Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time
Abstract
:1. Introduction
2. Secondary Nutrients and Flowering Time
2.1. Calcium (Ca)
2.2. Magnesium (Mg)
2.3. Sulfur (S)
3. Micronutrients and Flowering Time
3.1. Boron (B)
3.2. Zinc (Zn)
3.3. Iron (Fe)
3.4. Copper (Cu)
3.5. Manganese (Mn)
3.6. Molybdenum (Mo)
4. Perspectives and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cho, L.-H.; Yoon, J.; An, G. The Control of Flowering Time by Environmental Factors. Plant J. 2017, 90, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.D. Plant Responses to Photoperiod. New Phytol. 2009, 181, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Kumari, V.V.; Banerjee, P.; Verma, V.C.; Sukumaran, S.; Chandran, M.A.S.; Gopinath, K.A.; Venkatesh, G.; Yadav, S.K.; Singh, V.K.; Awasthi, N.K. Plant Nutrition: An Effective Way to Alleviate Abiotic Stress in Agricultural Crops. Int. J. Mol. Sci. 2022, 23, 8519. [Google Scholar] [CrossRef] [PubMed]
- Hajiboland, R. Effect of Micronutrient Deficiencies on Plants Stress Responses. In Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Ahmad, P., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2012; pp. 283–329. ISBN 978-1-4614-0634-1. [Google Scholar]
- Kazan, K.; Lyons, R. The Link between Flowering Time and Stress Tolerance. J. Exp. Bot. 2016, 67, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Takeno, K. Stress-Induced Flowering: The Third Category of Flowering Response. J. Exp. Bot. 2016, 67, 4925–4934. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kim, W.-Y.; Pardo, J.M.; Yun, D.-J. Molecular Interactions between Flowering Time and Abiotic Stress Pathways. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 327, pp. 371–412. ISBN 978-0-12-804804-7. [Google Scholar]
- Munns, R.; Millar, A.H. Seven Plant Capacities to Adapt to Abiotic Stress. J. Exp. Bot. 2023, 74, 4308–4323. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.Y.; Tian, W.H.; Jin, C.W. Nitrogen in Plants: From Nutrition to the Modulation of Abiotic Stress Adaptation. Stress Biol. 2022, 2, 4. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, B.; Kong, F.; Chen, L. Nutrient-Mediated Modulation of Flowering Time. Front. Plant Sci. 2023, 14, 1101611. [Google Scholar] [CrossRef]
- Kumari, S.; Chhillar, H.; Chopra, P.; Khanna, R.R.; Khan, M.I.R. Potassium: A Track to Develop Salinity Tolerant Plants. Plant Physiol. Biochem. 2021, 167, 1011–1023. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Du, M.; Shou, G.; Wang, Z.; Xu, G. Nitrogen as a Regulator for Flowering Time in Plant. Plant Soil 2022, 480, 1–29. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Coskun, D.; Schulze, L.M.; Wong, J.R.; Britto, D.T. Sodium as Nutrient and Toxicant. Plant Soil 2013, 369, 1–23. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y.; Han, C.; Zhang, W.; Jia, H.; Li, X. GA Signaling and CO/FT Regulatory Module Mediate Salt-Induced Late Flowering in Arabidopsis thaliana. Plant Growth Regul. 2007, 53, 195–206. [Google Scholar] [CrossRef]
- Kim, W.-Y.; Ali, Z.; Park, H.J.; Park, S.J.; Cha, J.-Y.; Perez-Hormaeche, J.; Quintero, F.J.; Shin, G.; Kim, M.R.; Qiang, Z.; et al. Release of SOS2 Kinase from Sequestration with GIGANTEA Determines Salt Tolerance in Arabidopsis. Nat. Commun. 2013, 4, 1352. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Gámez-Arjona, F.M.; Lindahl, M.; Aman, R.; Villalta, I.; Cha, J.-Y.; Carranco, R.; Lim, C.J.; García, E.; Bressan, R.A.; et al. S-Acylated and Nucleus-Localized SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 Stabilizes GIGANTEA to Regulate Arabidopsis Flowering Time under Salt Stress. Plant Cell 2023, 35, 298–317. [Google Scholar] [CrossRef] [PubMed]
- Brun, L.A.; Le Corff, J.; Maillet, J. Effects of Elevated Soil Copper on Phenology, Growth and Reproduction of Five Ruderal Plant Species. Environ. Pollut. 2003, 122, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Ryser, P.; Sauder, W.R. Effects of Heavy-Metal-Contaminated Soil on Growth, Phenology and Biomass Turnover of Hieracium Piloselloides. Environ. Pollut. 2006, 140, 52–61. [Google Scholar] [CrossRef]
- Ye, T.; Li, Y.; Zhang, J.; Hou, W.; Zhou, W.; Lu, J.; Xing, Y.; Li, X. Nitrogen, Phosphorus, and Potassium Fertilization Affects the Flowering Time of Rice (Oryza Sativa L.). Glob. Ecol. Conserv. 2019, 20, e00753. [Google Scholar] [CrossRef]
- Agbaje, G.O.; Oloyede, F.M.; Obisesan, I.O. Effects of NPK Fertilizer and Season on the Flowering and Sex Expression of Pumpkin (Cucurbita Pepo Linn.). Int. J. Agric. Sci. 2012, 2, 291–295. [Google Scholar]
- Reddy, A.S.N.; Ali, G.S.; Celesnik, H.; Day, I.S. Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression. Plant Cell 2011, 23, 2010–2032. [Google Scholar] [CrossRef]
- Kudla, J.; Becker, D.; Grill, E.; Hedrich, R.; Hippler, M.; Kummer, U.; Parniske, M.; Romeis, T.; Schumacher, K. Advances and Current Challenges in Calcium Signaling. New Phytol. 2018, 218, 414–431. [Google Scholar] [CrossRef]
- Dodd, A.N.; Love, J.; Webb, A.A.R. The Plant Clock Shows Its Metal: Circadian Regulation of Cytosolic Free Ca2+. Trends Plant Sci. 2005, 10, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Love, J.; Dodd, A.N.; Webb, A.A.R. Circadian and Diurnal Calcium Oscillations Encode Photoperiodic Information in Arabidopsis. Plant Cell 2004, 16, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Xu, L.; Singh, A.; Wang, H.; Du, L.; Poovaiah, B.W. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses. Front. Plant Sci. 2015, 6, 600. [Google Scholar] [CrossRef] [PubMed]
- Boudsocq, M.; Sheen, J. Stress Signaling II: Calcium Sensing and Signaling. In Abiotic Stress Adaptation in Plants; Pareek, A., Sopory, S.K., Bohnert, H.J., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 75–90. ISBN 978-90-481-3111-2. [Google Scholar]
- Yip Delormel, T.; Boudsocq, M. Properties and Functions of Calcium-Dependent Protein Kinases and Their Relatives in Arabidopsis thaliana. New Phytol. 2019, 224, 585–604. [Google Scholar] [CrossRef] [PubMed]
- Dekomah, S.D.; Bi, Z.; Dormatey, R.; Wang, Y.; Haider, F.U.; Sun, C.; Yao, P.; Bai, J. The Role of CDPKs in Plant Development, Nutrient and Stress Signaling. Front. Genet. 2022, 13, 996203. [Google Scholar] [CrossRef] [PubMed]
- Atif, R.M.; Shahid, L.; Waqas, M.; Ali, B.; Rashid, M.A.R.; Azeem, F.; Nawaz, M.A.; Wani, S.H.; Chung, G. Insights on Calcium-Dependent Protein Kinases (CPKs) Signaling for Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2019, 20, 5298. [Google Scholar] [CrossRef] [PubMed]
- Friedman, H.; Goldschmidt, E.E.; Halevy, A.H. Involvement of Calcium in the Photoperiodic Flower Induction Process of Pharbitis Nil. Plant Physiol. 1989, 89, 530–534. [Google Scholar] [CrossRef]
- Tretyn, A.; Czaplewska, J.; Cymerski, M.; Kopcewicz, J.; Kendrick, R.E. The Mechanism of Calcium Action on Flower Induction in Pharbitis Nil. J. Plant Physiol. 1994, 144, 562–568. [Google Scholar] [CrossRef]
- Jaworski, K.; Szmidt-Jaworska, A.; Tretyn, A.; Kopcewicz, J. Calmodulin from Pharbitis Nil: Purification and Characterization. Biol. Plant. 2004, 48, 55–60. [Google Scholar] [CrossRef]
- Delk, N.A.; Johnson, K.A.; Chowdhury, N.I.; Braam, J. CML24, Regulated in Expression by Diverse Stimuli, Encodes a Potential Ca2+ Sensor That Functions in Responses to Abscisic Acid, Daylength, and Ion Stress. Plant Physiol. 2005, 139, 240–253. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Delk, N.A.; Chowdhury, N.I.; Braam, J. Arabidopsis Potential Calcium Sensors Regulate Nitric Oxide Levels and the Transition to Flowering. Plant Signal. Behav. 2007, 2, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Martí Ruiz, M.C.; Hubbard, K.E.; Gardner, M.J.; Jung, H.J.; Aubry, S.; Hotta, C.T.; Mohd-Noh, N.I.; Robertson, F.C.; Hearn, T.J.; Tsai, Y.-C.; et al. Circadian Oscillations of Cytosolic Free Calcium Regulate the Arabidopsis Circadian Clock. Nat. Plants 2018, 4, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, K.; Szmidt-Jaworska, A.; Tretyn, A.; Kopcewicz, J. Biochemical Evidence for a Calcium-Dependent Protein Kinase from Pharbitis Nil and Its Involvement in Photoperiodic Flower Induction. Phytochemistry 2003, 62, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, K.; Pawełek, A.; Kopcewicz, J.; Szmidt-Jaworska, A. The Calcium-Dependent Protein Kinase (PnCDPK1) Is Involved in Pharbitis Nil Flowering. J. Plant Physiol. 2012, 169, 1578–1585. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, L.; Yao, L.; Zou, J.; Hao, J.; Wu, W. Calcium-Dependent Protein Kinase CPK32 Mediates Calcium Signaling in Regulating Arabidopsis Flowering Time. Natl. Sci. Rev. 2022, 9, nwab180. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, D.; Cai, L.; Wang, H.; Liu, X.; Du, H.; Yang, Z.; Zhang, H.; Hu, Z.; Huang, F.; et al. CALCIUM-DEPENDENT PROTEIN KINASE38 Regulates Flowering Time and Common Cutworm Resistance in Soybean. Plant Physiol. 2022, 190, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Hua, W.; Zhang, L.; Liang, S.; Jones, R.L.; Lu, Y.-T. A Tobacco Calcium/Calmodulin-Binding Protein Kinase Functions as a Negative Regulator of Flowering. J. Biol. Chem. 2004, 279, 31483–31494. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, S.; Xie, Q.-G.; Lu, Y.-T. Characterization of a Calmodulin-Regulated Ca2+-Dependent-Protein-Kinase-Related Protein Kinase, AtCRK1, from Arabidopsis. Biochem. J. 2004, 383, 73–81. [Google Scholar] [CrossRef]
