Effects of Climate Change and Fencing on Forage Nutrition Quality of Alpine Grasslands in the Northern Tibet
Abstract
:1. Introduction
2. Results
2.1. Trade-Off between Forage Quantity and Nutrition Quality
2.2. Climate Change Effects
2.3. Fencing Effects
3. Discussion
3.1. Trade-off between Forage Quantity and Nutrition Quality
3.2. Climate Change Effects
3.3. Fencing Effects
3.4. Interactive Effects of Fencing and Climate Change
4. Materials and Methods
4.1. AGB Sampling and Forage Nutrition Component Analyses
4.2. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Fu, G. Impacts of anthropogenic activities and climate change on forage nutrition storage in Tibetan grasslands. Plants 2023, 12, 2735. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Wang, J.; Li, S. Response of forage nutritional quality to climate change and human activities in alpine grasslands. Sci. Total Environ. 2022, 845, 157552. [Google Scholar] [CrossRef] [PubMed]
- Tollefson, T.N.; Shipley, L.A.; Myers, W.L.; Dasgupta, N. Forage quality’s influence on mule deer fawns. J. Wildl. Manag. 2011, 75, 919–928. [Google Scholar] [CrossRef]
- Cebrian, M.R.; Kielland, K.; Finstad, G. Forage quality and reindeer productivity: Multiplier effects amplified by climate change. Arct. Antarct. Alp. Res. 2008, 40, 48–54. [Google Scholar] [CrossRef]
- Sun, W.; Li, S.; Zhang, Y.; Fu, G. Effect of long-term experimental warming on the nutritional quality of alpine meadows in the Northern Tibet. J. Resour. Ecol. 2020, 11, 516–524. [Google Scholar]
- Han, F.; Fu, G.; Yu, C.; Wang, S. Modeling nutrition quality and storage of forage using climate data and normalized-difference vegetation index in alpine grasslands. Remote Sens. 2022, 14, 3410. [Google Scholar] [CrossRef]
- Elgersma, A.; Søegaard, K. Effects of species diversity on seasonal variation in herbage yield and nutritive value of seven binary grass-legume mixtures and pure grass under cutting. Eur. J. Agron. 2016, 78, 73–83. [Google Scholar] [CrossRef]
- Fu, G.; Wang, J.H.; Li, S.W.; He, P. Responses of forage nutrient quality to grazing in the alpine grassland of Northern Tibet. Acta Prataculturae Sin. 2021, 30, 38–50. [Google Scholar]
- Allen, M.S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef]
- Dumont, B.; Andueza, D.; Niderkorn, V.; Lüscher, A.; Porqueddu, C.; Picon-Cochard, C. A meta-analysis of climate change effects on forage quality in grasslands: Specificities of mountain and Mediterranean areas. Grass Forage Sci. 2015, 70, 239–254. [Google Scholar] [CrossRef]
- Soares, J.C.; Santos, C.S.; Carvalho, S.M.P.; Pintado, M.M.; Vasconcelos, M.W. Preserving the nutritional quality of crop plants under a changing climate: Importance and strategies. Plant Soil 2019, 443, 1–26. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; Abd-ElGawad, A.M.; Alghanem, S.M.; Al-Taisan, W.A.; El-Amier, Y.A. Nutritional value, mineral composition, secondary metabolites, and antioxidant activity of some wild geophyte sedges and grasses. Plants 2019, 8, 569. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Fu, G. Impacts of climate change and human activities on plant species α-diversity across the Tibetan grasslands. Remote Sens. 2023, 15, 2947. [Google Scholar] [CrossRef]
- Perazzolli, M.; Vicelli, B.; Antonielli, L.; Longa, C.M.O.; Bozza, E.; Bertini, L.; Caruso, C.; Pertot, I. Simulated global warming affects endophytic bacterial and fungal communities of Antarctic pearlwort leaves and some bacterial isolates support plant growth at low temperatures. Sci. Rep. 2022, 12, 18839. [Google Scholar] [CrossRef] [PubMed]
