Ratoon Rice Cropping Mitigates the Greenhouse Effect by Reducing CH4 Emissions through Reduction of Biomass during the Ratoon Season
Abstract
:1. Introduction
2. Results
2.1. Grain Yields and Characteristics of Aboveground Rice Plants
2.2. CH4 and N2O Emissions
2.3. GWP and GHGI
2.4. Correlations among GHG Parameters and the Aboveground Characteristics of Crops
2.5. Economic Benefits, Total Costs, and NEEB
3. Discussion
3.1. Differences in GHG Emissions between Ratoon Rice Cropping System and Double Rice Cropping System
3.2. Differences in Methane Emissions between the Main and Ratoon Seasons in Ratoon Rice Cropping System
3.3. Differences in GWP and GHGI between Ratoon Rice Cropping System and Double Rice Cropping System
3.4. Differences in NEEB between the Ratoon Rice Cropping System and Double Rice Cropping System
4. Materials and Methods
4.1. Field Site and Soil Characteristics
4.2. Experimental Treatments and Management Practices
4.3. Collection and Measurement of CH4 and N2O
4.4. Sampling of Plants and Yield Measurement
4.5. GWP and GHGI
4.6. NEEB
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smith, P.; Reay, D.; Smith, J. Agricultural methane emissions and the potential for mitigation. Philos. Trans. R. Soc. A 2021, 379, 20200451. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Oo, A.Z.; Sudo, S.; Inubushi, K.; Mano, M.; Yamamoto, A.; Ono, K.; Osawa, T.; Hayashida, S.; Patra, P.; Terao, Y.; et al. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agric. Ecosyst. Environ. 2018, 252, 148–158. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Liu, S.H.; Zhu, J.W.; Zhao, L.M.; Qi, T.T.; Liang, J.; Luo, J.; Xiao, X.; Fan, X.R. Limited aerenchyma reduces oxygen diffusion and methane emission in paddy. J. Environ. Manag. 2021, 279, 111583. [Google Scholar] [CrossRef]
- Saha, M.K.; Mia, S.; Biswas, A.A.A.; Sattar, M.A.; Kader, M.A.; Jiang, Z.X. Potential methane emission reduction strategies from rice cultivation systems in Bangladesh: A critical synthesis with global meta-data. J. Environ. Manag. 2022, 310, 114755. [Google Scholar] [CrossRef]
- Das, K.; Baruah, K.K. A comparison of growth and photosynthetic characteristics of two improved rice cultivars on methane emission from rainfed agroecosystem of northeast India. Agric. Ecosyst. Environ. 2008, 124, 105–113. [Google Scholar] [CrossRef]
- Ding, A.; Willis, C.R.; Sass, R.L.; Fisher, F.M. Methane emissions from rice fields: Effect of plant height among several rice cultivars. Glob. Biogeochem. Cycles 1999, 13, 1045–1052. [Google Scholar] [CrossRef]
- Gogoi, N.; Baruah, K.K.; Gupta, P.K. Selection of rice genotypes for lower methane emission. Agron. Sustain. Dev. 2008, 28, 181–186. [Google Scholar] [CrossRef]
