Atmospheric Vapor Impact on Desert Vegetation and Desert Ecohydrological System
Abstract
:1. Introduction
2. Research Area
3. Materials and Methods
3.1. Deep Soil Recharge Observation
3.2. Sap Flow Observation
3.2.1. In-Situ Observation
3.2.2. Determination of the Tipping Point of the Leaf Absorption of Atmospheric Vapor
3.2.3. Calculation of Leaf Water Absorption
3.3. Air Relative Humidity Observation and Simulation
4. Results
4.1. Water Balance and Deep Soil Recharge Characteristics
4.2. Critical Conditions for Reverse Sap Flow
4.3. The Relationship between the Sap Flow and the Dry Matter Quality of the Leaves
4.4. The Relationship between the Liquid Flow Rate and the Duration of High Relative Humidity
5. Discussion
6. Conclusions
- (1)
- Precipitation in arid areas can recharge the deep soil layer, and the atmosphere–vegetation–soil continuum still maintains hydrological connectivity. The five-year average DSR accounted for 5.77% of the mean annual precipitation.
- (2)
- Atmospheric vapor in desert areas is an important water source for native vegetation. The condition for Tamarisk leaves to absorb atmosphere vapor is that the relative humidity reaches more than 70%. Micro-precipitation is also an important water source for native desert vegetation.
- (3)
- Atmospheric vapor enters Tamarisk leaves in two forms: part of the vapor is stored in the leaves with a strength of 0.955 g/g and part of the vapor is transported downwards in the form of reverse sap flow.
- (4)
- The efficiency of Tamarisk absorbing atmospheric vapor through the leaves is 102.263 g/g, accounting for 13.2% of the annual precipitation. Atmospheric vapor provides one of the water resources necessary for the survival of Tamarisk in semi-arid regions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eamus, D.; Cleverly, J.; Boulain, N.; Grant, N.; Faux, R.; Villalobos-Vega, R. Carbon and water fluxes in an arid-zone Acacia savanna woodland: An analyses of seasonal patterns and responses to rainfall events. Agric. For. Meteorol. 2013, 182, 225–238. [Google Scholar] [CrossRef]
- Malhi, Y.; Aragão, L.E.; Galbraith, D.; Huntingford, C.; Fisher, R.; Zelazowski, P.; Sitch, S.; McSweeney, C.; Meir, P. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. USA 2009, 106, 20610–20615. [Google Scholar] [CrossRef] [Green Version]
- Knapp, A.K.; Fay, P.A.; Blair, J.M.; Collins, S.L.; Smith, M.D.; Carlisle, J.D.; Harper, C.W.; Danner, B.T.; Lett, M.S.; McCarron, J.K. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 2002, 298, 2202–2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Mi, Z.; Lin, L.; Wang, Y.; Zhang, Z.; Zhang, F.; Wang, H.; Liu, L.; Zhu, B.; Cao, G. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA 2018, 115, 4051–4056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Zhan, H.; Yang, W.; Dang, H.; Li, W. Is annual recharge coefficient a valid concept in arid and semi-arid regions? Hydrol. Earth Syst. Sci. 2017, 21, 5031–5042. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Zhan, H.; Yang, W.; Jiang, Q.; Wang, Y.; Guo, F. An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons. Agric. Water Manag. 2021, 243, 106488. [Google Scholar] [CrossRef]
- Smith, W.K. Temperatures of desert plants: Another perspective on the adaptability of leaf size. Science 1978, 201, 614–616. [Google Scholar] [CrossRef]
- Hao, X.-M.; Li, C.; Guo, B.; Ma, J.-X.; Ayup, M.; Chen, Z.-S. Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China. J. Hydrol. 2012, 472, 90–98. [Google Scholar] [CrossRef]
- Roberts, D.; Green, R.; Adams, J. Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS. Remote Sens. Environ. 1997, 62, 223–240. [Google Scholar] [CrossRef]