- Sugano, S.; Andronis, C.; Green, R.M.; Wang, Z.-Y.; Tobin, E.M. Protein Kinase CK2 Interacts with and Phosphorylates the Arabidopsis Circadian Clock-Associated 1 Protein. Proc. Natl. Acad. Sci. USA 1998, 95, 11020–11025. [Google Scholar] [CrossRef]
- Sugano, S.; Andronis, C.; Ong, M.S.; Green, R.M.; Tobin, E.M. The Protein Kinase CK2 Is Involved in Regulation of Circadian Rhythms in Arabidopsis. Proc. Natl. Acad. Sci. USA 1999, 96, 12362–12366. [Google Scholar] [CrossRef]
- Li, P.; Zhang, G.; Gonzales, N.; Guo, Y.; Hu, H.; Park, S.; Zhao, J. Ca2+-Regulated and Diurnal Rhythm-Regulated Na+/Ca2+ Exchanger AtNCL Affects Flowering Time and Auxin Signalling in Arabidopsis. Plant Cell Environ. 2016, 39, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.-H.; Pittman, J.K.; Barkla, B.J.; Shigaki, T.; Hirschi, K.D. The Arabidopsis Cax1 Mutant Exhibits Impaired Ion Homeostasis, Development, and Hormonal Responses and Reveals Interplay among Vacuolar Transporters. Plant Cell 2003, 15, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.X.; Wang, D.Y. Regulation of the ALBINO3-Mediated Transition to Flowering in Arabidopsis Depends on the Expression of CO and GA1. Biol. Plant. 2009, 53, 484–492. [Google Scholar] [CrossRef]
- Wang, D.; Xu, Y.; Li, Q.; Hao, X.; Cui, K.; Sun, F.; Zhu, Y. Transgenic Expression of a Putative Calcium Transporter Affects the Time of Arabidopsis Flowering. Plant J. 2003, 33, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-Y.; Li, Q.; Cui, K.-M.; Zhu, Y.-X. PPF1 May Suppress Plant Senescence via Activating TFL1 in Transgenic Arabidopsis Plants. J. Integr. Plant Biol. 2008, 50, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Hermans, C.; Verbruggen, N. Physiological Characterization of Mg Deficiency in Arabidopsis thaliana. J. Exp. Bot. 2005, 56, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, R.; Tang, L.Y.; Zhang, L.; Yamada, H.; Twell, D.; Sakamoto, W. A Conserved, Mg2+-Dependent Exonuclease Degrades Organelle DNA during Arabidopsis Pollen Development. Plant Cell 2011, 23, 1608–1624. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Nazim, H.; Liang, Z.; Yang, D. Magnesium Deficiency in Plants: An Urgent Problem. Crop J. 2016, 4, 83–91. [Google Scholar] [CrossRef]
- Chaudhry, A.H.; Nayab, S.; Hussain, S.B.; Ali, M.; Pan, Z. Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture. Int. J. Mol. Sci. 2021, 22, 1819. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Tan, H.; Yang, X.; Tian, L.; Luan, S.; Chen, L.; Li, D. An Endoplasmic Reticulum Magnesium Transporter Is Essential for Pollen Development in Arabidopsis. Plant Sci. 2015, 231, 212–220. [Google Scholar] [CrossRef]
- Xu, X.-F.; Wang, B.; Lou, Y.; Han, W.-J.; Lu, J.-Y.; Li, D.-D.; Li, L.-G.; Zhu, J.; Yang, Z.-N. Magnesium Transporter 5 Plays an Important Role in Mg Transport for Male Gametophyte Development in Arabidopsis. Plant J. 2015, 84, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Li, L.-G.; Sokolov, L.N.; Yang, Y.-H.; Li, D.-P.; Ting, J.; Pandy, G.K.; Luan, S. A Mitochondrial Magnesium Transporter Functions in Arabidopsis Pollen Development. Mol. Plant 2008, 1, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, L.; Liu, Z.; Yuan, Y.; Guo, L.; Mao, D.; Tian, L.; Chen, L.; Luan, S.; Li, D. Magnesium Transporter AtMGT9 Is Essential for Pollen Development in Arabidopsis. Cell Res. 2009, 19, 887–898. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Qi, H.; Hu, Y.-F.; Jiang, Q.-R.; Zhang, L.-G.; Xue, P.; Yang, F.-Q.; Wang, R.; Ju, Y.; Uchida, H.; et al. The Mitochondrial Endonuclease M20 Participates in the Down-Regulation of Mitochondrial DNA in Pollen Cells. Plant Physiol. 2018, 178, 1537–1550. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.Y.; Sakamoto, W. Tissue-Specific Organelle DNA Degradation Mediated by DPD1 Exonuclease. Plant Signal. Behav. 2011, 6, 1391–1393. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.I.; Tanoi, K.; Nakanishi, T.M. Magnesium Localization in Shoot Apices during Flower Induction in Pharbitis Nil. Can. J. Bot. 2006, 84, 1908–1916. [Google Scholar] [CrossRef]
- De Melo, J.R.F.; Gutsch, A.; Caluwé, T.D.; Leloup, J.-C.; Gonze, D.; Hermans, C.; Webb, A.A.R.; Verbruggen, N. Magnesium Maintains the Length of the Circadian Period in Arabidopsis. Plant Physiol. 2021, 185, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Rivière, Q.; Xiao, Q.; Gutsch, A.; Defrance, M.; Webb, A.A.R.; Verbruggen, N. Mg Deficiency Interacts with the Circadian Clock and Phytochromes Pathways in Arabidopsis. Ann. Appl. Biol. 2021, 178, 387–399. [Google Scholar] [CrossRef]
- Kopriva, S.; Mugford, S.G.; Matthewman, C.; Koprivova, A. Plant Sulfate Assimilation Genes: Redundancy versus Specialization. Plant Cell Rep. 2009, 28, 1769–1780. [Google Scholar] [CrossRef]
- Gläser, K.; Kanawati, B.; Kubo, T.; Schmitt-Kopplin, P.; Grill, E. Exploring the Arabidopsis Sulfur Metabolome. Plant J. 2014, 77, 31–45. [Google Scholar] [CrossRef]
- Günal, S.; Hardman, R.; Kopriva, S.; Mueller, J.W. Sulfation Pathways from Red to Green. J. Biol. Chem. 2019, 294, 12293–12312. [Google Scholar] [CrossRef] [PubMed]
- Kopriva, S.; Mugford, S.G.; Baraniecka, P.; Lee, B.-R.; Matthewman, C.A.; Koprivova, A. Control of Sulfur Partitioning between Primary and Secondary Metabolism in Arabidopsis. Front. Plant Sci. 2012, 3, 163. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-R.; Huseby, S.; Koprivova, A.; Chételat, A.; Wirtz, M.; Mugford, S.T.; Navid, E.; Brearley, C.; Saha, S.; Mithen, R.; et al. Effects of Fou8/Fry1 Mutation on Sulfur Metabolism: Is Decreased Internal Sulfate the Trigger of Sulfate Starvation Response? PLoS ONE 2012, 7, e39425. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Lee, B.; Ishitani, M.; Lee, H.; Zhang, C.; Zhu, J.-K. FIERY1 Encoding an Inositol Polyphosphate 1-Phosphatase Is a Negative Regulator of Abscisic Acid and Stress Signaling in Arabidopsis. Genes Dev. 2001, 15, 1971–1984. [Google Scholar] [CrossRef] [PubMed]
- Estavillo, G.M.; Crisp, P.A.; Pornsiriwong, W.; Wirtz, M.; Collinge, D.; Carrie, C.; Giraud, E.; Whelan, J.; David, P.; Javot, H.; et al. Evidence for a SAL1-PAP Chloroplast Retrograde Pathway That Functions in Drought and High Light Signaling in Arabidopsis. Plant Cell 2011, 23, 3992–4012. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Lee, H.; Huang, R.; Zhu, J.-K. A Single Amino Acid Substitution in the Arabidopsis FIERY1/HOS2 Protein Confers Cold Signaling Specificity and Lithium Tolerance: FIERY1/HOS2 Signaling. Plant J. 2004, 40, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Gy, I.; Gasciolli, V.; Lauressergues, D.; Morel, J.-B.; Gombert, J.; Proux, F.; Proux, C.; Vaucheret, H.; Mallory, A.C. Arabidopsis FIERY1, XRN2, and XRN3 Are Endogenous RNA Silencing Suppressors. Plant Cell 2007, 19, 3451–3461. [Google Scholar] [CrossRef] [PubMed]
- You, C.; He, W.; Hang, R.; Zhang, C.; Cao, X.; Guo, H.; Chen, X.; Cui, J.; Mo, B. FIERY1 Promotes MicroRNA Accumulation by Suppressing RRNA-Derived Small Interfering RNAs in Arabidopsis. Nat. Commun. 2019, 10, 4424. [Google Scholar] [CrossRef]
- Rodríguez, V.M.; Chételat, A.; Majcherczyk, P.; Farmer, E.E. Chloroplastic Phosphoadenosine Phosphosulfate Metabolism Regulates Basal Levels of the Prohormone Jasmonic Acid in Arabidopsis Leaves. Plant Physiol. 2010, 152, 1335–1345. [Google Scholar] [CrossRef]
- Chan, K.X.; Mabbitt, P.D.; Phua, S.Y.; Mueller, J.W.; Nisar, N.; Gigolashvili, T.; Stroeher, E.; Grassl, J.; Arlt, W.; Estavillo, G.M.; et al. Sensing and Signaling of Oxidative Stress in Chloroplasts by Inactivation of the SAL1 Phosphoadenosine Phosphatase. Proc. Natl. Acad. Sci. USA 2016, 113, e4567. [Google Scholar] [CrossRef]
