Drought Resistant Resting Cysts of Paraphysoderma sedebokerense Preserves the Species Viability and Its Virulence
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Infectivity of Samples Maintained at Room Temperature
2.2. Observation of Resting Cysts in Stationary Cultures
2.3. Production of Resting Cysts and Germination by Dehydration and Hydration
2.4. Infectivity Depending on Hydration Time and Storage Time on Bench
3. Discussion
4. Materials and Methods
4.1. Algal Strains and Maintenance
4.2. Blastoclad Strain and Maintenance
4.3. Conditions of Infection
4.4. Nile red Staining and Microscopic Observations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffman, Y.; Aflalo, C.; Zarka, A.; Gutman, J.; James, T.Y.; Boussiba, S. Isolation and Characterization of a Novel Chytrid Species (Phylum Blastocladiomycota), Parasitic on the Green Alga Haematococcus. Mycol. Res. 2008, 112, 70–81. [Google Scholar] [CrossRef] [PubMed]
- James, T.Y.; Letcher, P.M.; Longcore, J.E.; Mozley-Standridge, S.E.; Porter, D.; Powell, M.J.; Griffith, G.W.; Vilgalys, R. A Molecular Phylogeny of the Flagellated Fungi (Chytridiomycota) and Description of a New Phylum (Blastocladiomycota). Mycologia 2006, 98, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Gutman, J.; Zarka, A.; Boussiba, S. The Host-Range of Paraphysoderma sedebokerensis, a Chytrid That Infects Haematococcus pluvialis. Eur. J. Phycol. 2009, 44, 509–514. [Google Scholar] [CrossRef]
- Alors, D.; Boussiba, S.; Zarka, A. Paraphysoderma sedebokerense Infection in Three Economically Valuable Microalgae: Host Preference Correlates with Parasite Fitness. J. Fungi 2021, 7, 100. [Google Scholar] [CrossRef]
- Boussiba, S. Carotenogenesis in the Green Alga Haematococcus pluvialis: Cellular Physiology and Stress Response. Physiol. Plant. 2000, 108, 111–117. [Google Scholar] [CrossRef]
- Hassi, M.; Ouaddi, O.; ElKheloui, R.; Bouharroud, R.; Hamadi, F.; Alouani, M. Clinical Applications of Haematococcus. In Haematococcus: Biochemistry, Biotechnology and Biomedical Applications; Raja, R., Hemaiswarya, S., Narayanan, M., Kandasamy, S., Jayappriyan, K.R., Eds.; Springer Nature: Singapore, 2023; pp. 211–228. ISBN 978-981-9929-01-6. [Google Scholar]
- Liu, J.; Mao, X.; Zhou, W.; Guarnieri, M.T. Simultaneous Production of Triacylglycerol and High-Value Carotenoids by the Astaxanthin-Producing Oleaginous Green Microalga Chlorella Zofingiensis. Bioresour. Technol. 2016, 214, 319–327. [Google Scholar] [CrossRef]
- Letcher, P.M.; Lee, P.A.; Lopez, S.; Burnett, M.; McBride, R.C.; Powell, M.J. An Ultrastructural Study of Paraphysoderma Sedebokerense (Blastocladiomycota), an Epibiotic Parasite of Microalgae. Fungal Biol. 2016, 120, 324–337. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, W.-M.; Chang, J.-S. Scenedesmus Obliquus CNW-N as a Potential Candidate for CO2 Mitigation and Biodiesel Production. Bioresour. Technol. 2010, 101, 8725–8730. [Google Scholar] [CrossRef]
- Strittmatter, M.; Guerra, T.; Silva, J.; Gachon, C.M.M. A New Flagellated Dispersion Stage in Paraphysoderma Sedebokerense, a Pathogen of Haematococcus pluvialis. J. Appl. Phycol. 2016, 28, 1553–1558. [Google Scholar] [CrossRef]
- Hwang, S.-W.; Choi, H.I.; Sim, S.J. Acidic Cultivation of Haematococcus pluvialis for Improved Astaxanthin Production in the Presence of a Lethal Fungus. Bioresour. Technol. 2019, 278, 138–144. [Google Scholar] [CrossRef]
- Lin, J.; Yan, H.; Zhao, L.; Li, Y.; Nahidian, B.; Zhu, M.; Hu, Q.; Han, D. Interaction between the Cell Walls of Microalgal Host and Fungal Carbohydrate-Activate Enzymes Is Essential for the Pathogenic Parasitism Process. Environ. Microbiol. 2021, 23, 5114–5130. [Google Scholar] [CrossRef] [PubMed]
- Gleason, F.H.; Schmidt, S.K.; Marano, A.V. Can Zoosporic True Fungi Grow or Survive in Extreme or Stressful Environments? Extremophiles 2010, 14, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Gleason, F.H.; Letcher, P.M.; McGee, P.A. Freeze Tolerance of Soil Chytrids from Temperate Climates in Australia. Mycol. Res. 2008, 112, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Strittmatter, M.; Rad-Menéndez, C.; Gachon, C.M.M. Cryopreservation of the Parasitic and Saprophytic Life Stage of the Blastocladialean Pathogen Paraphysoderma sedebokerense Infecting the Green Algae Haematococcus pluvialis and Scenedesmus dimorphus. Phycologia 2020, 59, 566–570. [Google Scholar] [CrossRef]