- Ide, R.; Nakaji, T.; Oguma, H. Assessment of canopy photosynthetic capacity and estimation of GPP by using spectral vegetation indices and the light–response function in a larch forest. Agric. For. Meteorol. 2010, 150, 389–398. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, B.; Xing, W.; Zhou, J.; Xu, F.; Xu, Y. Comprehensive evaluation of latest GPM era IMERG and GSMaP precipitation products over mainland China. Atmos. Res. 2020, 246, 105132. [Google Scholar] [CrossRef]
- Cardoso Pereira, S.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Extreme precipitation events under climate change in the Iberian Peninsula. Int. J. Climatol. 2020, 40, 1255–1278. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, L. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys. Res. Lett. 2005, 32, L09707. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Zhan, H.; Shi, M. Can the Pinus sylvestris var. mongolica sand-fixing forest develop sustainably in a semi-arid region? Hydrol. Earth Syst. Sci. Discuss. 2019, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Parmar, S.; Singh, V. Phytoremediation approaches for heavy metal pollution: A review. J. Plant Sci. Res. 2015, 2, 135. [Google Scholar]
- Gribovszki, Z.; Kalicz, P.; Palocz-Andresen, M.; Szalay, D.; Varga, T. Hydrological role of Central European forests in changing climate–review. Időjárás/Q. J. Hung. Meteorol. Serv. 2019, 123, 535–550. [Google Scholar] [CrossRef]
- Gribovszki, Z.; Csáki, P.; Szinetár, M. Hydrological Impacts of Climate Change on Forests. In International Climate Protection; Springer: Berlin/Heidelberg, Germany, 2019; pp. 119–127. [Google Scholar]
- Ingraham, N.L.; Taylor, B.E. Hydrogen isotope study of large-scale meteoric water transport in northern California and Nevada. J. Hydrol. 1986, 85, 183–197. [Google Scholar] [CrossRef]
- Antunes, P.; Boutt, D.F.; Rodrigues, F.C. Orographic distillation and spatio-temporal variations of stable isotopes in precipitation in the North Atlantic. Hydrol. Process. 2019, 33, 775–793. [Google Scholar] [CrossRef]
- Epstein, S.; Mayeda, T. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.; Zhan, H.; Liang, H.; Yang, W.; Zhao, Y.; Li, T. New comparative experiments of different soil types for farmland water conservation in arid regions. Water 2018, 10, 298. [Google Scholar] [CrossRef] [Green Version]
- Breuer, B.; Klemm, O.; Lai, Y.-J.; Lin, P.-H.; Meyer, H.; Nieberding, F.; Song, Q.-H. Up and down: Bidirectional fluxes of fog droplets at two subtropical mountain forest sites. J. Hydrol. 2021, 601, 126491. [Google Scholar] [CrossRef]
- Ziaco, E.; Truettner, C.; Biondi, F.; Bullock, S. Moisture-driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant Cell Environ. 2018, 41, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Fulgham, S.; Millet, D.; Alwe, H.; Goldstein, A.; Schobesberger, S.; Farmer, D. Surface wetness as an unexpected control on forest exchange of volatile organic acids. Geophys. Res. Lett. 2020, 47, e2020GL088745. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhan, H.; Yang, W.; Feng, W.; Lu, Q.; Wang, Y.; Jiang, Q.; Wang, B.; Shi, M.; Wang, T. ISWCR 346: Redistribution process of precipitation in ecological restoration activity of Pinus sylvestris var. mongolica in Mu Us Sandy Land, China. Int. Soil Water Conserv. Res. 2022. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, W.; Zhan, H.; Jiang, Q.; Shi, M.; Wang, Y. On the origin of deep soil water infiltration in the arid sandy region of China. Water 2020, 12, 2409. [Google Scholar] [CrossRef]
- Singh, N.; Parida, B.R. Environmental factors associated with seasonal variations of night-time plant canopy and soil respiration fluxes in deciduous conifer forest, Western Himalaya, India. Trees 2019, 33, 599–613. [Google Scholar] [CrossRef]
- Berry, Z.C.; Emery, N.C.; Gotsch, S.G.; Goldsmith, G.R. Foliar water uptake: Processes, pathways, and integration into plant water budgets. Plant Cell Environ. 2019, 42, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Li, G.; Zhao, H.; Jin, M.; Chen, X.; Fan, Y.; Liu, X.; Wu, D.; Madsen, D. Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary. Quat. Res. 2014, 81, 476–487. [Google Scholar] [CrossRef]