- Wilson, P.B.; Estavillo, G.M.; Field, K.J.; Pornsiriwong, W.; Carroll, A.J.; Howell, K.A.; Woo, N.S.; Lake, J.A.; Smith, S.M.; Harvey Millar, A.; et al. The Nucleotidase/Phosphatase SAL1 Is a Negative Regulator of Drought Tolerance in Arabidopsis. Plant J. 2009, 58, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Robles, P.; Fleury, D.; Candela, H.; Cnops, G.; Alonso-Peral, M.M.; Anami, S.; Falcone, A.; Caldana, C.; Willmitzer, L.; Ponce, M.R.; et al. The RON1/FRY1/SAL1 Gene Is Required for Leaf Morphogenesis and Venation Patterning in Arabidopsis. Plant Physiol. 2010, 152, 1357–1372. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiong, L. The Bifunctional Abiotic Stress Signalling Regulator and Endogenous RNA Silencing Suppressor FIERY1 Is Required for Lateral Root Formation: FIERY1 and Lateral Root Formation. Plant Cell Environ. 2010, 33, 2180–2190. [Google Scholar] [CrossRef] [PubMed]
- Litthauer, S.; Chan, K.X.; Jones, M.A. 3′-Phosphoadenosine 5′-Phosphate Accumulation Delays the Circadian System. Plant Physiol. 2018, 176, 3120–3135. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-H.; Von Arnim, A.G. FIERY1 Regulates Light-Mediated Repression of Cell Elongation and Flowering Time via Its 3′(2′),5′-Bisphosphate Nucleotidase Activity. Plant J. 2009, 58, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Queval, G.; Mhamdi, A.; Chaouch, S.; Foyer, C.H. Glutathione. Arab. Book 2011, 9, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in Plants: An Integrated Overview: Glutathione Status and Functions. Plant Cell Environ. 2012, 35, 454–484. [Google Scholar] [CrossRef]
- Noctor, G.; Gomez, L.; Vanacker, H.; Foyer, C.H. Interactions between Biosynthesis, Compartmentation and Transport in the Control of Glutathione Homeostasis and Signalling. J. Exp. Bot. 2002, 53, 1283–1304. [Google Scholar] [CrossRef]
- Chen, J.-H.; Jiang, H.-W.; Hsieh, E.-J.; Chen, H.-Y.; Chien, C.-T.; Hsieh, H.-L.; Lin, T.-P. Drought and Salt Stress Tolerance of an Arabidopsis Glutathione S-Transferase U17 Knockout Mutant Are Attributed to the Combined Effect of Glutathione and Abscisic Acid. Plant Physiol. 2012, 158, 340–351. [Google Scholar] [CrossRef]
- Parisy, V.; Poinssot, B.; Owsianowski, L.; Buchala, A.; Glazebrook, J.; Mauch, F. Identification of PAD2 as a γ-Glutamylcysteine Synthetase Highlights the Importance of Glutathione in Disease Resistance of Arabidopsis: Glutathione Deficiency and Arabidopsis Disease Resistance. Plant J. 2006, 49, 159–172. [Google Scholar] [CrossRef]
- Wingate, V.P.M.; Lawton, M.A.; Lamb, C.J. Glutathione Causes a Massive and Selective Induction of Plant Defense Genes. Plant Physiol. 1988, 87, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Ko, K.; Chang, W.; Kuo, W.; Chen, G.; Lin, T. Increased Glutathione Contributes to Stress Tolerance and Global Translational Changes in Arabidopsis. Plant J. 2015, 83, 926–939. [Google Scholar] [CrossRef] [PubMed]
- Blevins, D.G.; Lukaszewski, K.M. Boron in Plant Structure and Function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 481–500. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in Plant Biology. Plant Biol. 2002, 4, 205–223. [Google Scholar] [CrossRef]
- Pereira, G.L.; Siqueira, J.A.; Batista-Silva, W.; Cardoso, F.B.; Nunes-Nesi, A.; Araújo, W.L. Boron: More than an Essential Element for Land Plants? Front. Plant Sci. 2021, 11, 610307. [Google Scholar] [CrossRef] [PubMed]
- Dell, B.; Huang, L. Physiological Response of Plants to Low Boron. Plant Soil 1997, 193, 103–120. [Google Scholar] [CrossRef]
- Landi, M.; Margaritopoulou, T.; Papadakis, I.E.; Araniti, F. Boron Toxicity in Higher Plants: An Update. Planta 2019, 250, 1011–1032. [Google Scholar] [CrossRef] [PubMed]
- Brdar-Jokanović, M. Boron Toxicity and Deficiency in Agricultural Plants. Int. J. Mol. Sci. 2020, 21, 1424. [Google Scholar] [CrossRef]
- Eaton, F. Deficiency, Toxicity and Accumulation of Boron in Plants. J. Agricutural Res. 1944, 69, 2237. [Google Scholar]
- Funakawa, H.; Miwa, K. Synthesis of Borate Cross-Linked Rhamnogalacturonan II. Front. Plant Sci. 2015, 6, 223. [Google Scholar] [CrossRef]
- Routray, P.; Li, T.; Yamasaki, A.; Yoshinari, A.; Takano, J.; Choi, W.G.; Sams, C.E.; Roberts, D.M. Nodulin Intrinsic Protein 7;1 Is a Tapetal Boric Acid Channel Involved in Pollen Cell Wall Formation. Plant Physiol. 2018, 178, 1269–1283. [Google Scholar] [CrossRef] [PubMed]
- Di Giorgio, J.A.P.; Bienert, G.P.; Ayub, N.D.; Yaneff, A.; Barberini, M.L.; Mecchia, M.A.; Amodeo, G.; Soto, G.C.; Muschietti, J.P. Pollen-Specific Aquaporins NIP4;1 and NIP4;2 Are Required for Pollen Development and Pollination in Arabidopsis thaliana. Plant Cell 2016, 28, 1053–1077. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Uraguchi, S.; Saito, A.; Kajikawa, M.; Kasai, K.; Sato, Y.; Nagamura, Y.; Fujiwara, T. Roles of Pollen-Specific Boron Efflux Transporter, OsBOR4, in the Rice Fertilization Process. Plant Cell Physiol. 2013, 54, 2011–2019. [Google Scholar] [CrossRef] [PubMed]
- Diehn, T.A.; Bienert, M.D.; Pommerrenig, B.; Liu, Z.; Spitzer, C.; Bernhardt, N.; Fuge, J.; Bieber, A.; Richet, N.; Chaumont, F.; et al. Boron Demanding Tissues of Brassica Napus Express Specific Sets of Functional Nodulin26-like Intrinsic Proteins and BOR 1 Transporters. Plant J. 2019, 100, 68–82. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Tsujimoto-Inui, Y.; Sotta, N.; Hirakawa, T.; Matsunaga, T.M.; Fukao, Y.; Matsunaga, S.; Fujiwara, T. Proteasomal Degradation of BRAHMA Promotes Boron Tolerance in Arabidopsis. Nat. Commun. 2018, 9, 5285. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, L.; Farrona, S.; Reyes, J.C. The Putative SWI/SNF Complex Subunit BRAHMA Activates Flower Homeotic Genes in Arabidopsis thaliana. Plant Mol. Biol. 2006, 62, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Farrona, S.; Hurtado, L.; Bowman, J.L.; Reyes, J.C. The Arabidopsis thaliana SNF2 Homolog AtBRM Controls Shoot Development and Flowering. Development 2004, 131, 4965–4975. [Google Scholar] [CrossRef]
- Tang, X.; Hou, A.; Babu, M.; Nguyen, V.; Hurtado, L.; Lu, Q.; Reyes, J.C.; Wang, A.; Keller, W.A.; Harada, J.J.; et al. The Arabidopsis BRAHMA Chromatin-Remodeling ATPase Is Involved in Repression of Seed Maturation Genes in Leaves. Plant Physiol. 2008, 147, 1143–1157. [Google Scholar] [CrossRef]
- Wu, M.-F.; Sang, Y.; Bezhani, S.; Yamaguchi, N.; Han, S.-K.; Li, Z.; Su, Y.; Slewinski, T.L.; Wagner, D. SWI2/SNF2 Chromatin Remodeling ATPases Overcome Polycomb Repression and Control Floral Organ Identity with the LEAFY and SEPALLATA3 Transcription Factors. Proc. Natl. Acad. Sci. USA 2012, 109, 3576–3581. [Google Scholar] [CrossRef]
- Han, S.-K.; Sang, Y.; Rodrigues, A.; BIOL425 F2010; Wu, M.-F.; Rodriguez, P.L.; Wagner, D. The SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Represses Abscisic Acid Responses in the Absence of the Stress Stimulus in Arabidopsis. Plant Cell 2012, 24, 4892–4906. [Google Scholar] [CrossRef]
- Li, T.; Zhang, R.; Satheesh, V.; Wang, P.; Ma, G.; Guo, J.; An, G.; Lei, M. The Chromatin Remodeler BRAHMA Recruits HISTONE DEACETYLASE6 to Regulate Root Growth Inhibition in Response to Phosphate Starvation in Arabidopsis. J. Integr. Plant Biol. 2022, 64, 2314–2326. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, C.; Gao, L.; Yang, S.; Nguyen, V.; Shi, X.; Siminovitch, K.; Kohalmi, S.E.; Huang, S.; Wu, K.; et al. The Arabidopsis SWI2/SNF2 Chromatin Remodeler BRAHMA Regulates Polycomb Function during Vegetative Development and Directly Activates the Flowering Repressor Gene SVP. PLOS Genet. 2015, 11, e1004944. [Google Scholar] [CrossRef] [PubMed]
- Farrona, S.; Hurtado, L.; March-Díaz, R.; Schmitz, R.J.; Florencio, F.J.; Turck, F.; Amasino, R.M.; Reyes, J.C. Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis. PLoS ONE 2011, 6, e17997. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.; Kinoshita, A.; Vincent, C.; Martinez-Gallegos, R.; Gao, H.; Van Driel, A.D.; Hyun, Y.; Mateos, J.L.; Coupland, G. Floral Regulators FLC and SOC1 Directly Regulate Expression of the B3-Type Transcription Factor TARGET OF FLC AND SVP 1 at the Arabidopsis Shoot Apex via Antagonistic Chromatin Modifications. PLOS Genet. 2019, 15, e1008065. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, Y.; Wang, J.; Gao, S.; Huang, Y.; Hung, F.-Y.; Li, T.; Li, Q.; Yue, L.; Wu, K.; et al. The Chromatin Remodelling ATPase BRAHMA Interacts with GATA-Family Transcription Factor GNC to Regulate Flowering Time in Arabidopsis. J. Exp. Bot. 2022, 73, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jian, M.; Li, W.; Yao, X.; Tan, C.; Qian, Q.; Hu, Y.; Liu, X.; Hou, X. Gibberellin Signaling Modulates Flowering via the DELLA–BRAHMA–NF-YC Module in Arabidopsis. Plant Cell 2023, 35, 3470–3484. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and Strategies for Enhancing Zinc Availability in Plants for Sustainable Agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef]
- Przedpelska-Wasowicz, E.; Wasowicz, P. Does Zinc Concentration in the Substrate Influence the Onset of Flowering in Arabidopsis arenosa (Brassicaceae)? Plant Growth Regul. 2013, 69, 87–97. [Google Scholar] [CrossRef]