- Klarenberg, I.J.; Keuschnig, C.; Colmenares, A.J.R.; Warshan, D.; Jungblut, A.D.; Jonsdottir, I.S.; Vilhelmsson, O. Long-term warming effects on the microbiome and nifH gene abundance of a common moss species in sub-Arctic tundra. New Phytol. 2022, 234, 2044–2056. [Google Scholar] [CrossRef] [PubMed]
- Andres, P.; Moore, J.C.; Cotrufo, F.; Denef, K.; Haddix, M.L.; Molowny-Horas, R.; Riba, M.; Wall, D.H. Grazing and edaphic properties mediate soil biotic response to altered precipitation patterns in a semiarid prairie. Soil Biol. Biochem. 2017, 113, 263–274. [Google Scholar] [CrossRef]
- Li, N.; Chang, R.Y.; Jiang, H.; Tariq, A.; Sardans, J.; Penuelas, J.; Sun, F.; Zhou, X.M. Combined livestock grazing-exclusion and global warming decreases nitrogen mineralization by changing soil microbial community in a Tibetan alpine meadow. Catena 2022, 219, 106589. [Google Scholar] [CrossRef]
- Wang, G.Q.; Li, F.; Peng, Y.F.; Yu, J.C.; Zhang, D.Y.; Yang, G.B.; Fang, K.; Wang, J.; Mohammat, A.; Zhou, G.Y.; et al. Responses of soil respiration to experimental warming in an alpine steppe on the Tibetan Plateau. Environ. Res. Lett. 2019, 14, 094015. [Google Scholar] [CrossRef]
- Wang, J.; Li, M.; Yu, C.; Fu, G. The change in environmental variables linked to climate change has a stronger effect on aboveground net primary productivity than does phenological change in alpine grasslands. Front. Plant Sci. 2022, 12, 798633. [Google Scholar] [CrossRef]
- Han, F.; Yu, C.; Fu, G. Non-growing/growing season non-uniform-warming increases precipitation use efficiency but reduces its temporal stability in an alpine meadow. Front. Plant Sci. 2023, 14, 1090204. [Google Scholar] [CrossRef]
- Akinyemi, D.S.; Zhu, Y.K.; Zhao, M.Y.; Zhang, P.J.; Shen, H.H.; Fang, J.Y. Response of soil extracellular enzyme activity to experimental precipitation in a shrub-encroached grassland in Inner Mongolia. Glob. Ecol. Conserv. 2020, 23, e01175. [Google Scholar] [CrossRef]
- Zhao, J.X.; Luo, T.X.; Wei, H.X.; Deng, Z.H.; Li, X.; Li, R.C.; Tang, Y.H. Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric. For. Meteorol. 2019, 279, 107761. [Google Scholar] [CrossRef]
- Wen, J.; Qin, R.M.; Zhang, S.X.; Yang, X.Y.; Xu, M.H. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China. J. Arid. Land 2020, 12, 252–266. [Google Scholar] [CrossRef]
- Lynn, J.S.; Duarte, D.A.; Rudgers, J.A. Soil microbes that may accompany climate warming increase alpine plant production. Oecologia 2019, 191, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Tang, J.; Li, Z.; Xiang, J.; Wang, L.; Tian, L.; Jiang, L.; Luo, Y.; Hou, E.; Shao, X. Warming reduces the production of a major annual forage crop on the Tibetan Plateau. Sci. Total Environ. 2021, 798, 149211. [Google Scholar] [CrossRef]
- Chai, L.R.; Yi, S.; Hong, W.; Chang, S.H.; Hou, F.J.; Cheng, Y.X. Effect of yak grazing intensity on characteristics of plant communities and forage quality in Gannan alpine meadow. Pratacultural Sci. 2018, 35, 18–26. [Google Scholar]
- Shi, Y.; Ma, Y.L.; Ma, W.H.; Liang, C.Z.; Zhao, X.Q.; Fang, J.Y.; He, J.S. Large scale patterns of forage yield and quality across Chinese grasslands. Chin. Sci. Bull. 2013, 58, 1187–1199. [Google Scholar] [CrossRef]
- Zhang, X.K.; Du, X.D.; Zhu, Z.M. Effects of precipitation and temperature on precipitation use efficiency of alpine grassland in Northern Tibet, China. Sci. Rep.-UK 2020, 10, 20309. [Google Scholar] [CrossRef]
