Sulla (Hedysarum coronarium L.) Response to Drought Stress during Early Vegetative Stage
Abstract
:1. Introduction
2. Results
2.1. Shoot and Root Growth
2.2. Forage Quality
3. Discussion
3.1. Shoot and Root Growth
3.2. Forage Quality
4. Materials and Methods
4.1. Experimental Setup
- -
- Factor 1. Genotypes of sulla (Hedysarum coronarium L.) with two levels:
4.2. Shoot Biometry
4.3. Forage Quality
4.4. Root Traits
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flores, F.; Gutierrez, J.C.; Lopez, J.; Moreno, M.T.; Cubero, J.I. Multivariate analysis approach to evaluate a germplasm collection of Hedysarum coronarium L. Genet. Resour. Crops Evol. 1997, 44, 545–555. [Google Scholar] [CrossRef]
- Slim, S.; Louhaichi, M.; Gamoun, M.; Ates, S.; Hassan, S.; Romdhane, O.B.; Belgacem, A.O. Assessment of soil surface scarification and reseeding with sulla (Hedysarum coronarium L.) of degraded Mediterranean semi-arid rangelands. Afr. J. Range Forage Sci. 2021, 38 (Suppl. S1), S63–S72. [Google Scholar] [CrossRef]
- Slim, S.; Jeddi, F.B. Soil protection in mountainous areas of Tunisia with the northern sulla (Hedysarum coronarium L.). Sci. Chang. Planétaires/Sécheresse 2011, 22, 117–124. [Google Scholar]
- Leto, G.; Todaro, M.; Di Noto, A.M.; Alicata, M.L. Comparison of Sulla-hay and Sulla-silage in the lactating ewes and their effects on milk and cheese characteristics. Small Rumin. Res. 2002, 45, 301–306. [Google Scholar] [CrossRef]
- Dear, B.S.; Moore, G.A.; Hughes, S.J. Adaptation and potential contribution of temperate perennial legumes to the southern Australian wheatbelt: A review. Aust. J. Exp. Agric. 2003, 43, 1–18. [Google Scholar] [CrossRef]
- Watson, M.J. Hedysarum coronarium—A legume with potential for sil conservation and forage. N. Z. Agric. Sci. 1982. [Google Scholar]
- Amato, G.; Giambalvo, D.; Frenda, A.S.; Mazza, F.; Ruisi, P.; Saia, S.; Di Miceli, G. Sulla (Hedysarum coronarium L.) as potential feedstock for biofuel and protein. BioEnergy Res. 2016, 9, 711–719. [Google Scholar] [CrossRef]
- Borreani, G.; Roggero, P.P.; Sulas, L.; Valente, M.E. Quantifying Morphological Stage to Predict the Nutritive Value in Sulla (Hedysarum coronarium L.). Agron. J. 2003, 95, 1608–1617. [Google Scholar] [CrossRef]
- Molan, A.L.; Waghorn, G.C.; McNabb, W.C. Condensed Tannins and Gastro-Intestinal Parasites in Sheep; New Zealand Grassland Association: Dunedin, New Zealand, 2 January 1999; pp. 57–61. [Google Scholar]
- Niezen, J.H.; Waghorn, T.S.; Charleston, W.A.G.; Waghorn, G.C. Growth and gastrointestinal nematode parasitism in lambs grazing either lucerne (Medicago sativa) or sulla (Hedysarum coronarium) which contains condensed tannins. J. Agric. Sci. 1995, 125, 281–289. [Google Scholar] [CrossRef]
- Niezen, J.; Charleston, W.; Robertson, H.; Shelton, D.; Waghorn, G.; Green, R. The effect of feeding sulla (Hedysarum coronarium) or lucerne (Medicago sativa) on lamb parasite burdens and development of immunity to gastrointestinal nematodes. Vet. Parasitol. 2002, 105, 229–245. [Google Scholar] [CrossRef]
- Pomroy, W.; Adlington, B. Efficacy of short-term feeding of sulla (Hedysarum coronarium) to young goats against a mixed burden of gastrointestinal nematodes. Vet. Parasitol. 2006, 136, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Cabiddu, A.; Molle, G.; Decandia, M.; Spada, S.; Fiori, M.; Piredda, G.; Addis, M. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep: Part 2: Effects on milk fatty acid profile. Livest. Sci. 2009, 123, 230–240. [Google Scholar] [CrossRef]