- Saikia, P.; Talukdar, M.C.; Das, P. Optimization of Zinc, Magnesium and Calcium on Growth and Flowering of Rhynchostylis Retusa L. Acta Sci. Agric. 2018, 2, 12–15. [Google Scholar]
- Kumar, D.; Sahu, T.L.; Netam, N.; Patel, S.; Mandavi, G.; Kumar, N. Effect of Foliar Application of Zinc and Iron on Growth, Flowering and Yield of Gladiolus (Gladiolus grandiflorus L.). Pharma Innov. J. 2022, 11, 2587–2589. [Google Scholar]
- Khosa, S.S.; Younis, A.; Rayit, A.; Yasmeen, S.; Riaz, A. Effect of Foliar Application of Macro and Micro Nutrients on Growth and Flowering of Gerbera Jamesonii L. Am.-Eurasian J. Agric. Environ. Sci. 2011, 11, 736–757. [Google Scholar]
- Yilmaz, A.; Ekiz, H.; Gültekin, I.; Torun, B.; Barut, H.; Karanlik, S.; Cakmak, I. Effect of Seed Zinc Content on Grain Yield and Zinc Concentration of Wheat Grown in Zinc-deficient Calcareous Soils. J. Plant Nutr. 1998, 21, 2257–2264. [Google Scholar] [CrossRef]
- Ajouri, A.; Asgedom, H.; Becker, M. Seed Priming Enhances Germination and Seedling Growth of Barley under Conditions of P and Zn Deficiency. J. Plant Nutr. Soil Sci. 2004, 167, 630–636. [Google Scholar] [CrossRef]
- Laware, S.L.; Raskar, S. Influence of Zinc Oxide Nanoparticles on Growth, Flowering and Seed Productivity in Onion. Ina. J. Curr. Microbiol. Appl. Sci. 2014, 3, 874–881. [Google Scholar]
- Xie, M.; Sun, J.; Gong, D.; Kong, Y. The Roles of Arabidopsis C1-2i Subclass of C2H2-Type Zinc-Finger Transcription Factors. Genes 2019, 10, 653. [Google Scholar] [CrossRef]
- Han, G.; Lu, C.; Guo, J.; Qiao, Z.; Sui, N.; Qiu, N.; Wang, B. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. Front. Plant Sci. 2020, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Qiao, Z.; Li, Y.; Wang, C.; Wang, B. The Roles of CCCH Zinc-Finger Proteins in Plant Abiotic Stress Tolerance. Int. J. Mol. Sci. 2021, 22, 8327. [Google Scholar] [CrossRef]
- Ciftci-Yilmaz, S.; Mittler, R. The Zinc Finger Network of Plants. Cell. Mol. Life Sci. 2008, 65, 1150–1160. [Google Scholar] [CrossRef]
- Lyu, T.; Cao, J. Cys2/His2 Zinc-Finger Proteins in Transcriptional Regulation of Flower Development. Int. J. Mol. Sci. 2018, 19, 2589. [Google Scholar] [CrossRef]
- Sawa, S.; Ito, T.; Shimura, Y.; Okada, K. FILAMENTOUS FLOWER Controls the Formation and Development of Arabidopsis Inflorescences and Floral Meristems. Plant Cell 1999, 11, 69–86. [Google Scholar] [CrossRef]
- Sawa, S.; Watanabe, K.; Goto, K.; Kanaya, E.; Morita, E.H.; Okada, K. FILAMENTOUS FLOWER, a Meristem and Organ Identity Gene of Arabidopsis, Encodes a Protein with a Zinc Finger and HMG-Related Domains. Genes Dev. 1999, 13, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ni, M. RFI2, a RING-Domain Zinc Finger Protein, Negatively Regulates CONSTANS Expression and Photoperiodic Flowering. Plant J. 2006, 46, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Yasui, Y.; Mukougawa, K.; Uemoto, M.; Yokofuji, A.; Suzuri, R.; Nishitani, A.; Kohchi, T. The Phytochrome-Interacting VASCULAR PLANT ONE–ZINC FINGER1 and VOZ2 Redundantly Regulate Flowering in Arabidopsis. Plant Cell 2012, 24, 3248–3263. [Google Scholar] [CrossRef] [PubMed]
- Celesnik, H.; Ali, G.S.; Robison, F.M.; Reddy, A.S.N. Arabidopsis thaliana VOZ (Vascular Plant One-Zinc Finger) Transcription Factors Are Required for Proper Regulation of Flowering Time. Biol. Open 2013, 2, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Yasui, Y.; Kohchi, T. VASCULAR PLANT ONE-ZINC FINGER1 and VOZ2 Repress the FLOWERING LOCUS C Clade Members to Control Flowering Time in Arabidopsis. Biosci. Biotechnol. Biochem. 2014, 78, 1850–1855. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, H.; Wang, Y.; Han, G.; Sui, N. Overexpression of CCCH Zinc Finger Protein Gene Delays Flowering Time and Enhances Salt Tolerance in Arabidopsis by Increasing Fatty Acid Unsaturation. Acta Physiol. Plant. 2018, 40, 196. [Google Scholar] [CrossRef]
- Chao, Y.; Zhang, T.; Yang, Q.; Kang, J.; Sun, Y.; Gruber, M.Y.; Qin, Z. Expression of the Alfalfa CCCH-Type Zinc Finger Protein Gene MsZFN Delays Flowering Time in Transgenic Arabidopsis thaliana. Plant Sci. 2014, 215–216, 92–99. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H.; Dai, S.; Feng, S.; Gong, S.; Wang, J.; Zhou, A. AaZFP3, a Novel CCCH-Type Zinc Finger Protein from Adonis Amurensis, Promotes Early Flowering in Arabidopsis by Regulating the Expression of Flowering-Related Genes. Int. J. Mol. Sci. 2022, 23, 8166. [Google Scholar] [CrossRef]
- Yan, Z.; Jia, J.; Yan, X.; Shi, H.; Han, Y. Arabidopsis KHZ1 and KHZ2, Two Novel Non-Tandem CCCH Zinc-Finger and K-Homolog Domain Proteins, Have Redundant Roles in the Regulation of Flowering and Senescence. Plant Mol. Biol. 2017, 95, 549–565. [Google Scholar] [CrossRef]
- Gao, H.; Zheng, X.-M.; Fei, G.; Chen, J.; Jin, M.; Ren, Y.; Wu, W.; Zhou, K.; Sheng, P.; Zhou, F.; et al. Ehd4 Encodes a Novel and Oryza-Genus-Specific Regulator of Photoperiodic Flowering in Rice. PLoS Genet. 2013, 9, e1003281. [Google Scholar] [CrossRef]
- Doi, K.; Izawa, T.; Fuse, T.; Yamanouchi, U.; Kubo, T.; Shimatani, Z.; Yano, M.; Yoshimura, A. Ehd1, a B-Type Response Regulator in Rice, Confers Short-Day Promotion of Flowering and Controls FT-like Gene Expression Independently of Hd1. Genes Dev. 2004, 18, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Weingartner, M.; Subert, C.; Sauer, N. LATE, a C2H2 Zinc-Finger Protein That Acts as Floral Repressor. Plant J. 2011, 68, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Krichevsky, A.; Gutgarts, H.; Kozlovsky, S.V.; Tzfira, T.; Sutton, A.; Sternglanz, R.; Mandel, G.; Citovsky, V. C2H2 Zinc Finger-SET Histone Methyltransferase Is a Plant-Specific Chromatin Modifier. Dev. Biol. 2007, 303, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, K.; Park, C.; Hwang, H.-J.; Lee, I. SUPPRESSOR OF FRIGIDA4, Encoding a C2H2-Type Zinc Finger Protein, Represses Flowering by Transcriptional Activation of Arabidopsis FLOWERING LOCUS C. Plant Cell 2006, 18, 2985–2998. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Michaels, S.D. SUPPRESSOR OF FRI 4 Encodes a Nuclear-Localized Protein That Is Required for Delayed Flowering in Winter-Annual Arabidopsis. Development 2006, 133, 4699–4707. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Gu, X.; He, Y. Establishment of the Winter-Annual Growth Habit via FRIGIDA -Mediated Histone Methylation at FLOWERING LOCUS C in Arabidopsis. Plant Cell 2009, 21, 1733–1746. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; He, Y.; Jacob, Y.; Noh, Y.-S.; Michaels, S.; Amasino, R. Establishment of the Vernalization-Responsive, Winter-Annual Habit in Arabidopsis Requires a Putative Histone H3 Methyl Transferase. Plant Cell 2005, 17, 3301–3310. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, J.; Yang, W.; Chen, L.; Wu, W.; Li, W.; Zhou, L.; Wang, J.; Chen, J.; Yang, T.; et al. OsFLZ2 Interacts with OsMADS51 to Fine-Tune Rice Flowering Time. Development 2022, 149, dev200862. [Google Scholar] [CrossRef]
- Colasanti, J.; Yuan, Z.; Sundaresan, V. The Indeterminate Gene Encodes a Zinc Finger Protein and Regulates a Leaf-Generated Signal Required for the Transition to Flowering in Maize. Cell 1998, 93, 593–603. [Google Scholar] [CrossRef]
- Kozaki, A.; Hake, S.; Colasanti, J. The Maize ID1 Flowering Time Regulator Is a Zinc Finger Protein with Novel DNA Binding Properties. Nucleic Acids Res. 2004, 32, 1710–1720. [Google Scholar] [CrossRef]
- Matsubara, K.; Yamanouchi, U.; Wang, Z.-X.; Minobe, Y.; Izawa, T.; Yano, M. Ehd2, a Rice Ortholog of the Maize INDETERMINATE1 Gene, Promotes Flowering by Up-Regulating Ehd1. Plant Physiol. 2008, 148, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Li, L.; Zhang, S.; Shen, J.; Li, S.; Hu, S.; Peng, Q.; Xiao, J.; Wu, C. Suppressor of Rid1 (SID1) Shares Common Targets with RID1 on Florigen Genes to Initiate Floral Transition in Rice. PLOS Genet. 2017, 13, e1006642. [Google Scholar] [CrossRef] [PubMed]
- Noh, B.; Lee, S.-H.; Kim, H.-J.; Yi, G.; Shin, E.-A.; Lee, M.; Jung, K.-J.; Doyle, M.R.; Amasino, R.M.; Noh, Y.-S. Divergent Roles of a Pair of Homologous Jumonji/Zinc-Finger–Class Transcription Factor Proteins in the Regulation of Arabidopsis Flowering Time. Plant Cell 2004, 16, 2601–2613. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Howard, M.; Dean, C. Physical Coupling of Activation and Derepression Activities to Maintain an Active Transcriptional State at FLC. Proc. Natl. Acad. Sci. USA 2016, 113, 9369–9374. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zhou, J.; Liu, C.; Liu, L.; Shen, L.; Yu, H. Nuclear Factor Y-Mediated H3K27me3 Demethylation of the SOC1 Locus Orchestrates Flowering Responses of Arabidopsis. Nat. Commun. 2014, 5, 4601. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Hu, H.; Ren, H.; Yang, Z.; Qiu, Q.; Qi, W.; Liu, X.; Chen, X.; Cui, X.; Li, S.; et al. The Arabidopsis H3K27me3 Demethylase JUMONJI 13 Is a Temperature and Photoperiod Dependent Flowering Repressor. Nat. Commun. 2019, 10, 1303. [Google Scholar] [CrossRef] [PubMed]