- Niu, B.; Zeng, C.X.; Zhang, X.; He, Y.T.; Shi, P.L.; Tian, Y.; Feng, Y.F.; Li, M.; Wang, Z.P.; Wang, X.T.; et al. High Below-Ground Productivity Allocation of Alpine Grasslands on the Northern Tibet. Plants-Basel 2019, 8, 535. [Google Scholar] [CrossRef]
- Xiao, J.; Yu, C.; Fu, G. Response of aboveground net primary production, species and phylogenetic diversity to warming and increased precipitation in an alpine meadow. Plants 2023, 12, 3017. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, G. Responses of plant, soil bacterial and fungal communities to grazing vary with pasture seasons and grassland types, northern Tibet. Land. Degrad. Dev. 2021, 32, 1821–1832. [Google Scholar] [CrossRef]
- Sun, W.; Li, S.; Zhang, G.; Fu, G.; Qi, H.; Li, T. Effects of climate change and anthropogenic activities on soil pH in grassland regions on the Tibetan Plateau. Glob. Ecol. Conserv. 2023, 45, e02532. [Google Scholar] [CrossRef]
- Li, J.R.; Liu, Z.H. High-cold meadow plants respond to long-term warming. Qinghai Pratacult. 2017, 26, 13–17. [Google Scholar]
- Li, C.Y.; Peng, F.; Xue, X.; You, Q.G.; Lai, C.M.; Zhang, W.J.; Cheng, Y.X. Productivity and quality of alpine grassland vary with soil water availability under experimental warming. Front. Plant Sci. 2018, 9, 1790. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, L.; Jin, Y.; Zhang, Y.; Pan, Y.; Wu, J. Changes in nutrients of dominant species on montane shrub grassland in the Lhasa River Basin. Chin. J. Grassl. 2017, 39, 90–95. [Google Scholar]
- Yao, X.X.; Wu, J.P.; Gong, X.Y. Precipitation and seasonality affect grazing impacts on herbage nutritive values in alpine meadows on the Qinghai-Tibet Plateau. J. Plant Ecol. 2019, 12, 993–1008. [Google Scholar] [CrossRef]
- Baranova, A.; Oldeland, J.; Wang, S.L.; Schickhoff, U. Grazing impact on forage quality and macronutrient content of rangelands in Qilian Mountains, NW China. J. Mt. Sci. 2019, 16, 43–53. [Google Scholar] [CrossRef]
- Koidou, M.; Mountousis, I.; Dotas, V.; Zagorakis, K.; Yiakoulaki, M. Temporal variations of herbage production and nutritive value of three grasslands at different elevation zones regarding grazing needs and welfare of ruminants. Arch. Anim. Breed. 2019, 62, 215–226. [Google Scholar] [CrossRef]
- Reich, P.B.; Hungate, B.A.; Luo, Y.Q. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 611–636. [Google Scholar] [CrossRef]
- French, K.E. Species composition determines forage quality and medicinal value of high diversity grasslands in lowland England. Agric. Ecosyst. Environ. 2017, 241, 193–204. [Google Scholar] [CrossRef]
- Reiné, R.; Barrantes, O.; Chocarro, C.; Juárez, A.; Broca, A.; Maestro, M.; Carlos, F. Pyrenean meadows in Natura 2000 network: Grass production and plant biodiversity conservation. Span. J. Agric. Res. 2014, 12, 61–77. [Google Scholar] [CrossRef]
- Xu, S.X.; Zhao, X.Q.; Sun, P.; Zhao, T.B.; Xue, B. A simulative study on effects of climate warming on nutrient contents and in vitro digestibility of herbage grown in Qinghai-Xizang Plateau. Acta Bot. Sin. 2002, 44, 1357–1364. [Google Scholar]
- Han, F.; Yu, C.; Fu, G. Asymmetric warming among elevations may homogenize plant α-diversity and aboveground net primary production of alpine grasslands. Front. Ecol. Evol. 2023, 131, 108197. [Google Scholar] [CrossRef]
- Xu, W.; Zhu, M.Y.; Zhang, Z.H.; Ma, Z.Y.; Liu, H.Y.; Chen, L.T.; Cao, G.M.; Zhao, X.Q.; Schmid, B.; He, J.S. Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau. J. Appl. Ecol. 2018, 55, 1486–1497. [Google Scholar] [CrossRef]