- Huang, Y.; Sass, R.L.; Fisher, F.M., Jr. Methane emission from Texas rice paddy soils. 2. Seasonal contribution of rice biomass production to CH4 emission. Global Chang. Biol. 1997, 3, 491–500. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Wassmann, R.; Bueno, C.; Rennenberg, H. Impact of root exudates of different cultivars and plant development stages of rice (Oryza sativa L.) on methane production in a paddy soil. Plant Soil. 2001, 230, 77–86. [Google Scholar] [CrossRef]
- Maurer, D.; Kiese, R.; Kreuzwieser, J.; Rennenberg, H. Processes that determine the interplay of root exudation, methane emission and yield in rice agriculture. Plant Biology 2018, 20, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.B.; Fu, Z.Q.; Zhong, J.; Long, W.F. Low methane emission in rice cultivars with high radial oxygen loss. Plant Soil 2018, 431, 119–128. [Google Scholar] [CrossRef]
- Jiang, Y.; Tian, Y.L.; Sun, Y.N.; Zhang, Y.; Hang, X.N.; Deng, A.X.; Zhang, J.; Zhang, W.J. Effect of rice panicle size on paddy field CH4 emissions. Biol. Fert. Soils 2016, 52, 389–399. [Google Scholar] [CrossRef]
- Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature 2015, 523, 602–606. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Tai, A.P.K.; Feng, J.F.; Li, Z.J.; Zhu, X.C.; Chen, J.; Zhang, J.; Song, Z.W.; Deng, A.X.; et al. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Environ. Res. Lett. 2019, 14, 114020. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, L.L.; Yan, X.J.; Tian, Y.L.; Deng, A.X.; Zhang, W.J. Super rice cropping will enhance rice yield and reduce CH4 emission: A case study in Nanjing, China. Rice Sci. 2013, 20, 427–433. [Google Scholar] [CrossRef]
- Liao, P.; Sun, Y.N.; Jiang, Y.; Zeng, Y.J.; Wu, Z.M.; Huang, S. Hybrid rice produces a higher yield and emits less methane. Plant Soil Environ. 2019, 65, 549–555. [Google Scholar] [CrossRef]
- Chen, Z.D.; Chen, F.; Zhang, H.L.; Liu, S.L. Effects of nitrogen application rates on net annual global warming potential and greenhouse gas intensity in double-rice cropping systems of the southern China. Environ. Sci. Pollut. Res. 2016, 23, 24781–24795. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.L.; Pu, C.; Zhang, X.Q.; Xue, J.F.; Zhang, R.; Wang, Y.Q.; Lal, R.; Zhang, H.L.; Chen, F. Methane and nitrous oxide emissions under no-till farming in China: A meta-analysis. Global Chang. Biol. 2016, 22, 1372–1384. [Google Scholar] [CrossRef]
- Kim, D.G.; Giltrap, D.; Sapkota, T.B. Understanding response of yield-scaled N2O emissions to nitrogen input: Data synthesis and introducing new concepts of background yield-scaled N2O emissions and N2O emission-yield curve. Field Crop. Res. 2023, 290, 108737. [Google Scholar] [CrossRef]
- Xie, W.; Zhu, A.F.; Ali, T.; Zhang, Z.T.; Chen, X.G.; Wu, F.; Huang, J.K.; Davis, K.F. Crop switching can enhance environmental sustainability and farmer incomes in China. Nature 2023, 616, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Zhan, X.W.; Xu, L.; Ling, X.X.; Peng, S.B. Increase energy use efficiency and economic benefit with reduced environmental footprint in rice production of central China. Environ. Sci. Pollut. Res. 2022, 29, 7382–7392. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.C.; Tao, F.L.; Chen, Y.; Wang, Y.C.; Ciais, P.; Smith, P. Novel cropping-system strategies in China can increase plant protein with higher economic value but lower greenhouse gas emissions and water use. One Earth 2023, 6, 560–572. [Google Scholar] [CrossRef]