- Yokoo, T.; Saito, H.; Yoshitake, Y.; Xu, Q.; Asami, T.; Tsukiyama, T.; Teraishi, M.; Okumoto, Y.; Tanisaka, T. Se14, Encoding a JmjC Domain-Containing Protein, Plays Key Roles in Long-Day Suppression of Rice Flowering through the Demethylation of H3K4me3 of RFT1. PLoS ONE 2014, 9, e96064. [Google Scholar] [CrossRef]
- Lu, F.; Cui, X.; Zhang, S.; Liu, C.; Cao, X. JMJ14 Is an H3K4 Demethylase Regulating Flowering Time in Arabidopsis. Cell Res. 2010, 20, 387–390. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Song, H.-R.; Ko, J.-H.; Jeong, Y.-M.; Kwon, Y.E.; Seol, J.H.; Amasino, R.M.; Noh, B.; Noh, Y.-S. Repression of FLOWERING LOCUS T Chromatin by Functionally Redundant Histone H3 Lysine 4 Demethylases in Arabidopsis. PLoS ONE 2009, 4, e8033. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, D.; Jiang, J.; He, Y. A Plant-Specific Histone H3 Lysine 4 Demethylase Represses the Floral Transition in Arabidopsis. Plant J. 2010, 62, 663–673. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, X.; Yuan, W.; Schmitz, R.J.; He, Y. Photoperiodic Control of the Floral Transition through a Distinct Polycomb Repressive Complex. Dev. Cell 2014, 28, 727–736. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, Q.; Pan, J.; Liu, B.; Ruan, Y.; Huang, Y. Systematic Analysis of JmjC Gene Family and Stress -Response Expression of KDM5 Subfamily Genes in Brassica Napus. PeerJ 2021, 9, e11137. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Han, Z.; Cao, Y.; Fan, D.; Li, H.; Mo, H.; Feng, Y.; Liu, L.; Wang, Z.; Yue, Y.; et al. A Companion Cell–Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression. PLoS Genet. 2012, 8, e1002664. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Mo, H.; Fan, D.; Cao, Y.; Cui, S.; Ma, L. Overexpression of a Histone H3K4 Demethylase, JMJ15, Accelerates Flowering Time in Arabidopsis. Plant Cell Rep. 2012, 31, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Putterill, J.; Robson, F.; Lee, K.; Simon, R.; Coupland, G. The CONSTANS Gene of Arabidopsis Promotes Flowering and Encodes a Protein Showing Similarities to Zinc Finger Transcription Factors. Cell 1995, 80, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Hassidim, M.; Harir, Y.; Yakir, E.; Kron, I.; Green, R.M. Over-Expression of CONSTANS-LIKE 5 Can Induce Flowering in Short-Day Grown Arabidopsis. Planta 2009, 230, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.-F.; Wang, Z.-Y. Overexpression of COL9, a CONSTANS-LIKE Gene, Delays Flowering by Reducing Expression of CO and FT in Arabidopsis thaliana: Overexpression of COL9 Delays Flowering. Plant J. 2005, 43, 758–768. [Google Scholar] [CrossRef]
- Park, H.-Y.; Lee, S.-Y.; Seok, H.-Y.; Kim, S.-H.; Sung, Z.R.; Moon, Y.-H. EMF1 Interacts with EIP1, EIP6 or EIP9 Involved in the Regulation of Flowering Time in Arabidopsis. Plant Cell Physiol. 2011, 52, 1376–1388. [Google Scholar] [CrossRef]
- Tripathi, P.; Carvallo, M.; Hamilton, E.E.; Preuss, S.; Kay, S.A. Arabidopsis B-BOX32 Interacts with CONSTANS-LIKE3 to Regulate Flowering. Proc. Natl. Acad. Sci. USA 2017, 114, 172–177. [Google Scholar] [CrossRef]
- Yano, M.; Katayose, Y.; Ashikari, M.; Yamanouchi, U.; Monna, L.; Fuse, T.; Baba, T.; Yamamoto, K.; Umehara, Y.; Nagamura, Y.; et al. Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS. Plant Cell 2000, 12, 2473–2483. [Google Scholar] [CrossRef]
- Kim, S.-K.; Yun, C.-H.; Lee, J.H.; Jang, Y.H.; Park, H.-Y.; Kim, J.-K. OsCO3, a CONSTANS-LIKE Gene, Controls Flowering by Negatively Regulating the Expression of FT-like Genes under SD Conditions in Rice. Planta 2008, 228, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ma, C.; Xu, Y.; Wei, Q.; Imtiaz, M.; Lan, H.; Gao, S.; Cheng, L.; Wang, M.; Fei, Z.; et al. A Zinc Finger Protein Regulates Flowering Time and Abiotic Stress Tolerance in Chrysanthemum by Modulating Gibberellin Biosynthesis. Plant Cell 2014, 26, 2038–2054. [Google Scholar] [CrossRef] [PubMed]
- Englbrecht, C.C.; Schoof, H.; Böhm, S. Conservation, Diversification and Expansion of C2H2 Zinc Finger Proteins in the Arabidopsis thaliana Genome. BMC Genom. 2004, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, D.; Liu, C.; Shen, W.; Ruan, Y. Evolution and Conservation of JmjC Domain Proteins in the Green Lineage. Mol. Genet. Genom. 2016, 291, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Gan, E.-S.; Xu, Y.; Wong, J.-Y.; Geraldine Goh, J.; Sun, B.; Wee, W.-Y.; Huang, J.; Ito, T. Jumonji Demethylases Moderate Precocious Flowering at Elevated Temperature via Regulation of FLC in Arabidopsis. Nat. Commun. 2014, 5, 5098. [Google Scholar] [CrossRef]
- Maruoka, T.; Gan, E.-S.; Otsuka, N.; Shirakawa, M.; Ito, T. Histone Demethylases JMJ30 and JMJ32 Modulate the Speed of Vernalization Through the Activation of FLOWERING LOCUS C in Arabidopsis thaliana. Front. Plant Sci. 2022, 13, 837831. [Google Scholar] [CrossRef] [PubMed]
- Klose, R.J.; Kallin, E.M.; Zhang, Y. JmjC-Domain-Containing Proteins and Histone Demethylation. Nat. Rev. Genet. 2006, 7, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Mosammaparast, N.; Shi, Y. Reversal of Histone Methylation: Biochemical and Molecular Mechanisms of Histone Demethylases. Annu. Rev. Biochem. 2010, 79, 155–179. [Google Scholar] [CrossRef]
- Dutta, A.; Choudhary, P.; Caruana, J.; Raina, R. JMJ 27, an Arabidopsis H3K9 Histone Demethylase, Modulates Defense against Pseudomonas Syringae and Flowering Time. Plant J. 2017, 91, 1015–1028. [Google Scholar] [CrossRef]
- Briat, J.-F.; Dubos, C.; Gaymard, F. Iron Nutrition, Biomass Production, and Plant Product Quality. Trends Plant Sci. 2015, 20, 33–40. [Google Scholar] [CrossRef]
- Gao, F.; Dubos, C. Transcriptional Integration of Plant Responses to Iron Availability. J. Exp. Bot. 2021, 72, 2056–2070. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kim, S.A.; Guerinot, M.L.; McClung, C.R. Reciprocal Interaction of the Circadian Clock with the Iron Homeostasis Network in Arabidopsis. Plant Physiol. 2013, 161, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Y.; Wang, Y.; Shin, L.-J.; Wu, J.-F.; Shanmugam, V.; Tsednee, M.; Lo, J.-C.; Chen, C.-C.; Wu, S.-H.; Yeh, K.-C. Iron Is Involved in the Maintenance of Circadian Period Length in Arabidopsis. Plant Physiol. 2013, 161, 1409–1420. [Google Scholar] [CrossRef] [PubMed]
- Salomé, P.A.; Oliva, M.; Weigel, D.; Krämer, U. Circadian Clock Adjustment to Plant Iron Status Depends on Chloroplast and Phytochrome Function. EMBO J. 2012, 32, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Robe, K.; Gaymard, F.; Izquierdo, E.; Dubos, C. The Transcriptional Control of Iron Homeostasis in Plants: A Tale of BHLH Transcription Factors? Front. Plant Sci. 2019, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zong, X.; Ren, P.; Qian, Y.; Fu, A. Basic Helix-Loop-Helix (BHLH) Transcription Factors Regulate a Wide Range of Functions in Arabidopsis. Int. J. Mol. Sci. 2021, 22, 7152. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Cui, Y.; Liu, Y.; Fan, H.; Du, J.; Huang, Z.; Yuan, Y.; Wu, H.; Ling, H.-Q. Requirement and Functional Redundancy of Ib Subgroup BHLH Proteins for Iron Deficiency Responses and Uptake in Arabidopsis thaliana. Mol. Plant 2013, 6, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, L.; Liu, L.; Li, X.; Li, Y.; Liang, G.; Wang, H.; Yu, D. Iron Deficiency-Induced Transcription Factors BHLH38/100/101 Negatively Modulate Flowering Time in Arabidopsis thaliana. Plant Sci. 2021, 308, 110929. [Google Scholar] [CrossRef] [PubMed]
- Sivitz, A.B.; Hermand, V.; Curie, C.; Vert, G. Arabidopsis BHLH100 and BHLH101 Control Iron Homeostasis via a FIT-Independent Pathway. PLoS ONE 2012, 7, e44843. [Google Scholar] [CrossRef]
- Wild, M.; Davière, J.-M.; Regnault, T.; Sakvarelidze-Achard, L.; Carrera, E.; Lopez Diaz, I.; Cayrel, A.; Dubeaux, G.; Vert, G.; Achard, P. Tissue-Specific Regulation of Gibberellin Signaling Fine-Tunes Arabidopsis Iron-Deficiency Responses. Dev. Cell 2016, 37, 190–200. [Google Scholar] [CrossRef]
- Cheng, H.; Qin, L.; Lee, S.; Fu, X.; Richards, D.E.; Cao, D.; Luo, D.; Harberd, N.P.; Peng, J. Gibberellin Regulates Arabidopsis Floral Development via Suppression of DELLA Protein Function. Development 2004, 131, 1055–1064. [Google Scholar] [CrossRef]