- Di Trana, A.; Bonanno, A.; Cecchini, S.; Giorgio, D.; Di Grigoli, A.; Claps, S. Effects of Sulla forage (Sulla coronarium L.) on the oxidative status and milk polyphenol content in goats. J. Dairy Sci. 2015, 98, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Rufino-Moya, P.J.; Bertolín, J.R.; Blanco, M.; Lobón, S.; Joy, M. Fatty acid profile, secondary compounds and antioxidant activities in the fresh forage, hay and silage of sainfoin (Onobrychis viciifolia) and sulla (Hedysarum coronarium). J. Sci. Food Agric. 2022, 102, 4736–4743. [Google Scholar] [CrossRef]
- Tava, A.; Biazzi, E.; Ronga, D.; Mella, M.; Doria, F.; D’Addabbo, T.; Candido, V.; Avato, P. Chemical identification of specialized metabolites from sulla (Hedysarum coronarium L.) collected in southern Italy. Molecules 2021, 26, 4606. [Google Scholar] [CrossRef]
- Akbarian, M.M.; Mojaradi, T.; Shirzadi, F. Effects of Hedysarum coronarium L. (sulla) as a Green Manure along with Nitrogen Fertilizer on Maize Production. Agritech 2021, 41, 95–106. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Tava, A.; Argentieri, M.P.; Biazzi, E.; Candido, V.; Avato, P. Nematicidal potential of sulla (Hedysarum coronarium L.) against the root-knot nematode Meloidogyne incognita. Plants 2022, 11, 2550. [Google Scholar] [CrossRef]
- Gambacorta, E.; Simonetti, A.; Garrisi, N.; Intaglietta, I.; Perna, A. Antioxidant properties and phenolic content of sulla (H edysarum spp.) honeys from S outhern I taly. Int. J. Food Sci. Technol. 2014, 49, 2260–2268. [Google Scholar] [CrossRef]
- Yates, R.; Foster, K.; Nichols, P.; Ewing, M. Flamenco–a new variety of sulla for southern Australia. In Proceedings of the Australian Society of Agronomy Conference, Perth, Australia, 10–14 September 2006. [Google Scholar]
- Ruisi, P.; Siragusa, M.; Di Giorgio, G.; Graziano, D.; Amato, G.; Carimi, F.; Giambalvo, D. Pheno-morphological, agronomic and genetic diversity among natural populations of sulla (Hedysarum coronarium L.) collected in Sicily, Italy. Genet. Resour. Crops Evol. 2011, 58, 245–257. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Ruisi, P.; Di Miceli, G.; Pecetti, L. Morpho-physiological and adaptive variation of Italian germplasm of sulla (Hedysarum coronarium L.). Crops Pasture Sci. 2014, 65, 206–213. [Google Scholar] [CrossRef]
- Fenta, B.A.; Beebe, S.E.; Kunert, K.J.; Burridge, J.D.; Barlow, K.M.; Lynch, J.P.; Foyer, C.H. Field phenotyping of soybean roots for drought stress tolerance. Agronomy 2014, 4, 418–435. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.-H. Root response to drought stress in rice (Oryza sativa L.). Int. J. Mol. Sci. 2020, 21, 1513. [Google Scholar] [CrossRef] [PubMed]
- Paez-Garcia, A.; Motes, C.M.; Scheible, W.-R.; Chen, R.; Blancaflor, E.B.; Monteros, M.J. Root traits and phenotyping strategies for plant improvement. Plants 2015, 4, 334–355. [Google Scholar] [CrossRef] [PubMed]
- Comas, L.H.; Becker, S.R.; Cruz, V.M.V.; Byrne, P.F.; Dierig, D.A. Root traits contributing to plant productivity under drought. Front. Plant Sci. 2013, 4, 442. [Google Scholar] [CrossRef]