- Song, K.F.; Zhang, G.B.; Yu, H.Y.; Huang, Q.; Zhu, X.L.; Wang, T.Y.; Xu, H.; Lv, S.H.; Ma, J. Evaluation of methane and nitrous oxide emissions in a three-year case study on single rice and ratoon rice paddy fields. J. Clean. Prod. 2021, 297, 126650. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, L.Q.; Wang, B.R.; Xiang, J.B.; Gao, M.T.; Fu, Z.Q.; Long, P.; Luo, H.B.; Huang, C. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit. Sci. Total Environ. 2022, 813, 152550. [Google Scholar] [CrossRef]
- Wang, T.; Chen, H.; Zhou, W.; Chen, Y.; Fu, Y.; Yang, Z.P.; Liu, Q.; Yue, X.P.; Deng, F.; Nkrumah, M.; et al. Garlic-rice system increases net economic benefits and reduces greenhouse gas emission intensity. Agric. Ecosyst. Environ. 2022, 326, 107778. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, K.; Harrison, M.T.; Fahad, S.; Gong, S.L.; Zhu, B.; Liu, Z.Y. Shifting rice cropping systems mitigates ecological footprints and enhances grain yield in central China. Front. Plant Sci. 2022, 13, 895402. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Ji, Y.L.; Zhang, M.; Xu, Y.Z.; Li, Z.; Tu, D.B.; Wu, W.G. Exploring a sustainable rice-cropping system to balance grain yield, environmental footprint and economic benefits in the middle and lower reaches of the Yangtze River in China. J. Clean. Prod. 2023, 404, 136988. [Google Scholar] [CrossRef]
- Deng, N.Y.; Grassini, P.; Yang, H.S.; Huang, J.L.; Cassman, K.G.; Peng, S.B. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 2019, 10, 1725. [Google Scholar] [CrossRef]
- Yuan, S.; Cassman, K.G.; Huang, J.L.; Peng, S.B.; Grassini, P. Can ratoon cropping improve resource use efficiencies and profitability of rice in central China? Field Crop. Res. 2019, 234, 66–72. [Google Scholar] [CrossRef]
- Dong, H.L.; Chen, Q.; Wang, W.Q.; Peng, S.B.; Huang, J.L.; Cui, K.H.; Nie, L.X. The growth and yield of a wet-seeded rice-ratoon rice system in central China. Field Crop. Res. 2017, 208, 55–59. [Google Scholar] [CrossRef]
- Yin, M.; Liu, S.W.; Zheng, X.; Chu, G.; Xu, C.M.; Zhang, X.F.; Wang, D.Y.; Chen, S. Solar radiation-use characteristics of indica/japonica hybrid rice (Oryza sativa L.) in the late season in southeast China. Crop J. 2021, 9, 427–439. [Google Scholar] [CrossRef]
- Meng, T.Y.; Zhang, X.B.; Ge, J.L.; Chen, X.; Zhu, G.L.; Chen, Y.L.; Zhou, G.S.; Wei, H.H.; Dai, Q.G. Improvements in grain yield and nutrient utilization efficiency of japonica inbred rice released since the 1980s in eastern China. Field Crop. Res. 2022, 277, 108427. [Google Scholar] [CrossRef]