- Chun, X.; Chen, F.; Fan, Y.; Xia, D.; Zhao, H. Formation of Ulan Buh Desert and its environmental evolution. J. Desert Res. 2007, 27, 927–931. [Google Scholar]
- Cheng, Y.; Li, X.; Wang, Y.; Zhan, H.; Yang, W.; Jiang, Q. New measures of deep soil water recharge during the vegetation restoration process in semi-arid regions of northern China. Hydrol. Earth Syst. Sci. 2020, 24, 5875–5890. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, X.; Miao, R.; Li, Y.; Chen, B.; Zhang, Y.; Zhao, B. Trends and controls of terrestrial gross primary productivity of China during 2000–2016. Environ. Res. Lett. 2019, 14, 084032. [Google Scholar] [CrossRef] [Green Version]
- Pasqualotto, G.; Carraro, V.; Menardi, R.; Anfodillo, T. Calibration of Granier-Type (TDP) sap flow probes by a high precision electronic potometer. Sensors 2019, 19, 2419. [Google Scholar] [CrossRef]
- Burgess, S.S.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.; Bleby, T.M. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001, 21, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.; Calissendorff, C.; Williams, J. Probe for measuring soil specific heat using a heat-pulse method. Soil Sci. Soc. Am. J. 1991, 55, 291–293. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.L.; Fonti, P.; Frank, D.C.; Poyatos, R.; Pappas, C.; Kahmen, A.; Carraro, V.; Prendin, A.L.; Schneider, L.; Baltzer, J.L.; et al. Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. New Phytol. 2018, 219, 1283–1299. [Google Scholar] [CrossRef] [Green Version]
- Hassler, S.K.; Weiler, M.; Blume, T. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration. Hydrol. Earth Syst. Sci. 2018, 22, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Mennekes, D.; Rinderer, M.; Seeger, S.; Orlowski, N. Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment. Hydrol. Earth Syst. Sci. 2021, 25, 4513–4530. [Google Scholar] [CrossRef]
- Schoppach, R.; Sinclair, T.R.; Sadok, W. Sleep tight and wake-up early: Nocturnal transpiration traits to increase wheat drought tolerance in a Mediterranean environment. Funct. Plant Biol. 2020, 47, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Di, N.; Xi, B.; Clothier, B.; Wang, Y.; Li, G.; Jia, L. Diurnal and nocturnal transpiration behaviors and their responses to groundwater-table fluctuations and meteorological factors of Populus tomentosa in the North China Plain. For. Ecol. Manag. 2019, 448, 445–456. [Google Scholar] [CrossRef]
- Huang, T.; Pang, Z.; Edmunds, W.M. Soil profile evolution following land-use change: Implications for groundwater quantity and quality. Hydrol. Process. 2013, 27, 1238–1252. [Google Scholar] [CrossRef]
- Yang, L.; Wei, W.; Chen, L.; Mo, B. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 2012, 475, 111–122. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, W.; Zhan, H.; Jiang, Q.; Shi, M.; Wang, Y.; Li, X.; Xin, Z. On Change of Soil Moisture Distribution With Vegetation Reconstruction in Mu Us Sandy Land of China, With Newly Designed Lysimeter. Front. Plant Sci. 2021, 12, 609529. [Google Scholar] [CrossRef] [PubMed]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Li, Y.; Zhao, R.; Zhang, X. Effects of deficit irrigation on daily and seasonal variations of trunk sap flow and its growth in Calligonum arborescens. J. Arid Land 2013, 5, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Hayat, M.; Zha, T.; Jia, X.; Iqbal, S.; Qian, D.; Bourque, C.P.-A.; Khan, A.; Tian, Y.; Bai, Y.; Liu, P. A multiple-temporal scale analysis of biophysical control of sap flow in Salix psammophila growing in a semiarid shrubland ecosystem of northwest China. Agric. For. Meteorol. 2020, 288, 107985. [Google Scholar] [CrossRef]