- Han, Y.-F.; Huang, H.-W.; Li, L.; Cai, T.; Chen, S.; He, X.-J. The Cytosolic Iron-Sulfur Cluster Assembly Protein MMS19 Regulates Transcriptional Gene Silencing, DNA Repair, and Flowering Time in Arabidopsis. PLoS ONE 2015, 10, e0129137. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.-G.; Wang, X.; Tang, K.; Zhang, H.; Mangrauthia, S.K.; Lei, M.; Hsu, C.-C.; Hou, Y.-J.; Wang, C.; Li, Y.; et al. MET18 Connects the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Active DNA Demethylation in Arabidopsis. PLoS Genet. 2015, 11, e1005559. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Q.; Yuan, W.; Cao, Z.; Qi, B.; Kumar, S.; Li, Y.; Qian, W. The Cytosolic Fe-S Cluster Assembly Component MET18 Is Required for the Full Enzymatic Activity of ROS1 in Active DNA Demethylation. Sci. Rep. 2016, 6, 26443. [Google Scholar] [CrossRef] [PubMed]
- Burkhead, J.L.; Gogolin Reynolds, K.A.; Abdel-Ghany, S.E.; Cohu, C.M.; Pilon, M. Copper Homeostasis. New Phytol. 2009, 182, 799–816. [Google Scholar] [CrossRef] [PubMed]
- Ravet, K.; Pilon, M. Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxid. Redox Signal. 2013, 19, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Sandmann, G.; Böger, P. Copper-Mediated Lipid Peroxidation Processes in Photosynthetic Membranes. Plant Physiol. 1980, 66, 797–800. [Google Scholar] [CrossRef]
- Yruela, I.; Alfonso, M.; Ortiz De Zarate, I.; Montoya, G.; Picorel, R. Precise Location of the Cu(II)-Inhibitory Binding Site in Higher Plant and Bacterial Photosynthetic Reaction Centers as Probed by Light-Induced Absorption Changes. J. Biol. Chem. 1993, 268, 1684–1689. [Google Scholar] [CrossRef]
- Katoh, S. A New Copper Protein from Chlorella Ellipsoidea. Nature 1960, 186, 533–534. [Google Scholar] [CrossRef]
- Redinbo, M.R.; Yeates, T.O.; Merchant, S. Plastocyanin: Structural and Functional Analysis. J. Bioenerg. Biomembr. 1994, 26, 49–66. [Google Scholar] [CrossRef]
- Weigel, M.; Varotto, C.; Pesaresi, P.; Finazzi, G.; Rappaport, F.; Salamini, F.; Leister, D. Plastocyanin Is Indispensable for Photosynthetic Electron Flow in Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 31286–31289. [Google Scholar] [CrossRef] [PubMed]
- Carr, H.S.; Winge, D.R. Assembly of Cytochrome c Oxidase within the Mitochondrion. Acc. Chem. Res. 2003, 36, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Bowler, C.; Montagu, M.V.; Inze, D. Superoxide Dismutase and Stress Tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43, 83–116. [Google Scholar] [CrossRef]
- Gavnholt, B.; Larsen, K. Molecular Biology of Plant Laccases in Relation to Lignin Formation. Physiol. Plant 2002, 116, 273–280. [Google Scholar] [CrossRef]
- Rea, G.; Metoui, O.; Infantino, A.; Federico, R.; Angelini, R. Copper Amine Oxidase Expression in Defense Responses to Wounding and Ascochyta Rabiei Invasion. Plant Physiol. 2002, 128, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.L. Beyond Brown: Polyphenol Oxidases as Enzymes of Plant Specialized Metabolism. Front. Plant Sci. 2015, 5, 783. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M. Polyphenol Oxidases in Plants and Fungi: Going Places? A Review. Phytochemistry 2006, 67, 2318–2331. [Google Scholar] [CrossRef]
- Dong, J.; Kim, S.T.; Lord, E.M. Plantacyanin Plays a Role in Reproduction in Arabidopsis. Plant Physiol. 2005, 138, 778–789. [Google Scholar] [CrossRef]
- Cohu, C.M.; Pilon, M. Cell Biology of Copper. In Cell Biology of Metals and Nutrients; Hell, R., Mendel, R.-R., Eds.; Plant Cell Monographs; Springer: Berlin/Heidelberg, Germany, 2010; Volume 17, pp. 55–74. ISBN 978-3-642-10612-5. [Google Scholar]
- Owuoche, J.O.; Briggs, K.G.; Taylor, G.J.; Penney, D.C. Response of Eight Canadian Spring Wheat (Triticum Aestivum L.) Cultivars to Copper: Copper Content in the Leaves and Grain. Can. J. Plant Sci. 1995, 75, 405–411. [Google Scholar] [CrossRef]
- Kim, S.; Mollet, J.-C.; Dong, J.; Zhang, K.; Park, S.-Y.; Lord, E.M. Chemocyanin, a Small Basic Protein from the Lily Stigma, Induces Pollen Tube Chemotropism. Proc. Natl. Acad. Sci. USA 2003, 100, 16125–16130. [Google Scholar] [CrossRef]
- Sancenón, V.; Puig, S.; Mateu-Andrés, I.; Dorcey, E.; Thiele, D.J.; Peñarrubia, L. The Arabidopsis Copper Transporter COPT1 Functions in Root Elongation and Pollen Development. J. Biol. Chem. 2004, 279, 15348–15355. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Gayomba, S.R.; Rutzke, M.A.; Craft, E.; Kochian, L.V.; Vatamaniuk, O.K. COPT6 Is a Plasma Membrane Transporter That Functions in Copper Homeostasis in Arabidopsis and Is a Novel Target of SQUAMOSA Promoter-Binding Protein-like 7. J. Biol. Chem. 2012, 287, 33252–33267. [Google Scholar] [CrossRef]
- Garcia-Molina, A.; Andrés-Colás, N.; Perea-García, A.; Neumann, U.; Dodani, S.C.; Huijser, P.; Peñarrubia, L.; Puig, S. The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions. Plant Cell Physiol. 2013, 54, 1378–1390. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.; Casero, D.; Singh, V.; Wilson, G.T.; Grande, A.; Yang, H.; Dodani, S.C.; Pellegrini, M.; Huijser, P.; Connolly, E.L.; et al. Transcriptome Sequencing Identifies SPL7 -Regulated Copper Acquisition Genes FRO4 / FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis. Plant Cell 2012, 24, 738–761. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, H.; Hayashi, M.; Fukazawa, M.; Kobayashi, Y.; Shikanai, T. SQUAMOSA Promoter Binding Protein–Like7 Is a Central Regulator for Copper Homeostasis in Arabidopsis. Plant Cell 2009, 21, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Kigawa, T.; Inoue, M.; Tateno, M.; Yamasaki, T.; Yabuki, T.; Aoki, M.; Seki, E.; Matsuda, T.; Nunokawa, E.; et al. A Novel Zinc-Binding Motif Revealed by Solution Structures of DNA-Binding Domains of Arabidopsis SBP-Family Transcription Factors. J. Mol. Biol. 2004, 337, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Ghany, S.E.; Pilon, M. MicroRNA-Mediated Systemic Down-Regulation of Copper Protein Expression in Response to Low Copper Availability in Arabidopsis. J. Biol. Chem. 2008, 283, 15932–15945. [Google Scholar] [CrossRef]
- Yamasaki, H.; Abdel-Ghany, S.E.; Cohu, C.M.; Kobayashi, Y.; Shikanai, T.; Pilon, M. Regulation of Copper Homeostasis by Micro-RNA in Arabidopsis. J. Biol. Chem. 2007, 282, 16369–16378. [Google Scholar] [CrossRef]
- Pilon, M.; Cohu, C.M.; Ravet, K.; Abdel-Ghany, S.E.; Gaymard, F. Essential Transition Metal Homeostasis in Plants. Curr. Opin. Plant Biol. 2009, 12, 347–357. [Google Scholar] [CrossRef]
- Sunkar, R.; Kapoor, A.; Zhu, J.-K. Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of MiR398 and Important for Oxidative Stress Tolerance. Plant Cell 2006, 18, 2051–2065. [Google Scholar] [CrossRef]
- Pilon, M. The Copper MicroRNAs. New Phytol. 2017, 213, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Schulten, A.; Pietzenuk, B.; Quintana, J.; Scholle, M.; Feil, R.; Krause, M.; Romera-Branchat, M.; Wahl, V.; Severing, E.; Coupland, G.; et al. Energy Status-Promoted Growth and Development of Arabidopsis Require Copper Deficiency Response Transcriptional Regulator SPL7. Plant Cell 2022, 34, 3873–3898. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W. Regulation of Flowering Time by the MiR156-Mediated Age Pathway. J. Exp. Bot. 2014, 65, 4723–4730. [Google Scholar] [CrossRef] [PubMed]
- Teotia, S.; Tang, G. To Bloom or Not to Bloom: Role of MicroRNAs in Plant Flowering. Mol. Plant 2015, 8, 359–377. [Google Scholar] [CrossRef] [PubMed]
- Rahmati Ishka, M.; Vatamaniuk, O.K. Copper Deficiency Alters Shoot Architecture and Reduces Fertility of Both Gynoecium and Androecium in Arabidopsis thaliana. Plant Direct 2020, 4, e00288. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-H.; Seo, Y.-H.; Seo, P.J.; Reyes, J.L.; Yun, J.; Chua, N.-H.; Park, C.-M. The GIGANTEA -Regulated MicroRNA172 Mediates Photoperiodic Flowering Independent of CONSTANS in Arabidopsis. Plant Cell 2007, 19, 2736–2748. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.-H.; Helliwell, C.A. Regulation of Flowering Time and Floral Patterning by MiR172. J. Exp. Bot. 2011, 62, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, J.; Yant, L.J.; Mürdter, F.; Küttner, F.; Schmid, M. Repression of Flowering by the MiR172 Target SMZ. PLoS Biol. 2009, 7, e1000148. [Google Scholar] [CrossRef]
- Aukerman, M.J.; Sakai, H. Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2 -Like Target Genes. Plant Cell 2003, 15, 2730–2741. [Google Scholar] [CrossRef]
- Arteca, R.N.; Arteca, J.M. Heavy-Metal-Induced Ethylene Production in Arabidopsis thaliana. J. Plant Physiol. 2007, 164, 1480–1488. [Google Scholar] [CrossRef]
- Achard, P.; Baghour, M.; Chapple, A.; Hedden, P.; Van Der Straeten, D.; Genschik, P.; Moritz, T.; Harberd, N.P. The Plant Stress Hormone Ethylene Controls Floral Transition via DELLA-Dependent Regulation of Floral Meristem-Identity Genes. Proc. Natl. Acad. Sci. USA 2007, 104, 6484–6489. [Google Scholar] [CrossRef] [PubMed]