- Kashiwagi, J.; Krishnamurthy, L.; Upadhyaya, H.D.; Krishna, H.; Chandra, S.; Vadez, V.; Serraj, R. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinum L.). Euphytica 2005, 146, 213–222. [Google Scholar] [CrossRef]
- Li, H.; Siri, M.; Wang, B.; He, Y.; Liu, C.; Feng, C.; Liu, K. Global root traits research during 2000–2021: A bibliometric analysis. Agronomy 2022, 12, 2471. [Google Scholar] [CrossRef]
- Hofer, D.; Suter, M.; Haughey, E.; Finn, J.A.; Hoekstra, N.J.; Buchmann, N.; Lüscher, A. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 2016, 53, 1023–1034. [Google Scholar] [CrossRef]
- Komainda, M.; Küchenmeister, K.; Küchenmeister, F.; Breitsameter, L.; Wrage-Mönnig, N.; Kayser, M.; Isselstein, J. Forage legumes for future dry climates: Lower relative biomass losses of minor forage legumes compared to Trifolium repens under conditions of periodic drought stress. J. Agron. Crop Sci. 2019, 205, 460–469. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Q.; Ge, G.; Han, G.; Jia, Y. Influence of drought stress on afalfa yields and nutritional composition. BMC Plant Biol. 2018, 18, 13. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Bennett, J.M.; Muchow, R.C. Relative sensitivity of grain yield and biomass accumulation to drought in field-grown maize. Crops Sci. 1990, 30, 690–693. [Google Scholar] [CrossRef]
- Malisch, C.S.; Salminen, J.P.; Kölliker, R.; Engström, M.T.; Suter, D.; Studer, B.; Lüscher, A. Drought effects on proanthocyanidins in sainfoin (Onobrychis viciifolia Scop.) are dependent on the plant’s ontogenetic stage. J. Agric. Food Chem. 2016, 64, 9307–9316. [Google Scholar] [CrossRef]
- Sebastian, J.; Yee, M.-C.; Viana, W.G.; Rellán-Álvarez, R.; Feldman, M.; Priest, H.D.; Trontin, C.; Lee, T.; Jiang, H.; Baxter, I.; et al. Grasses suppress shoot-borne roots to conserve water during drought. Proc. Natl. Acad. Sci. USA 2016, 113, 8861–8866. [Google Scholar] [CrossRef]
- Zhan, A.; Schneider, H.; Lynch, J.P. Reduced lateral root branching density improves drought tolerance in maize. Plant Physiol. 2015, 168, 1603–1615. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shi, S.; Wang, B.; Zhao, J. Physiological and biochemical changes in different drought-tolerant alfalfa (Medicago sativa L.) varieties under PEG-induced drought stress. Acta Physiol. Plant. 2018, 40, 25. [Google Scholar] [CrossRef]
- Palta, J.A.; Chen, X.; Milroy, S.P.; Rebetzke, G.J.; Dreccer, M.F.; Watt, M. Large root systems: Are they useful in adapting wheat to dry environments? Funct. Plant Biol. 2011, 38, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Seminario, A.; Udvardi, M.; Annicchiarico, P. Physiological and biochemical adaptive traits support the specific breeding of alfalfa (Medicago sativa) for severely drought-stressed or moisture-favourable environments. J. Agron. Crops Sci. 2023, 209, 132–143. [Google Scholar] [CrossRef]
- Richards, R.A.; Passioura, J. A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust. J. Agric. Res. 1989, 40, 943–950. [Google Scholar] [CrossRef]
- Lynch, J.P. Rightsizing root phenotypes for drought resistance. J. Exp. Bot. 2018, 69, 3279–3292. [Google Scholar] [CrossRef]
- Tron, S.; Bodner, G.; Laio, F.; Ridolfi, L.; Leitner, D. Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecol. Model. 2015, 312, 200–210. [Google Scholar] [CrossRef]
