin and xanthan gum as encapsulant agents and application in yogurt. Res. Soc. Dev. 2020, 9, e14091210896. [Google Scholar] [CrossRef]
- Mahdavi, S.A.; Jafari, S.M.; Assadpoor, E.; Dehnad, D. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. [Google Scholar] [CrossRef]
- Idham, Z.; Muhamad, I.I.; Sarmidi, M.R. Degradation kinetics and color stability of spray-dried encapsulated anthocyanins from Hibiscus sabdariffa L. J. Food Process. Eng. 2012, 35, 522–542. [Google Scholar] [CrossRef]
- Silva, P.I.; Stringheta, P.C.; Teofilo, R.F.; de Oliveira, I.R.N. Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. J. Food Eng. 2013, 117, 538–544. [Google Scholar] [CrossRef]
- Yinbin, L.; Wu, L.; Weng, M.; Tang, B.; Lai, P.; Chen, J. Effect of different encapsulating agent combinations on physicochemical properties and stability of microcapsules loaded with phenolics of plum (Prunus salicina lindl.). Powder Technol. 2018, 340, 459–464. [Google Scholar] [CrossRef]
- Rodrigues, L.M.; Januário, J.G.B.; Dos Santos, S.S.; Bergamasco, R.; Madrona, G.S. Microcapsules of ‘jabuticaba’ byproduct: Storage stability and application in gelatin. Rev. Bras. Eng. Agrícola Ambient. 2018, 22, 424–429. [Google Scholar] [CrossRef]
- Da Cruz, M.C.R.; Dagostin, J.L.A.; Perussello, C.A.; Masson, M.L. Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation. Food Hydrocoll. 2019, 87, 71–82. [Google Scholar] [CrossRef]
- Ersus, S.; Yurdagel, U. Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J. Food Eng. 2007, 80, 805–812. [Google Scholar] [CrossRef]
- Ravichandran, K.; Palaniraj, R.; Saw, N.M.M.T.; Gabr, A.M.M.; Ahmed, A.R.; Knorr, D.; Smetanska, I. Effects of different encapsulation agents and drying process on the stability of betalains extract. J. Food Sci. Technol. 2014, 51, 2216–2221. [Google Scholar] [CrossRef] [PubMed]
- Burin, V.M.; Rossa, P.N.; Ferreira-Lima, N.E.; Hillmann, M.C.R.; Boirdignon-Luiz, M.T. Anthocyanins: Optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. Int. J. Food Sci. Technol. 2011, 46, 186–193. [Google Scholar] [CrossRef]
- Romero-González, J.; Ah-Hen, K.S.; Lemus-Mondaca, R.; Muñoz-Fariña, O. Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chem. 2020, 313, 126115. [Google Scholar] [CrossRef]
- Da Rosa, J.R.; Nunes, G.L.; Motta, M.H.; Fortes, J.P.; Weis, G.C.C.; Hecktheuer, L.H.R.; Muller, E.I.; de Menezes, C.R.; da Rosa, C.S. Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocoll. 2019, 89, 742–748. [Google Scholar] [CrossRef]
- Da Moura, S.C.S.R.; Berling, C.L.; Germer, S.P.M.; Alvim, I.D.; Hubinger, M.D. Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chem. 2018, 241, 317–327. [Google Scholar] [CrossRef]
- Kha, T.C.; Nguyen, M.H.; Roach, P.D. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J. Food Eng. 2010, 98, 385–392. [Google Scholar] [CrossRef]
- Obón, J.M.; Castellar, M.R.; Alacid, M.; Fernández-López, J.A. Production of a red–purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. J. Food Eng. 2009, 90, 471–479. [Google Scholar] [CrossRef]
- Moser, P.; Telis, V.R.N.; de Andrade Neves, N.; García-Romero, E.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I. Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chem. 2017, 214, 308–318. [Google Scholar] [CrossRef]
- Ferrari, C.C.; Germer, S.P.M.; Alvim, I.D.; Vissotto, F.Z.; de Aguirre, J.M. Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. Int. J. Food Sci. Technol. 2012, 47, 1237–1245. [Google Scholar] [CrossRef]
- Cabral, B.R.P.; de Oliveira, P.M.; Gelfuso, G.M.; Quintão, T.S.C.; Chaker, J.A.; Karnikowski, M.G.O.; Gris, E.F. Improving stability of antioxidant compounds from Plinia cauliflora (jabuticaba) fruit peel extract by encapsulation in chitosan microparticles. J. Food Eng. 2018, 238, 195–201. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Barnes, K.W.; Eisele, T.; Giusti, M.M.; Haché, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Pierpoint, W.S. The Extraction of Enzymes from Plant Tissues Rich in Phenolic Compounds. In Protein Purification Protocols; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2004; Volume 244, pp. 65–74. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Dos Santos, S.S.; Rodrigues, L.M.; da Costa, S.C.; Bergamasco, R.D.C.; Madrona, G.S. Microencapsulation of Bioactive Compounds from Blackberry Pomace (Rubus fruticosus) by Spray Drying Technique. Int. J. Food Eng. 2017, 13, 20170047. [Google Scholar] [CrossRef]