- Maric, A. Beyond the Genetics of Flowering: Integration of Ethylene Signaling and Histone Methylation Controls Flowering Time. Plant Physiol. 2023, 192, 2224–2226. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, L.; Zhang, H.; Chen, L.; Yu, D. ERF1 Delays Flowering through Direct Inhibition of FLOWERING LOCUS T Expression in Arabidopsis. J. Integr. Plant Biol. 2021, 63, 1712–1723. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, T.; Kieber, J.J.; Hirayama, N.; Kogan, M.; Guzman, P.; Nourizadeh, S.; Alonso, J.M.; Dailey, W.P.; Dancis, A.; Ecker, J.R. RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson Disease–Related Copper Transporter, Is Required for Ethylene Signaling in Arabidopsis. Cell 1999, 97, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Woeste, K.E.; Kieber, J.J. A Strong Loss-of-Function Mutation in RAN1 Results in Constitutive Activation of the Ethylene Response Pathway as Well as a Rosette-Lethal Phenotype. Plant Cell 2000, 12, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, F.I.; Esch, J.J.; Hall, A.E.; Binder, B.M.; Schaller, G.E.; Bleecker, A.B. A Copper Cofactor for the Ethylene Receptor ETR1 from Arabidopsis. Science 1999, 283, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-F.; Randlett, M.D.; Findell, J.L.; Schaller, G.E. Localization of the Ethylene Receptor ETR1 to the Endoplasmic Reticulum of Arabidopsis. J. Biol. Chem. 2002, 277, 19861–19866. [Google Scholar] [CrossRef]
- Azhar, B.J.; Abbas, S.; Aman, S.; Yamburenko, M.V.; Chen, W.; Müller, L.; Uzun, B.; Jewell, D.A.; Dong, J.; Shakeel, S.N.; et al. Basis for High-Affinity Ethylene Binding by the Ethylene Receptor ETR1 of Arabidopsis. Proc. Natl. Acad. Sci. USA 2023, 120, e2215195120. [Google Scholar] [CrossRef]
- Binder, B.M.; Rodríguez, F.I.; Bleecker, A.B. The Copper Transporter RAN1 Is Essential for Biogenesis of Ethylene Receptors in Arabidopsis. J. Biol. Chem. 2010, 285, 37263–37270. [Google Scholar] [CrossRef]
- Himelblau, E.; Amasino, R.M. Nutrients Mobilized from Leaves of Arabidopsis thaliana during Leaf Senescence. J. Plant Physiol. 2001, 158, 1317–1323. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Socha, A.L.; Guerinot, M.L. Mn-Euvering Manganese: The Role of Transporter Gene Family Members in Manganese Uptake and Mobilization in Plants. Front. Plant Sci. 2014, 5, 106. [Google Scholar] [CrossRef] [PubMed]
- Schmidt. Husted The Biochemical Properties of Manganese in Plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef] [PubMed]
- Burnell, J.N. The Biochemistry of Manganese in Plants. In Manganese in Soils and Plants: Proceedings; Graham, R.D., Hannam, R.J., Uren, N.C., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 125–137. ISBN 978-94-009-2817-6. [Google Scholar]
- Schmidt, S.B.; Jensen, P.E.; Husted, S. Manganese Deficiency in Plants: The Impact on Photosystem II. Trends Plant Sci. 2016, 21, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Bannister, J.V.; Bannister, W.H.; Rotilio, G. Aspects of the Structure, Function, and Applications of Superoxide Dismutas. Crit. Rev. Biochem. 1987, 22, 111–180. [Google Scholar] [CrossRef] [PubMed]
- Requena, L.; Bornemann, S. Barley (Hordeum Vulgare) Oxalate Oxidase Is a Manganese-Containing Enzyme. Biochem. J. 1999, 343, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Lane, B.G. Oxalate, Germins, and Higher-Plant Pathogens. IUBMB Life 2002, 53, 67–75. [Google Scholar] [CrossRef]
- Sharma, C.P.; Sharma, P.N.; Chatterjee, C.; Agarwala, S.C. Manganese Deficiency in Maize Affects Pollen Viability. Plant Soil 1991, 138, 139–142. [Google Scholar] [CrossRef]
- Yang, C.-H.; Wang, C.; Singh, S.; Fan, N.; Liu, S.; Zhao, L.; Cao, H.; Xie, W.; Yang, C.; Huang, C.-F. Golgi-Localised Manganese Transporter PML3 Regulates Arabidopsis Growth through Modulating Golgi Glycosylation and Cell Wall Biosynthesis. New Phytol. 2021, 231, 2200–2214. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, C.; Liu, C.; Fu, A.; Luan, S. A Golgi-Localized Manganese Transporter Functions in Pollen Tube Tip Growth to Control Male Fertility in Arabidopsis. Plant Commun. 2021, 2, 100178. [Google Scholar] [CrossRef]
- He, J.; Rössner, N.; Hoang, M.T.T.; Alejandro, S.; Peiter, E. Transport, Functions, and Interaction of Calcium and Manganese in Plant Organellar Compartments. Plant Physiol. 2021, 187, 1940–1972. [Google Scholar] [CrossRef] [PubMed]
- Kosuth, T.; Leskova, A.; Castaings, L.; Curie, C. Golgi in and out: Multifaceted Role and Journey of Manganese. New Phytol. 2023, 238, 1795–1800. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Chatterjee, M.; Faik, A. UDP-Xylose-Stimulated Glucuronyltransferase Activity in Wheat Microsomal Membranes: Characterization and Role in Glucurono(Arabino)Xylan Biosynthesis. Plant Physiol. 2008, 147, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jin, S.; Hu, H.; Sun, Y.; Wang, Y.; Han, P.; Hou, B. UGT87A2, an Arabidopsis Glycosyltransferase, Regulates Flowering Time via FLOWERING LOCUS C. New Phytol. 2012, 194, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Luk, E.; Carroll, M.; Baker, M.; Culotta, V.C. Manganese Activation of Superoxide Dismutase 2 in Saccharomyces Cerevisiae Requires MTM1, a Member of the Mitochondrial Carrier Family. Proc. Natl. Acad. Sci. USA 2003, 100, 10353–10357. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Chai, M.-F.; Lu, P.-L.; An, R.; Chen, J.; Wang, X.-C. AtMTM1, a Novel Mitochondrial Protein, May Be Involved in Activation of the Manganese-Containing Superoxide Dismutase in Arabidopsis. Planta 2007, 226, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.-H.; Lin, S.-F.; Huang, Y.-C.; Huang, C.-H.; Kuo, W.-Y.; Jinn, T.-L. Significance of AtMTM1 and AtMTM2 for Mitochondrial MnSOD Activation in Arabidopsis. Front. Plant Sci. 2021, 12, 690064. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, G.; Mendel, R.R. Molybdenum Cofactor Biosynthesis and Molybdenum Enzymes. Annu. Rev. Plant Biol. 2006, 57, 623–647. [Google Scholar] [CrossRef]
- Hille, R.; Nishino, T.; Bittner, F. Molybdenum Enzymes in Higher Organisms. Coord. Chem. Rev. 2011, 255, 1179–1205. [Google Scholar] [CrossRef]
- Hänsch, R.; Lang, C.; Rennenberg, H.; Mendel, R.R. Significance of Plant Sulfite Oxidase. Plant Biol. 2007, 9, 589–595. [Google Scholar] [CrossRef]
- Yesbergenova, Z.; Yang, G.; Oron, E.; Soffer, D.; Fluhr, R.; Sagi, M. The Plant Mo-Hydroxylases Aldehyde Oxidase and Xanthine Dehydrogenase Have Distinct Reactive Oxygen Species Signatures and Are Induced by Drought and Abscisic Acid. Plant J. 2005, 42, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Kamanga, B.M.; Zhang, W.; Xu, Y.; Xu, L. Research Progress of Aldehyde Oxidases in Plants. PeerJ 2022, 10, e13119. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.H. Nitrate reductase structure, function and regulation: Bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 277–303. [Google Scholar] [CrossRef] [PubMed]
- Tejada-Jimenez, M.; Chamizo-Ampudia, A.; Calatrava, V.; Galvan, A.; Fernandez, E.; Llamas, A. From the Eukaryotic Molybdenum Cofactor Biosynthesis to the Moonlighting Enzyme MARC. Molecules 2018, 23, 3287. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, B.N.; Gridley, K.L.; Ngaire Brady, J.; Phillips, T.; Tyerman, S.D. The Role of Molybdenum in Agricultural Plant Production. Ann. Bot. 2005, 96, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Mayr, S.J.; Mendel, R.-R.; Schwarz, G. Molybdenum Cofactor Biology, Evolution and Deficiency. Biochim. Biophys. Acta BBA Mol. Cell Res. 2021, 1868, 118883. [Google Scholar] [CrossRef] [PubMed]
- Mendel, R.R. The History of the Molybdenum Cofactor—A Personal View. Molecules 2022, 27, 4934. [Google Scholar] [CrossRef]
- Tanaka, O.; Horikawa, W.; Nishimura, H.; Nasu, Y. Flower Induction by Suppression of Nitrate Assimilation in Lemna paucicostata 6746. Plant Cell Physiol. 1986, 27, 127–133. [Google Scholar] [CrossRef]
- Nelson-Schreiber, B.M.; Schweitzer, L.E. Limitations on Leaf Nitrate Reductase Activity during Flowering and Podfill in Soybean. Plant Physiol. 1986, 80, 454–458. [Google Scholar] [CrossRef]
- Maia, L.B.; Moura, J.J.G. Nitrite Reduction by Molybdoenzymes: A New Class of Nitric Oxide-Forming Nitrite Reductases. JBIC J. Biol. Inorg. Chem. 2015, 20, 403–433. [Google Scholar] [CrossRef]
- Olas, J.J.; Van Dingenen, J.; Abel, C.; Działo, M.A.; Feil, R.; Krapp, A.; Schlereth, A.; Wahl, V. Nitrate Acts at the Arabidopsis thaliana Shoot Apical Meristem to Regulate Flowering Time. New Phytol. 2019, 223, 814–827. [Google Scholar] [CrossRef] [PubMed]