- Wasson, A.P.; Richards, R.A.; Chatrath, R.; Misra, S.C.; Prasad, S.V.S.; Rebetzke, G.J.; Kirkegaard, J.A.; Christopher, J.; Watt, M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 2012, 63, 3485–3498. [Google Scholar] [CrossRef]
- Tola, E.; Henriquez-Sabà, J.L.; Polone, E.; Dazzo, F.B.; Concheri, G.; Casella, S.; Squartini, A. Shovel roots: A unique stress-avoiding developmental strategy of the legume plant Hedysarum coronarium L. Plant Soil 2009, 322, 25–37. [Google Scholar] [CrossRef]
- Rossi, R.; Picuno, P.; Fagnano, M.; Amato, M. Soil reinforcement potential of cultivated cardoon (Cynara cardunculus L.): First data of root tensile strength and density. CATENA 2022, 211, 106016. [Google Scholar] [CrossRef]
- Rasse, D.P.; Rumpel, C.; Dignac, M.-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Chen, Y.; Ghanem, M.E.; Siddique, K.H.M. Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. J. Exp. Bot. 2017, 68, 1987–1999. [Google Scholar] [PubMed]
- Amato, M.; Pardo, A. Root length and biomass losses during sample preparation with different screen mesh sizes. Plant Soil 1994, 161, 299–303. [Google Scholar] [CrossRef]
- Norris, I.B.; Thomas, H. Recovery of ryegrass species from drought. J. Agric. Sci. 1982, 98, 623–628. [Google Scholar] [CrossRef]
- Leafe, E.L.; Jones, M.B.; Stiles, W. The physiological effects of water stress on perennial ryegrass in the field. In Proceedings of the 13th International Grassland Congress, Lexington, KY, USA, 15–24 June 1977; pp. 253–260. [Google Scholar]
- Jones, M.B.; Leafe, E.L.; Stiles, W. Water stress in field-grown perennial ryegrass.II. Its effect on leaf water status, stomatal resistance and leaf morphology. Ann. Appl. Biol. 1980, 96, 103–110. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Peterson, C.M.; Huck, M.G. Shoot Growth Rate of Soybean as Affected by Drought Stress 1. Agron. J. 1987, 79, 598–607. [Google Scholar] [CrossRef]
- Barry, T.N.; McNabb, W.C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 1999, 81, 263–272. [Google Scholar] [CrossRef]
- Gourlay, G.; Constabel, C.P. Condensed tannins are inducible antioxidants and protect hybrid poplar against oxidative stress. Tree Physiol. 2019, 39, 345–355. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Shelton, I.D. Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep. J. Agric. Sci. 1997, 128, 365–372. [Google Scholar] [CrossRef]
- Terrill, T.H.; Rowan, A.M.; Douglas, G.B.; Barry, T.N. Determination of extractable and bound condensed tannin concentrations in forage plants, protein concentrate meals and cereal grains. J. Sci. Food Agric. 1992, 58, 321–329. [Google Scholar] [CrossRef]
- Terrill, T.H.; Douglas, G.B.; Foote, A.G.; Purchas, R.W.; Wilson, G.F.; Barry, T.N. Effect of condensed tannins upon body growth, wool growth and rumen metabolism in sheep grazing sulla (Hedysarum coronarium) and perennial pasture. J. Agric. Sci. 1992, 119, 265–273. [Google Scholar] [CrossRef]
- Stienezen, M.; Waghorn, G.C.; Douglas, G.B. Digestibility and effects of condensed tannins on digestion of sulla (Hedysarum coronarium) when fed to sheep. N. Z. J. Agric. Res. 1996, 39, 215–221. [Google Scholar] [CrossRef]