- Huang, Y.Q. Effects of Nitrogen Application Rate and Panicle Removal on Methane Emissions form Paddy Fields and Underlying Mechanism. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2023. [Google Scholar]
- Shang, Q.Y.; Cheng, C.; Wang, J.J.; Luo, K.; Zeng, Y.J.; Yang, X.X. Net global warming potential, greenhouse gas intensity and carbon footprint as affected by different tillage systems from Chinese double-cropping paddy fields. Soil Till. Res. 2021, 209, 104947. [Google Scholar] [CrossRef]
- Song, K.F.; Zhang, G.B.; Yu, H.Y.; Xu, H.; Lv, S.H.; Ma, J. Methane and nitrous oxide emissions from a ratoon paddy field in Sichuan Province, China. Eur. J. Soil Sci. 2021, 72, 1478–1491. [Google Scholar] [CrossRef]
- Tang, H.M.; Xiao, X.P.; Tang, W.G.; Wang, K.; Sun, J.M.; Li, W.Y.; Yang, G.L. Effects of winter covering crop residue incorporation on CH4 and N2O emission from double-cropped paddy fields in southern China. Environ. Sci. Pollut. Res. 2015, 22, 12689–12698. [Google Scholar] [CrossRef]
- Wang, J.H.; Bogena, H.R.; Vereecken, H.; Bruggemann, N. Stable-isotope-aided investigation of the effect of redox potential on nitrous oxide emissions as affected by water status and N fertilization. Water 2020, 12, 2918. [Google Scholar] [CrossRef]
- Timilsina, A.; Bizimana, F.; Pandey, B.; Yadav, R.K.P.; Dong, W.X.; Hu, C.S. Nitrous oxide emissions from paddies: Understanding the role of rice plants. Plants 2020, 9, 180. [Google Scholar] [CrossRef]
- Wang, H.H.; Shen, M.X.; Hui, D.F.; Chen, J.; Sun, G.F.; Wang, X.; Lu, C.Y.; Sheng, J.; Chen, L.G.; Luo, Y.Q.; et al. Straw incorporation influences soil organic carbon sequestration, greenhouse gas emission, and crop yields in a Chinese rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system. Soil Till. Res. 2019, 195, 104377. [Google Scholar] [CrossRef]
- Singh, S.N. Exploring correlation between redox potential and other edaphic factors in field and laboratory conditions in relation to methane efflux. Environ. Int. 2001, 27, 265–274. [Google Scholar] [CrossRef]
- Lunga, D.D.; Brye, K.R.; Slayden, J.M.; Henry, C.G.; Wood, L.S. Relationships among soil factors and greenhouse gas emissions from furrow-irrigated rice in the mid-southern, USA. Geoderma Reg. 2021, 24, e00365. [Google Scholar] [CrossRef]
- Song, K.F.; Zhang, G.B.; Ma, J.; Peng, S.B.; Lv, S.H.; Xu, H. Greenhouse gas emissions from ratoon rice fields among different varieties. Field Crop. Res. 2022, 277, 108423. [Google Scholar] [CrossRef]
- Peng, S.B.; Zheng, C.; Yu, X. Progress and challenges of rice ratooning technology in China. Crop Environ. 2023, 2, 5–11. [Google Scholar] [CrossRef]
- Li, S.Y.; Chen, Y.; Yu, F.; Zhang, Y.J.; Liu, K.; Zhuo, X.X.; Qiu, Y.Y.; Zhang, H.; Gu, J.F.; Wang, W.L.; et al. Reducing methane emission by promoting its oxidation in rhizosphere through nitrogen-induced root growth in paddy fields. Plant Soil 2022, 474, 541–560. [Google Scholar] [CrossRef]