- Siqueira, M.; Katul, G.; Porporato, A. Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water dynamics from millimeters to meters. Water Resour. Res. 2008, 44, W01432. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X.; Yan, H.; Liang, S.; Shan, L. Plants water status of the shelterbelt along the Tarim Desert Highway. Chin. Sci. Bull. 2008, 53, 146–155. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, X.-J.; Yin, X.-W.; Yue, Y.-M.; Liu, R.; Xu, G.-Q.; Li, Y. Seasonal variation in the groundwater dependency of two dominant woody species in a desert region of Central Asia. Plant Soil 2019, 444, 39–55. [Google Scholar] [CrossRef]
- Chen, Y.; He, J.; He, Y.; Gao, W.; Zheng, C.; Liu, X. Seasonal hydrological traits in Salix psammophila and its responses to soil moisture and meteorological factors in desert areas. Ecol. Indic. 2022, 136, 108626. [Google Scholar] [CrossRef]
Month | Precipitation (mm) | DSR (mm) | D/P |
---|---|---|---|
January | 0 | 3.4 | 5.77% |
February | 0.6 | 3 | |
March | 4.2 | 2 | |
April | 33.2 | 0.6 | |
May | 23.8 | 1.2 | |
June | 79.4 | 1 | |
July | 40.6 | 1.2 | |
August | 92 | 1.8 | |
September | 18.6 | 0.6 | |
October | 25.8 | 0.2 | |
November | 3.8 | 0.6 | |
December | 0.2 | 3 |
Sample No. | Branch Diameter (mm) | Sap Flux (g) | Leaf Dry Matter (g) | Unhumidified Leaves Weight (g) | Humidification Leaves Weight (g) | Net Absorption/Dry Matter (g/g) | Average Leaf Storage (g/g) |
---|---|---|---|---|---|---|---|
1 | 15.320 | 1108.669 | 67.014 | 172.272 | 238.456 | 0.988 | 0.955 |
2 | 13.250 | 496.674 | 26.431 | 67.946 | 95.476 | 1.042 | |
3 | 10.930 | 695.551 | 38.902 | 100.005 | 140.936 | 1.052 | |
4 | 12.640 | 661.792 | 40.128 | 103.157 | 140.314 | 0.926 | |
5 | 7.330 | 262.880 | 18.191 | 46.763 | 65.001 | 1.003 | |
6 | 9.890 | 655.135 | 31.852 | 81.882 | 113.557 | 0.994 | |
7 | 13.374 | 440.367 | 22.651 | 58.229 | 80.112 | 0.966 | |
8 | 10.130 | 541.867 | 21.586 | 55.491 | 74.093 | 0.862 | |
9 | 10.410 | 238.431 | 7.840 | 20.154 | 27.886 | 0.986 | |
10 | 9.960 | 289.750 | 14.794 | 38.031 | 52.327 | 0.966 | |
11 | 6.925 | 260.725 | 11.218 | 28.838 | 38.336 | 0.847 | |
12 | 5.319 | 272.088 | 10.046 | 25.825 | 35.417 | 0.955 | |
13 | 11.900 | 826.030 | 46.235 | 118.856 | 160.275 | 0.896 | |
14 | 13.400 | 897.730 | 58.153 | 149.494 | 204.689 | 0.949 | |
15 | 12.331 | 447.028 | 25.208 | 64.802 | 90.112 | 1.004 | |
16 | 12.500 | 429.829 | 18.995 | 48.830 | 65.869 | 0.897 | |
17 | 13.200 | 461.180 | 19.943 | 51.267 | 70.265 | 0.953 | |
18 | 18.347 | 1071.258 | 65.419 | 168.172 | 230.665 | 0.955 | |
19 | 17.760 | 1127.940 | 68.251 | 175.452 | 240.172 | 0.948 | |
20 | 15.620 | 835.645 | 50.494 | 129.805 | 175.336 | 0.902 |
Environmental Information | Pr (mm) | DSR (mm) | Pr Time (h) | RH > 70% Duration (h) | Growing Season (h) | Vapor Absorption/Canopy Size (m2) | Average Absorption/Pr (mm/mm) |
84 | 5 | 91 | 870 | 3600 | 6.456 | / | |
Vapor absorption | / | / | 11.629 | 103.006 | / | / | 13.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Z.; Feng, W.; Zhan, H.; Bai, X.; Yang, W.; Cheng, Y.; Wu, X. Atmospheric Vapor Impact on Desert Vegetation and Desert Ecohydrological System. Plants 2023, 12, 223. https://doi.org/10.3390/plants12020223
Xin Z, Feng W, Zhan H, Bai X, Yang W, Cheng Y, Wu X. Atmospheric Vapor Impact on Desert Vegetation and Desert Ecohydrological System. Plants. 2023; 12(2):223. https://doi.org/10.3390/plants12020223
Chicago/Turabian StyleXin, Zhiming, Wei Feng, Hongbin Zhan, Xuying Bai, Wenbin Yang, Yiben Cheng, and Xiuqin Wu. 2023. "Atmospheric Vapor Impact on Desert Vegetation and Desert Ecohydrological System" Plants 12, no. 2: 223. https://doi.org/10.3390/plants12020223
APA StyleXin, Z., Feng, W., Zhan, H., Bai, X., Yang, W., Cheng, Y., & Wu, X. (2023). Atmospheric Vapor Impact on Desert Vegetation and Desert Ecohydrological System. Plants, 12(2), 223. https://doi.org/10.3390/plants12020223