- Molan, A.L.; Waghorn, G.C.; Min, B.R.; McNabb, W.C. The effect of condensed tannins from seven herbages on Trichostrongylus colubriformis larval migration in vitro. Folia Parasitol. 2000, 47, 39–44. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Miceli, G.; Di Grigoli, A.; Frenda, A.S.; Tornambè, G.; Giambalvo, D.; Amato, G. Effects of feeding green forage of sulla (Hedysarum coronarium L.) on lamb growth and carcass and meat quality. Animal 2011, 5, 148–154. [Google Scholar] [CrossRef]
- Tzamaloukas, O.; Athanasiadou, S.; Kyriazakis, I.; Jackson, F.; Coop, R.L. The consequences of short-term grazing of bioactive forages on established adult and incoming larvae populations of Teladorsagia circumcincta in lambs. Int. J. Parasitol. 2005, 35, 329–335. [Google Scholar] [CrossRef]
- Zhang, L.H.; Shao, H.B.; Ye, G.F.; Lin, Y.M. Effects of fertilization and drought stress on tannin biosynthesis of Casuarina equisetifolia seedlings branchlets. Acta Physiol. Plant. 2012, 34, 1639–1649. [Google Scholar] [CrossRef]
- Popović, B.M.; Štajner, D.; Ždero-Pavlović, R.; Tumbas-Šaponjac, V.; Čanadanović-Brunet, J.; Orlović, S. Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.). Plant Physiol. Biochem. 2016, 105, 242–250. [Google Scholar] [CrossRef]
- McKiernan, A.B. The Effects of Soil Water Deficit on Physiological, Morphological and Chemical Traits of Eucalyptus. Doctoral Dissertation, University of Tasmania, Hobart, TAS, Australia, 2015. [Google Scholar]
- Anuraga, M.; Duarsa, P.; Hill, M.; Lovett, J. Soil moisture and temperature affect condensed tannin concentrations and growth in Lotus corniculatus and Lotus pedunculatus. Aust. J. Agric. Res. 1993, 44, 1667–1681. [Google Scholar] [CrossRef]
- Malisch, C.S.; Lewandowski, L.; Salminen, J.P.; Taube, F.; Lüscher, A. Low Concentrations of Protein-and Fiber-Bound Proanthocyanidins in Sainfoin (Onobrychis viciifolia) Are Stable across Accessions, Growth Stages, and Drought Conditions. J. Agric. Food Chem. 2020, 68, 7369–7377. [Google Scholar] [CrossRef] [PubMed]
- Oukaltouma, K.; El Moukhtari, A.; Lahrizi, Y.; Mouradi, M.; Farissi, M.; Willems, A.; Qaddoury, A.; Bekkaoui, F.; Ghoulam, C. Phosphorus deficiency enhances water deficit impact on some morphological and physiological traits in four faba bean (Vicia faba L.) varieties. Ital. J. Agron. 2020, 16, 1662. [Google Scholar] [CrossRef]
- Van Soest, P.J.; McQueen, R.W. The chemistry and estimation of fibre. Proc. Nutr. Soc. 1973, 32, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Ainwsorth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Zuur, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R; Springer: New York, NY, USA, 2009; Volume 574, p. 574. [Google Scholar]
- Wood, S. Package ‘mgcv’. R Package Version. 2015. 1, 729. Available online: https://cran.uib.no/web/packages/mgcv/mgcv.pdf (accessed on 19 July 2023).
Mean | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrigation | Variety | Fresh Biomass Plant−1 (g) | Dry Biomass Plant−1 (g) | Dry Matter % | N° of Shoots | N° of Leaves | Max Shoot Length (cm) | Leaf Area (cm2) | Root Length (cm) Plant−1 | Top- Root Length (cm) Plant−1 | Deep- Root Length (cm) Plant−1 | Root Area (cm2) Plant−1 | Top- Root Area (cm2) Plant−1 | Deep- Root Area (cm2) Plant−1 | N° Shovel Roots Plant−1 | Root-to-Shoot-Area Ratio |