- Li, L.B.; Li, F.S.; Dong, Y.F. Greenhouse gas emissions and global warming potential in double-cropping rice fields as influenced by two water-saving irrigation modes in south China. J. Soil Sci. Plant Nut. 2020, 20, 2617–2630. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, F.S. Ridge irrigation reduced greenhouse gas emission in double-cropping rice field. Arch. Agron. Soil Sci. 2021, 67, 1003–1016. [Google Scholar] [CrossRef]
- Wang, F.; Cui, K.H.; Huang, J.L. Progress and challenges of rice ratooning technology in Hubei Province, China. Crop Environ. 2023, 2, 12–16. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zheng, C.; Xiao, S.; Sun, Y.T.; Huang, J.L.; Peng, S.B. Agronomic responses of ratoon rice to nitrogen management in central China. Field Crop. Res. 2019, 241, 107569. [Google Scholar] [CrossRef]
- Chen, Q.; He, A.B.; Wang, W.Q.; Peng, S.B.; Huang, J.L.; Cui, K.H.; Nie, L.X. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China. Field Crop. Res. 2018, 223, 164–170. [Google Scholar] [CrossRef]
- Xu, Y.; Zhan, M.; Cao, C.G.; Tian, S.Y.; Ge, J.Z.; Li, S.Y.; Wang, M.Y.; Yuan, G.Y. Improved water management to reduce greenhouse gas emissions in no-till rapeseed-rice rotations in central China. Agric. Ecosyst. Environ. 2016, 221, 87–98. [Google Scholar] [CrossRef]
- Jeong, S.T.; Kim, G.W.; Hwang, H.Y.; Kim, P.J.; Kim, S.Y. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain. Sci. Total Environ. 2018, 613–614, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Shuai, Y.J.; Xu, Y.; Zhang, Z.S.; Wang, B.; You, L.Z.; Sun, Z.C.; Zhang, H.R.; Zhan, M.; Li, C.F.; et al. Comparing rice production systems in China: Economic output and carbon footprint. Sci. Total Environ. 2021, 791, 147890. [Google Scholar] [CrossRef]
- Ding, K.; Hu, M.T.; Zhan, T. Analysis of rice price in Hubei province in 2018 and trend prospects for 2019. Hubei Agric. Sci. 2019, 58, 124–127. [Google Scholar] [CrossRef]
Year | System | First Season | Second Season | |||||||
---|---|---|---|---|---|---|---|---|---|---|
LAI | BAH | Biomass | Yield | LAI | BAH | Biomass | Yield | |||
(m2 m−2) | (kg m−2) | (kg m−2) | (t ha−1) | (m2 m−2) | (kg m−2) | (kg m−2) | (t ha−1) | |||
2018 | DR | 3.18 ± 0.33 b | 0.74 ± 0.07 a | 1.34 ± 0.06 b | 7.29 ± 0.08 b | 5.12 ± 0.19 a * | 0.90 ± 0.11 a | 2.01 ± 0.09 a * | 8.64 ± 0.28 a * | |
RR | 3.94 ± 0.28 a | 0.88 ± 0.11 a * | 1.64 ± 0.08 a * | 10.67 ± 0.39 a * | 3.50 ± 0.26 b | 0.24 ± 0.07 b | 1.30 ± 0.03 b | 5.55 ± 0.13 b | ||
2019 | DR | 2.35 ± 0.19 b | 0.63 ± 0.07 a | 1.24 ± 0.06 b | 6.75 ± 0.40 b | 3.82 ± 0.57 a | 0.57 ± 0.04 b | 1.86 ± 0.02 a * | 9.64 ± 0.14 a * | |
RR | 4.00 ± 0.17 a * | 0.73 ± 0.06 a | 1.96 ± 0.02 a * | 7.88 ± 0.46 a | 1.92 ± 0.22 b | 0.78 ± 0.03 a | 1.38 ± 0.01 b | 6.73 ± 0.35 b | ||
Average | DR | 2.76 ± 0.22 b | 0.68 ± 0.07 a | 1.29 ± 0.05 b | 7.02 ± 0.21 b | 4.47 ± 0.33 a * | 0.74 ± 0.05 a | 1.93 ± 0.04 a * | 9.14 ± 0.08 a * | |
RR | 3.97 ± 0.17 a * | 0.80 ± 0.05 a * | 1.80 ± 0.04 a * | 9.27 ± 0.33 a * | 2.71 ± 0.06 b | 0.51 ± 0.05 b | 1.34 ± 0.02 b | 6.14 ± 0.23 b |