- Ren, H.Y.; Han, G.D.; Schonbach, P.; Gierus, M.; Taube, F. Forage nutritional characteristics and yield dynamics in a grazed semiarid steppe ecosystem of Inner Mongolia, China. Ecol. Indic. 2016, 60, 460–469. [Google Scholar] [CrossRef]
- Scocco, P.; Piermarteri, K.; Malfatti, A.; Tardella, F.M.; Catorci, A. Increase of drought stress negatively affects the sustainability of extensive sheep farming in sub-Mediterranean climate. J. Arid. Environ. 2016, 128, 50–58. [Google Scholar] [CrossRef]
- Wu, J.S.; Zhang, X.; Shen, Z.; Shi, P.; Yu, C.Q. Species richness and diversity of alpine grasslands on the Northern Tibetan Plateau:effects of grazing exclusion and growing season precipitation. J. Resour. Ecol. 2012, 3, 236–242. [Google Scholar]
- Lu, X.Y.; Kelsey, K.C.; Yan, Y.; Sun, J.; Wang, X.D.; Cheng, G.W.; Neff, J.C. Effects of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan Plateau: A synthesis. Ecosphere 2017, 8, e01656. [Google Scholar] [CrossRef]
- Wu, J.S.; Zhang, X.Z.; Shen, Z.X.; Shi, P.L.; Yu, C.Q.; Chen, B.X. Effects of livestock exclusion and climate change on aboveground biomass accumulation in alpine pastures across the Northern Tibetan Plateau. Chin. Sci. Bull. 2014, 59, 4332–4340. [Google Scholar] [CrossRef]
- Stowe, K.A.; Marquis, R.J.; Hochwender, C.G.; Simms, E.L. The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Syst. 2000, 31, 565–595. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Varnamkhasti, A.S.; Lauenroth, W.K.; Goetz, H. Forage quality in relation to long-term grazing history, current-year defoliation, and water resource. Oecologia 1995, 101, 366–374. [Google Scholar] [CrossRef]
- Pitt, M.D. Assessment of spring defoliation to improve fall forage quality of Bluebunch Wheatgrass (Agropyron spicatum). J. Range Manag. 1986, 39, 175–181. [Google Scholar] [CrossRef]
- Pavlu, V.; Hejcman, M.; Pavlu, L.; Gaisler, J.; Nežerkova, P. Effect of continuous grazing on forage quality, quantity and animal performance. Agric. Ecosyst. Environ. 2006, 113, 349–355. [Google Scholar] [CrossRef]
- Louault, F.; Soussana, J.F.; Perrodin, M. Long-term effects of a reduced herbage use in a semi-natural grassland. I. Plant functional traits and plant response groups. Grassl. Sci. 2002, 7, 338–339. [Google Scholar]
- Fu, G.; Shen, Z.X.; Zhang, X.Z. Increased precipitation has stronger effects on plant production of an alpine meadow than does experimental warming in the Northern Tibetan Plateau. Agric. For. Meteorol. 2018, 249, 11–21. [Google Scholar] [CrossRef]
- Zha, X.J.; Tian, Y.; Ouzhu; Fu, G. Response of forage nutrient storages to grazing in alpine grasslands. Front. Plant Sci. 2022, 13, 991287. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Dai, E.; Dawaqiongda; Luobu; Fu, G. Effects of Climate Change and Fencing on Forage Nutrition Quality of Alpine Grasslands in the Northern Tibet. Plants 2023, 12, 3182. https://doi.org/10.3390/plants12183182
Zhang G, Dai E, Dawaqiongda, Luobu, Fu G. Effects of Climate Change and Fencing on Forage Nutrition Quality of Alpine Grasslands in the Northern Tibet. Plants. 2023; 12(18):3182. https://doi.org/10.3390/plants12183182
Chicago/Turabian StyleZhang, Guangyu, Erfu Dai, Dawaqiongda, Luobu, and Gang Fu. 2023. "Effects of Climate Change and Fencing on Forage Nutrition Quality of Alpine Grasslands in the Northern Tibet" Plants 12, no. 18: 3182. https://doi.org/10.3390/plants12183182
APA StyleZhang, G., Dai, E., Dawaqiongda, Luobu, & Fu, G. (2023). Effects of Climate Change and Fencing on Forage Nutrition Quality of Alpine Grasslands in the Northern Tibet. Plants, 12(18), 3182. https://doi.org/10.3390/plants12183182