WW | Bellante | 41.5 | 3.49 | 8.38 | 27 | 139 | 16.3 | 510 | 2645 | 1542 | 1103 | 217 | 126 | 90.8 | 61.3 | 0.43 |
Centauro | 38.2 | 3.35 | 8.77 | 40.7 | 183 | 13.8 | 468 | 4354 | 2345 | 2009 | 403 | 219 | 184 | 50.3 | 0.907 | |
DS | Bellante | 10.6 | 1.18 | 11 | 15 | 49.7 | 10.8 | 147 | 1272 | 681 | 592 | 95.4 | 56.4 | 39 | 34.7 | 0.691 |
Centauro | 14.4 | 1.74 | 11.7 | 19.3 | 53 | 12.3 | 159 | 2310 | 1229 | 1081 | 200 | 114 | 85.3 | 52.7 | 1.23 | |
Standard Deviation | ||||||||||||||||
WW | Bellante | 12.2 | 1.07 | 0.206 | 4.58 | 34.8 | 3.4 | 137 | 1206 | 722 | 539 | 96.7 | 52.6 | 49.3 | 7.77 | 0.18 |
Centauro | 5.15 | 0.53 | 0.41 | 5.51 | 21.4 | 3.62 | 140 | 216 | 191 | 376 | 31.5 | 12.1 | 36.5 | 39.7 | 0.238 | |
DS | Bellante | 0.678 | 0.155 | 0.839 | 5.29 | 6.51 | 1.04 | 28 | 479 | 142 | 393 | 36.5 | 12.8 | 25.7 | 29.7 | 0.364 |
Centauro | 4.38 | 0.814 | 2.06 | 1.53 | 7 | 3.01 | 33.4 | 1394 | 701 | 698 | 91.1 | 52 | 40.8 | 33.5 | 0.39 | |
Coefficient of variation % | ||||||||||||||||
WW | Bellante | 29.4 | 30.66 | 2.46 | 16.96 | 25.04 | 20.86 | 26.86 | 45.6 | 46.82 | 48.87 | 44.56 | 41.75 | 54.3 | 12.68 | 41.86 |
Centauro | 13.48 | 15.82 | 4.68 | 13.54 | 11.69 | 26.23 | 29.91 | 4.96 | 8.14 | 18.72 | 7.82 | 5.53 | 19.84 | 78.93 | 26.24 | |
DS | Bellante | 6.4 | 13.14 | 7.63 | 35.27 | 13.1 | 9.63 | 19.05 | 37.66 | 20.85 | 66.39 | 38.26 | 22.7 | 65.9 | 85.59 | 52.68 |
Centauro | 30.42 | 46.78 | 17.61 | 7.93 | 13.21 | 24.47 | 21.01 | 60.35 | 57.04 | 64.57 | 45.55 | 45.61 | 47.83 | 63.57 | 31.71 |
Drought Stress | Variety | Drought Stress × Variety | |
---|---|---|---|
N° of leaves | P = 1.7 × 10−5 | P = 0.08 ns | ns |
N° of shoots | P = 0.008696 | P = 0.000212 | ns |
Fresh Biomass plant−1 (g) | P = 0.000142 | ns | ns |
Dry Biomass plant−1 (g) | P = 0.00156 | ns | ns |
Max shoot length (cm) | P = 0.074 ns | ns | ns |
Leaf area (cm2) | P = 0.000408 | ns | ns |
Root Length (cm) plant−1 | P = 0.0149 | P = 0.038 | ns |
Top-Root Length (cm) plant−1 | P = 0.0106 | P = 0.0533 | ns |
Deep-Root Length (cm) plant−1 | P = 0.0427 | P = 0.048 | ns |
Root Area (cm2) plant−1 | P = 0.00408 | P = 0.00739 | ns |
Top-Root Area (cm2) plant−1 | P = 0.0042 | P = 0.00889 | ns |
Deep-Root Area (cm2) plant−1 | P = 0.0101 | P = 0.0145 | ns |
Root-to-Shoot-Area Ratio | ns | P = 0.0205 | ns |
N° Shovel root plant−1 | ns | ns | ns |
Family: Gaussian-Link function: identity | ||||
Leaf Area~treatment + s (days, k = 6, by = treatment) | ||||
Parametric coefficients: | ||||
Estimate | Std.Error | t value | Pr(>|t|) | |
(Intercept) | 85.664 | 4.662 | 18.37 | 3.33 × 10−13 *** |
treatmentWW | 121.307 | 6.593 | 18.40 | 3.25 × 10−13 *** |
Approximate significance of smooth terms: | ||||
edf | Ref.df | F | p-value | |
s (days): treatmentDS | 1.00 | 1.000 | 83.3 | <2 × 10−16 *** |
s (days): treatmentWW | 2.79 | 3.397 | 319.6 | <2 × 10−16 *** |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | ||||
R-sq.(adj) = 0.985; Deviance explained = 98.8% | ||||
GCV = 343.78; Scale est. = 260.84; n = 24 | ||||
Leaf Number~treatment + varieties + s (days, k = 6, by = treatment) | ||||
Parametric coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | 19.417 | 2.537 | 7.652 | 7.15 × 10−7 *** |
treatmentWW | 36.167 | 2.930 | 12.344 | 7.50 × 10−10*** |
varietiesCentauro | 8.000 | 2.930 | 2.730 | 0.0143 * |