Year | System | First Season | Second Season | Annual | |||||
---|---|---|---|---|---|---|---|---|---|
CH4 | N2O | CH4 | N2O | CH4 | N2O | ||||
2018 | DR | 30.03 ± 2.21 b | 108.18 ± 4.38 a | 64.83 ± 10.12 a * | 214.40 ± 13.58 a * | 94.86 ± 12.17 a | 322.58 ± 9.49 a | ||
RR | 41.01 ± 2.24 a * | 144.63 ± 9.06 a | 14.52 ± 1.80 b | 184.69 ± 15.62 a | 55.53 ± 2.12 b | 329.32 ± 15.68 a | |||
2019 | DR | 43.30 ± 4.05 a | 55.06 ± 2.92 a | 43.92 ± 3.86 a | 115.75 ± 7.03 a * | 87.23 ± 4.17 a | 170.81 ± 6.45 a | ||
RR | 47.85 ± 4.50 a * | 43.63 ± 0.64 b | 14.59 ± 2.36 b | 112.06 ± 12.94 a * | 62.45 ± 5.23 b | 155.70 ± 12.83 a | |||
Average | DR | 36.67 ± 2.41 a | 81.62 ± 1.61 a | 54.38 ± 4.91 a * | 165.07 ± 9.14 a * | 91.04 ± 6.79 a | 246.69 ± 7.68 a | ||
RR | 44.43 ± 1.55 a * | 94.13 ± 4.45 a * | 14.56 ± 0.77 b | 148.37 ± 13.28 a * | 58.99 ± 2.06 b | 242.51 ± 11.40 a |
Year | System | First Season | Second Season | Annual | |||||
---|---|---|---|---|---|---|---|---|---|
GWP | GHGI | GWP | GHGI | GWP | GHGI | ||||
2018 | DR | 10.53 ± 0.76 b | 1.44 ± 0.10 a | 22.68 ± 3.42 a * | 2.60 ± 0.33 a * | 33.21 ± 4.13 a | 2.07 ± 0.23 a | ||
RR | 14.37 ± 0.75 a * | 1.35 ± 0.06 a | 5.49 ± 0.65 b | 0.99 ± 0.11 b | 19.86 ± 0.76 b | 1.22 ± 0.02 b | |||
2019 | DR | 14.89 ± 1.37 a | 2.22 ± 0.21 a | 15.28 ± 1.33 a | 1.59 ± 0.15 a | 30.17 ± 1.43 a | 1.85 ± 0.12 a | ||
RR | 16.40 ± 1.53 a * | 2.14 ± 0.34 a * | 5.30 ± 0.80 b | 0.80 ± 0.14 b | 21.70 ± 1.80 b | 1.49 ± 0.15 b | |||
Average | DR | 12.71 ± 0.82 a | 1.83 ± 0.15 a | 18.98 ± 1.67 a * | 2.10 ± 0.16 a * | 31.69 ± 2.31 a | 1.96 ± 0.15 a | ||
RR | 15.39 ± 0.52 a * | 1.74 ± 0.15 a * | 5.39 ± 0.26 b | 0.89 ± 0.03 b | 20.78 ± 0.72 b | 1.36 ± 0.07 b |
Season | LAI | BAH | Biomass | Grain Yield | |
---|---|---|---|---|---|
First season | CH4 | −0.05 | 0.16 | 0.47 | 0.03 |
GWP | −0.04 | 0.18 | 0.47 | 0.06 | |
GHGI | −0.36 | −0.24 | 0.06 | −0.60 * | |
Second season | CH4 | 0.60 * | 0.51 * | 0.89 ** | 0.74 ** |
GWP | 0.61 * | 0.50 * | 0.88 ** | 0.74 ** | |
GHGI | 0.61 * | 0.49 | 0.83 ** | 0.60 * |
Year | System | First Season | Second Season | Annual | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain Incomes | Total Costs | Net Ecosystem Economic Benefits | Grain Incomes | Total Costs | Net Ecosystem Economic Benefits | Grain Incomes | Total Costs | Net Ecosystem Economic Benefits | ||||
2018 | DR | 19.70 ± 0.22 b | 12.60 ± 0.18 a | 7.10 ± 0.24 b | 25.93 ± 0.83 a * | 15.55 ± 0.80 a * | 10.83 ± 0.46 b * | 45.63 ± 0.80 a | 28.15 ± 0.96 a | 17.48 ± 0.42 b | ||
RR | 28.80 ± 1.05 a * | 13.20 ± 0.18 a * | 15.60 ± 0.96 a | 16.64 ± 0.38 b | 4.00 ± 0.15 b | 12.64 ± 0.32 a | 45.44 ± 0.96 a | 17.21 ± 0.18 b | 28.23 ± 0.81 a | |||
2019 | DR | 18.23 ± 1.09 b | 13.61 ± 0.32 a | 4.62 ± 1.03 b | 28.91 ± 0.42 a * | 13.83 ± 0.31 a | 15.09 ± 0.68 a * | 47.14 ± 1.50 a | 27.44 ± 0.33 a | 19.70 ± 1.63 b | ||