- Marchive, C.; Roudier, F.; Castaings, L.; Bréhaut, V.; Blondet, E.; Colot, V.; Meyer, C.; Krapp, A. Nuclear Retention of the Transcription Factor NLP7 Orchestrates the Early Response to Nitrate in Plants. Nat. Commun. 2013, 4, 1713. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Tang, R.-H.; Hao, Y.; Stevens, R.D.; Cook, C.W.; Ahn, S.M.; Jing, L.; Yang, Z.; Chen, L.; Guo, F.; et al. Nitric Oxide Represses the Arabidopsis Floral Transition. Science 2004, 305, 1968–1971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-W.; Fu, Y.-F.; Zhou, Y.-H.; Wang, C.-Q.; Lan, T.; Chen, G.-D.; Zeng, J.; Chen, Y.-E.; Yuan, M.; Yuan, S.; et al. Nitrogen and Nitric Oxide Regulate Arabidopsis Flowering Differently. Plant Sci. 2019, 284, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Seligman, K.; Saviani, E.E.; Oliveira, H.C.; Pinto-Maglio, C.A.F.; Salgado, I. Floral Transition and Nitric Oxide Emission During Flower Development in Arabidopsis thaliana Is Affected in Nitrate Reductase-Deficient Plants. Plant Cell Physiol. 2008, 49, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Planchet, E.; Jagadis Gupta, K.; Sonoda, M.; Kaiser, W.M. Nitric Oxide Emission from Tobacco Leaves and Cell Suspensions: Rate Limiting Factors and Evidence for the Involvement of Mitochondrial Electron Transport: NO Production by Plants. Plant J. 2005, 41, 732–743. [Google Scholar] [CrossRef]
Plant | Gene Name | Protein Function | Element | Effect | Description | Reference |
---|---|---|---|---|---|---|
Arabidopsis | CML24 | Calmodulin-like protein | Calcium | Promotion | cml24 mutant delays flowering in LD with high expression of CO. | [34,35] |
Arabidopsis | CML23 and CML24 | Calmodulin-like protein | Calcium | Promotion | cml23 cml24 double mutant delays flowering in LD through increased FLC. | [34,35] |
Arabidopsis | CPK32 | Kinase | Calcium | Promotion | cpk32 exhibits delayed and late flowering. CPK32 protein interacts with FCA and phosphorylates it in a Ca2+-dependent manner. | [38] |
Arabidopsis | CBK3/CRK1 | Kinase | Calcium | Promotion | CKB3-overexpression transgenic line exhibits early flowering in both LD and SD with shorter periods of circadian rhythm of CCA1 and LHY. | [42,43] |
Arabidopsis | NCL | Na+/Ca2+ exchanger | Calcium | Inhibition | NCL overexpressing transgenic plants delays flowering with less expression of CO and FT, and atncl-1 mutant flowers earlier in LD, not SD, due to high expression of CO and FT. | [44] |
Arabidopsis | CAX1 | Vacuolar H+/Ca2+ transporter | Calcium | Promotion | cax1 displays late flowering. | [45] |
Arabidopsis | ALBINO3/PPF1 | Chloroplast-localizing calcium ion transporter | Calcium | Inhibition | PPF1 overexpressing plants flower late, while PPF1 antisense transgenic plants flower earlier. | [46,47] |
Soybean | GmCDPK38 | Kinase | Calcium | Promotion | gmcdpk38 mutant flowers later and alters the expression of several flowering genes. | [39] |
Tobacco | NtCBK1 | Kinase | Calcium | Inhibition | Transgenic tobacco overexpressing NtCBK1 exhibits late flowering. | [40] |
Arabidopsis | GSH1 | Gamma-glutamyl cysteine synthase | Sulfur | Inhibition | GSH1 overexpressing transgenic plants exhibit delayed flowering due to high levels of FLC and low FT expression, while pad2-1, a GSH1 mutant allele, flowers earlier than wild-type. | [85] |
Arabidopsis | FRY1 | 3’(2’),5’-bisphosphate nucleotidase | Sulfur | Promotion | fry1 mutant flowers late due to reduced FT expression. | [78] |
Arabidopsis | FIL | ZnF TF | Zinc | Inhibition | fil mutant shows early flowering. | [123,124] |
Arabidopsis | LATE | ZnF TF | Zinc | Inhibition | LATE ectopic expression results in late flowering. | [135] |
Arabidopsis | AtVOZ1 and AtVOZ2 | ZnF TF | Zinc | Promotion | voz1voz2 double mutant exhibits severely delayed flowering due to increased FLC transcription level. | [127] |
Rice | FLZ2 | ZnF TF | Zinc | Inhibition | FLZ2 overexpressing plants display late flowering, and flz2 mutant exhibits early flowering, showing alterations in floral integrator gene expression. | [141] |
Alfalfa | MsZFN | Putative znf TF | Zinc | Inhibition | MsZFN overexpression in Arabidopsis causes late flowering under LD. | [130] |
Maize | ID1 | Transcription factor, IDD family | Zinc | Promotion | id mutant exhibits late flowering. | [142] |
Arabidopsis | CO | ZnF TF, BBX family | Zinc | Promotion | co mutant exhibits late flowering. | [158] |
Arabidopsis | COL3/BBX4 | ZnF TF, BBX family | Zinc | Inhibition | col3 exhibits early flowering with increased FT expression. COL3/BBX4 interacts with BBX32. | [162] |
Arabidopsis | COL5/BBX6 | ZnF TF, BBX family | Zinc | Promotion | Overexpression of COL5/BBX6 promotes flowering. | [159] |
Arabidopsis | COL9/BBX7 | ZnF TF, BBX family | Zinc | Inhibition | COL9 overexpressing plants display delayed flowering, while suppression of COL9 flowers earlier. | [160] |
Arabidopsis | EIP6/BBX32 | ZnF TF, BBX family | Zinc | Inhibition | eip6/bbx32 mutant displays early flowering, while overexpressing plants exhibit late flowering. | [161] |
Rice | HD1 | ZnF TF, BBX family | Zinc | Promotion | hd1 exhibits late flowering. | [163] |
Rice | OsCOL3 | ZnF TF, BBX family | Zinc | Inhibition | OsCOL3 overexpression causes late flowering through decrease in FTL expression. | [164] |
Chrysanthemum | BBX24 | ZnF TF, BBX family | Zinc | Inhibition | Suppression of BBX24 causes early flowering via photoperiod and GA biosynthesis pathways. | [165] |
Arabidopsis | JMJ11/ELF6 | Histone methyltransferase, znf and jmjc | Zinc, iron | Inhibition | elf6 mutant is early flowering due to the downregulation of FLC and sequential upregulation of FT. | [146,147] |
Arabidopsis | JMJ12/REF6 | Histone methyltransferase, znf and jmjc | Zinc, iron | Promotion | ref6 mutant is late flowering because of high FLC expression. And REF6 /JMJ12 associates with SOC1 locus to promote SOC1 expression in LD. | [146,148] |
Arabidopsis | JMJ13 | Histone methyltransferase, znf and jmjc | Zinc, iron | Inhibition | jmj13 mutant is early flowering both in LD and SD. | [149] |
Arabidopsis | JMJ14 | Histone methyltransferase, znf and jmjc | Zinc, iron | Inhibition | jmj14 mutant shows increase in FT, SOC1, AP1, and LFY expression and early flowering. JMJ14 interacts with EMF1, a component of a polycomb group complex, and suppresses FT transcription and flowering. | [151,152,154] |
Arabidopsis | JMJ15 | Histone methyltransferase, znf and jmjc | Zinc, iron | Promotion | JMJ15 overexpression results in early flowering and repression of FLC level and reduced H3K4me3 at the FLC locus, resulting in increased FT expression. | [157] |
Arabidopsis | JMJ18 | Histone methyltransferase, znf and jmjc | Zinc, iron | Promotion | JMJ18 overexpression results in early flowering and repression of FLC level and reduced H3K4me3 at the FLC locus, resulting in increased FT expression. | [156] |
Arabidopsis | JMJ27 | Histone methyltransferase, jmjc domain | Iron | Inhibition | jmj27 mutant displays an increase in CO, FT, and SOC1 expression and a decrease in FLC expression, resulting in early flowering. | [172] |
Arabidopsis | JMJ30 and JMJ32 | Histone methyltransferase, jmjc domain | Iron | Inhibition | jmj30 jmj32 shows early flowering under vernalized conditions with a high accumulation level of H3K27me3 and less FLC transcription. | [168,169] |
Arabidopsis | bHLH38, bHLH100, and bHLH101 | bHLH transcription factors | Iron | Inhibition | bhlh38 bhlh100 bhlh101 triple mutant shows early flowering. | [181] |
Arabidopsis | MMS19 | A component of Fe-S cluster | Iron, sulfur | Inhibition | mms19 mutant shows reduced Fe contents and early flowering. | [185] |
Arabidopsis | BRM | Chromatin-remodeling atpase with bromodomain | Boron | Inhibition | The protein accumulation of BRAHMA is reduced through proteasomal degradation. BRM-silenced and loss-of-function mutation in BRM exhibits early flowering under both long days and short days. | [98,99,100] |
Arabidopsis | SPL7 | SQUAMOSA PROMOTER BINDING and transcription factor | Copper | Promotion | spl7-1 mutant exhibits lightly delayed flowering both in Cu-deficient medium and normal conditions, probably due to high accumulation of miRNA156. | [216] |
Arabidopsis | MTM1 and MTM2 | MnSOD1 activator | Manganese | Inhibition | mtm1 mtm2 double mutant flowers earlier than wild-type and single mutants. | [252] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, S.E.; Shim, J.S.; Park, H.J. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. Plants 2023, 12, 3299. https://doi.org/10.3390/plants12183299
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. Plants. 2023; 12(18):3299. https://doi.org/10.3390/plants12183299
Chicago/Turabian StyleJun, Sang Eun, Jae Sun Shim, and Hee Jin Park. 2023. "Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time" Plants 12, no. 18: 3299. https://doi.org/10.3390/plants12183299
APA StyleJun, S. E., Shim, J. S., & Park, H. J. (2023). Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. Plants, 12(18), 3299. https://doi.org/10.3390/plants12183299