- Stamp, J.A.; Labuza, T.P. Kinetics of the Maillard Reaction Between Aspartame and Glucose in Solution at High Temperatures. J. Food Sci. 1983, 48, 543–544. [Google Scholar] [CrossRef]
- De Souza, V.B.; Fujita, A.; Thomazini, M.; da Silva, E.R.; Lucon, J.F.; Genovese, M.I.; Favaro-Trindade, C.S. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace. Food Chem. 2014, 164, 380–386. [Google Scholar] [CrossRef]
- Silva, J.K.; Batista, Â.G.; Cazarin, C.B.B.; Dionísio, A.P.; de Brito, E.S.; Marques, A.T.B.; Maróstica Junior, M.R. Functional tea from a Brazilian berry: Overview of the bioactives compounds. LWT-Food Sci. Technol. 2017, 76, 292–298. [Google Scholar] [CrossRef]
Stability (Days) | Cap4 | Ext4 | Cap25 | Ext25 | CapLight | ExtLight |
---|---|---|---|---|---|---|
TP (mg GAE/g) | ||||||
0 | 14.73 a * ± 0.21 | 46.17 a ± 0.04 | 14.73 a ± 0.21 | 46.17 a ± 0.04 | 14.73 a ± 0.21 | 46.17 a ± 0.04 |
30 | 14.52 a ± 0.11 | 44.33 b ± 0.13 | 14.68 a ± 0.07 | 46.51 a ± 0.59 | 14.7 a ± 0.12 | 45.36 a ± 0.42 |
60 | 14.56 a ± 0.10 | 43.82 b ± 0.31 | 14.64 a ± 0.03 | 42.46 b ± 0.10 | 14.73 a ± 0.04 | 43.71 a ± 0.47 |
90 | 14.41 a ± 0.16 | 39.41 c ± 0.22 | 14.34 a ± 0.18 | 40.35 c ± 0.50 | 14.33 a ± 0.17 | 38.19 b ± 0.24 |
120 | 13.30 b ± 0.07 | 35.42 d ± 0.38 | 12.95 b ± 0.13 | 36.30 d ± 0.74 | 12.09 b ± 0.08 | 34.86 c ± 0.46 |
Loss (%) | 9.69 | 23.27 | 12.06 | 21.38 | 17.92 | 24.49 |
TA (mg cyanidine-3-glucoside/g) | ||||||
0 | 2.16 a ± 0.02 | 5.30 a ± 0.04 | 2.16 a ± 0.02 | 5.30 a ± 0.04 | 2.16 a ± 0.02 | 5.30 a ± 0.04 |
30 | 2.02 b ± 0.04 | 5.21 a ± 0.11 | 2.05 ab ± 0.15 | 5.08 ab ± 0.11 | 2.04 ab ± 0.04 | 5.19 a ± 0.11 |
60 | 2.00 b ± 0.03 | 5.15 a ± 0.03 | 2.01 ab ± 0.09 | 5.03 ab ± 0.02 | 2.04 ab ± 0.03 | 4.91 b ± 0.03 |
90 | 1.97 b ± 0.01 | 4.88 b ± 0.11 | 2.00 ab ± 0.03 | 4.82 c ± 0.06 | 1.98 ab ± 0.12 | 4.67 c ± 0.10 |
120 | 1.88 c ± 0.08 | 4.27 c ± 0.03 | 1.88 b ± 0.02 | 4.32 d ± 0.10 | 1.85 b ± 0.18 | 4.21 d ± 0.03 |
Loss (%) | 12.78 | 19.47 | 12.78 | 18.53 | 14.17 | 20.61 |
Delta E | ||||||
120 | 4 | 11 | 6 | 10 | 8 | 12 |
Total Anthocyanin | Total Phenolics | |||
---|---|---|---|---|
K | t(1/2) (Days) | K | t(1/2) (Days) | |
Cap4 | 0.0010 | 698 | 0.0007 | 984 |
Ext4 | 0.0017 | 417 | 0.0022 | 321 |
Cap25 | 0.0010 | 694 | 0.0009 | 741 |
Ext25 | 0.0015 | 450 | 0.0021 | 334 |
CapLight | 0.0011 | 621 | 0.0014 | 495 |
ExtLight | 0.0019 | 367 | 0.0024 | 283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanini, E.B.; Rodrigues, L.M.; Stafussa, A.P.; Cantuaria Chierrito, T.P.; Teixeira, A.F.; Corrêa, R.C.G.; Madrona, G.S. Bioactive Compounds from BRS Violet Grape Pomace: An Approach of Extraction and Microencapsulation, Stability Protection and Food Application. Plants 2023, 12, 3177. https://doi.org/10.3390/plants12183177
Romanini EB, Rodrigues LM, Stafussa AP, Cantuaria Chierrito TP, Teixeira AF, Corrêa RCG, Madrona GS. Bioactive Compounds from BRS Violet Grape Pomace: An Approach of Extraction and Microencapsulation, Stability Protection and Food Application. Plants. 2023; 12(18):3177. https://doi.org/10.3390/plants12183177
Chicago/Turabian StyleRomanini, Edilson Bruno, Leticia Misturini Rodrigues, Ana Paula Stafussa, Talita Perez Cantuaria Chierrito, Aline Finger Teixeira, Rúbia Carvalho Gomes Corrêa, and Grasiele Scaramal Madrona. 2023. "Bioactive Compounds from BRS Violet Grape Pomace: An Approach of Extraction and Microencapsulation, Stability Protection and Food Application" Plants 12, no. 18: 3177. https://doi.org/10.3390/plants12183177
APA StyleRomanini, E. B., Rodrigues, L. M., Stafussa, A. P., Cantuaria Chierrito, T. P., Teixeira, A. F., Corrêa, R. C. G., & Madrona, G. S. (2023). Bioactive Compounds from BRS Violet Grape Pomace: An Approach of Extraction and Microencapsulation, Stability Protection and Food Application. Plants, 12(18), 3177. https://doi.org/10.3390/plants12183177