RR | 21.27 ± 1.25 a | 13.67 ± 0.36 a * | 7.60 ± 1.60 a | 20.20 ± 1.04 b | 3.96 ± 0.19 b | 16.25 ± 1.10 a * | 41.47 ± 1.02 b | 17.63 ± 0.42 b | 23.84 ± 1.26 a | |||
Average | DR | 18.96 ± 0.58 b | 13.11 ± 0.19 a | 5.86 ± 0.62 b | 27.42 ± 0.25 a * | 14.69 ± 0.39 a * | 12.73 ± 0.16 a * | 46.38 ± 0.47 a | 27.79 ± 0.54 a | 18.59 ± 0.78 b | ||
RR | 25.04 ± 0.88 a * | 13.44 ± 0.12 a * | 11.60 ± 0.97 a | 18.42 ± 0.70 b | 3.98 ± 0.06 b | 14.43 ± 0.66 a | 43.46 ± 0.78 b | 17.42 ± 0.17 b | 26.04 ± 0.88 a |
Year | Season | System | Transplanting Date | Harvest Date | Growth Duration | Cumulative Temperature | Cumulative Solar Radiation | Precipitation |
---|---|---|---|---|---|---|---|---|
(mm/dd) | (mm/dd) | (d) | (°C) | (MJ m−2) | (mm) | |||
2018 | First season | DR | 04/27 | 07/10 | 75 | 1906 | 1158 | 312 |
RR | 04/27 | 08/07 | 103 | 2747 | 1778 | 341 | ||
Second season | DR | 07/18 | 10/24 | 99 | 2486 | 1650 | 119 | |
RR | – | 10/06 | 60 | 1547 | 996 | 60 | ||
2019 | First season | DR | 04/27 | 07/22 | 87 | 1963 | 1052 | 462 |
RR | 04/27 | 08/14 | 110 | 2630 | 1532 | 463 | ||
Second season | DR | 07/25 | 10/28 | 96 | 2407 | 1605 | 12 | |
RR | – | 10/24 | 71 | 1408 | 963 | 10 |
Season | System | Fertilizers (kg ha−1) | Pesticides (kg ha−1) | Seeds | Labor (Person ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Herbicides | Insecticides | Fungicides | (kg ha−1) | Seedling Raise | Transplanting | Harvest | Tillage | Water Management | |||
First season | DR | 150 | 40 | 70 | 0.375 | 3.6 | 0.45 | 37.5 | 1 | 15 | 15 | 30 | 1 | |
RR | 200 | 40 | 100 | 0.375 | 3.6 | 0.45 | 22.5 | 1 | 15 | 15 | 30 | 1 | ||
Second season | DR | 150 | 40 | 100 | 0.375 | 3.6 | 0.45 | 37.5 | 1 | 15 | 15 | 30 | 1 | |
RR | 150 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Cui, K.; Deng, Z.; Han, K.; Peng, Y.; Zhou, J.; Zhai, Z.; Huang, J.; Peng, S. Ratoon Rice Cropping Mitigates the Greenhouse Effect by Reducing CH4 Emissions through Reduction of Biomass during the Ratoon Season. Plants 2023, 12, 3354. https://doi.org/10.3390/plants12193354
Ren X, Cui K, Deng Z, Han K, Peng Y, Zhou J, Zhai Z, Huang J, Peng S. Ratoon Rice Cropping Mitigates the Greenhouse Effect by Reducing CH4 Emissions through Reduction of Biomass during the Ratoon Season. Plants. 2023; 12(19):3354. https://doi.org/10.3390/plants12193354
Chicago/Turabian StyleRen, Xiaojian, Kehui Cui, Zhiming Deng, Kaiyan Han, Yuxuan Peng, Jiyong Zhou, Zhongbing Zhai, Jianliang Huang, and Shaobing Peng. 2023. "Ratoon Rice Cropping Mitigates the Greenhouse Effect by Reducing CH4 Emissions through Reduction of Biomass during the Ratoon Season" Plants 12, no. 19: 3354. https://doi.org/10.3390/plants12193354
APA StyleRen, X., Cui, K., Deng, Z., Han, K., Peng, Y., Zhou, J., Zhai, Z., Huang, J., & Peng, S. (2023). Ratoon Rice Cropping Mitigates the Greenhouse Effect by Reducing CH4 Emissions through Reduction of Biomass during the Ratoon Season. Plants, 12(19), 3354. https://doi.org/10.3390/plants12193354