Approximate significance of smooth terms: | ||||
edf | Ref.df | F | p-value | |
s (days): treatmentDS | 1.452 | 1.763 | 35.75 | 2.66 × 10−6 *** |
s (days): treatmentWW | 2.740 | 3.339 | 198.50 | <2 × 10−16 *** |
--- | ||||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | ||||
R-sq.(adj) = 0.975; Deviance explained = 98.1% | ||||
GCV = 73.541; Scale est. = 51.506; n = 24 | ||||
Number of shoots~treatment + varieties + s (days, k = 6, by = treatment) | ||||
Parametric coefficients: | ||||
Estimate | Std. Error | t value | Pr(>|t|) | |
(Intercept) | 8.5208 | 0.7611 | 11.195 | 2.01 × 10−9 *** |
treatmentWW | 6.2083 | 0.8789 | 7.064 | 1.58 × 10−6 *** |
varieties Centauro | 2.7083 | 0.8789 | 3.082 | 0.00657 ** |
Approximate significance of smooth terms: | ||||
edf | Ref.df | F | p-value | |
s (days): treatmentDS | 1.126 | 1.240 | 36.16 | 6.51 × 10−6 *** |
s (days): treatmentWW | 2.307 | 2.828 | 88.20 | <2 × 10−16 *** |
--- | ||||
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | ||||
R-sq.(adj) = 0.938; Deviance explained = 95.3% | ||||
GCV = 6.3317; Scale est. = 4.6344; n = 24 |
Extractable CT (mg CE g−1 DW) | Protein-Bound CT (mg g−1 DW) | Fiber-Bound CT (mg g−1 DW) | Total CT (mg g−1 DW) | |||||||||||||
Bellante | Centauro | Bellante | Centauro | Bellante | Centauro | Bellante | Centauro | |||||||||
mean | sd | mean | sd | mean | sd | mean | sd | mean | sd | mean | sd | mean | sd | mean | sd | |
DS | 3.24 ± 0.16 | 4.37 ± 0.28 | 3.32 ± 1.55 | 3.15 ± 0.27 | 0.49 ± 0.26 | 0.52 ± 0.05 | 7.05 ± 1.17 | 8.04 ± 0.03 | ||||||||
WW | 4.13 ± 0.10 | 2.68 ± 0.91 | 2.16 ± 0.57 | 2.49 ± 0.81 | 0.43 ± 0.14 | 0.38 ± 0.28 | 6.71 ± 0.60 | 5.55 ± 0.35 | ||||||||
Crude protein | NDF g 100 g−1 DW | Total Polyphenol (mg GAE g−1 DW) | ||||||||||||||
Bellante | Centauro | Bellante | Centauro | Bellante | Centauro | |||||||||||
mean | sd | mean | sd | mean | sd | mean | sd | mean | sd | mean | sd | |||||
DS | 24.79 ± 3.95 | 24.93 ± 1.55 | 24.19 ± 2.44 | 25.23 ± 3.15 | 7.46 ± 1.2 | 6.67 ± 0.39 | ||||||||||
WW | 27.12 ± 1.52 | 29.75 ± 0.87 | 26.90 ± 1.25 | 25.83 ± 4.92 | 7.62 ± 2.93 | 6.31 ± 0.69 |
Condensed Tannins | Drought Stress | Variety | Drought Stress × Variety |
---|---|---|---|
Extractable tannins | P = 0.05 | ns | P = 0.000577 |
Protein bound tannins | ns | ns | ns |
Fiber bound tannins | ns | ns | ns |
Total tannins | P = 0.00304 | ns | P = 0.01029 |
Total N | P = 0.0272 | ns | ns |
NDF | ns | ns | ns |
Total Polyphenols | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, R.; Amato, M.; Claps, S. Sulla (Hedysarum coronarium L.) Response to Drought Stress during Early Vegetative Stage. Plants 2023, 12, 3396. https://doi.org/10.3390/plants12193396
Rossi R, Amato M, Claps S. Sulla (Hedysarum coronarium L.) Response to Drought Stress during Early Vegetative Stage. Plants. 2023; 12(19):3396. https://doi.org/10.3390/plants12193396
Chicago/Turabian StyleRossi, Roberta, Mariana Amato, and Salvatore Claps. 2023. "Sulla (Hedysarum coronarium L.) Response to Drought Stress during Early Vegetative Stage" Plants 12, no. 19: 3396. https://doi.org/10.3390/plants12193396
APA StyleRossi, R., Amato, M., & Claps, S. (2023). Sulla (Hedysarum coronarium L.) Response to Drought Stress during Early Vegetative Stage. Plants, 12(19), 3396. https://doi.org/10.3390/plants12193396