- Voigt, K.; Marano, A.V.; Gleason, F.H. 9 Ecological and Economical Importance of Parasitic Zoosporic True Fungi. In Agricultural Applications; Kempken, F., Ed.; The Mycota; Springer: Berlin/Heidelberg, Germany, 2013; pp. 243–270. ISBN 978-3-642-36821-9. [Google Scholar]
- Ding, Y.; Peng, X.; Wang, Z.; Wen, X.; Geng, Y.; Zhang, D.; Li, Y. Occurrence and Characterization of an Epibiotic Parasite in Cultures of Oleaginous Microalga Graesiella Sp. WBG-1. J. Appl. Phycol. 2018, 30, 819–830. [Google Scholar] [CrossRef]
- Dubey, M.K.; Zehra, A.; Meena, M.; Rs, U. Allomyces neomoniliformis. Vegetos 2016, 29, 2. [Google Scholar]
- Sparrow, F.K. Observations on Chytridiaceous Parasites of Phanerogams. I. Physoderma menyanthis de Bary. Am. J. Bot. 1946, 33, 112–118. [Google Scholar] [CrossRef]
- Karling, J.S. The genus Physoderma (Chytridiales). Lloydia 1950, 13, 20–71. [Google Scholar]
- Sparrow, F.K. Observations on Chytridiaceous Parasites of Phanerogams. VI. Resting Spore Germination in Physoderma (Urophlyctis) Pluriannulatum. Mycologia 1957, 49, 426–429. [Google Scholar] [CrossRef]
- Sparrow, F.K. Observations on Chytridiaceous Parasites of Phanerogams. Xx. Resting Spore Germination and Epibiotic Stage of Physoderma Butomi Schroeter. Am. J. Bot. 1974, 61, 203–208. [Google Scholar] [CrossRef]
- Lange, L.; Olson, L.W. Germination of the Resting Sporangia Of Physoderma maydis, the Causal Agent of Physoderma Disease of Maize. Protoplasma 1980, 102, 323–342. [Google Scholar] [CrossRef]
- Ibelings, B.W.; Gsell, A.S.; Mooij, W.M.; Van Donk, E.; Van Den Wyngaert, S.; de Senerpont Domis, L.N. Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshw. Biol. 2011, 56, 754–766. [Google Scholar] [CrossRef]
- Gsell, A.S.; Wolinska, J.; Preuß, K.; Teurlincx, S.; Özkundakci, D.; Hilt, S.; van Donk, E.; Ibelings, B.W.; Adrian, R. Long-term trends and seasonal variation in host density, temperature, and nutrients differentially affect chytrid fungi parasitising lake phytoplankton. Freshw. Biol. 2022, 67, 1532–1542. [Google Scholar] [CrossRef]
- Olson, L.W. Meiosis in the Aquatic Phycomycete Allomyces macrogynus. C. R. Lab. Carlsberg 1974, 40, 113–124. [Google Scholar]
- Sparrow, F.K. Observations on Chytridiaceous Parasites of Phanerogams. XXVII. A Further Study of Physoderma Hydrocotylidis Viégas and Teixeira 1. Am. J. Bot. 1977, 64, 989–993. [Google Scholar] [CrossRef]
- Asatryan, A.; Boussiba, S.; Zarka, A. Stimulation and Isolation of Paraphysoderma sedebokerense (Blastocladiomycota) Propagules and Their Infection Capacity Toward Their Host Under Different Physiological and Environmental Conditions. Front. Cell. Infect. Microbiol. 2019, 9, 72. [Google Scholar] [CrossRef]
- Chrisostomou, A.; Moustaka-Gouni, M.; Sgardelis, S.; Lanaras, T. Air-Dispersed Phytoplankton in a Mediterranean River-Reservoir System (Aliakmon-Polyphytos, Greece). J. Plankton Res. 2009, 31, 877–884. [Google Scholar] [CrossRef]
- Genitsaris, S.; Stefanidou, N.; Katsiapi, M.; Vardaka, E.; Kormas, K.; Sommer, U.; Moustaka-Gouni, M. Haematococcus: A Successful Air-Dispersed Colonist in Ephemeral Waters Is Rarely Found in Phytoplankton Communities. Turk. J. Bot. 2016, 40, 427–438. [Google Scholar] [CrossRef]
- Hilton, R.L.; Trainor, F.R. Algae from a Connecticut Soil. Plant Soil 1963, 19, 396–399. [Google Scholar] [CrossRef]
- Trainor, F.R.; Gladych, R. Survival of Algae in a Desiccated Soil: A 35-Year Study. Phycologia 1995, 34, 191–192. [Google Scholar] [CrossRef]
- Chiu, C.-S.; Chiu, P.-H.; Yong, T.C.; Tsai, H.-P.; Soong, K.; Huang, H.-E.; Chen, C.-N.N. Mechanisms Protect Airborne Green Microalgae during Long Distance Dispersal. Sci. Rep. 2020, 10, 13984. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alors, D.; Boussiba, S.; Zarka, A. Drought Resistant Resting Cysts of Paraphysoderma sedebokerense Preserves the Species Viability and Its Virulence. Plants 2023, 12, 3230. https://doi.org/10.3390/plants12183230
Alors D, Boussiba S, Zarka A. Drought Resistant Resting Cysts of Paraphysoderma sedebokerense Preserves the Species Viability and Its Virulence. Plants. 2023; 12(18):3230. https://doi.org/10.3390/plants12183230
Chicago/Turabian StyleAlors, David, Sammy Boussiba, and Aliza Zarka. 2023. "Drought Resistant Resting Cysts of Paraphysoderma sedebokerense Preserves the Species Viability and Its Virulence" Plants 12, no. 18: 3230. https://doi.org/10.3390/plants12183230
APA StyleAlors, D., Boussiba, S., & Zarka, A. (2023). Drought Resistant Resting Cysts of Paraphysoderma sedebokerense Preserves the Species Viability and Its Virulence. Plants, 12(18), 3230. https://doi.org/10.3390/plants12183230