The Effect of the Varietal Type, Ripening Stage, and Growing Conditions on the Content and Profile of Sugars and Capsaicinoids in Capsicum Peppers
Abstract
:1. Introduction
2. Results
2.1. Analysis of Variance for the Content of Sugars and Capsaicinoids
2.2. Sugar Content at the Green-Ripe and Fully Ripe Stages
2.2.1. Total Sugar
2.2.2. Sugar Profile
2.3. Capsaicinoid Content at the Green-Ripe and Fully Ripe Stages
2.3.1. Total Capsaicinoids
2.3.2. Capsaicinoids Profile
2.4. Effect of the Ripening Process on the Total Content of Sugars and Capsaicinoids
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Sampling
4.3. Chemical Determinations
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAO. FAOSTAT Statistics Database. Countries by Commodity. 2020. Chillies and Peppers. 2022. Available online: https://www.fao.org/faostat/es/#rankings/countries_by_commodity (accessed on 11 October 2022).
- Pereira-Dias, L.; Vilanova, S.; Fita, A.; Prohens, J.; Rodríguez-Burruezo, A. Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Hort. Res. 2019, 6, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWitt, D.; Bosland, P.W. The Complete Chile Pepper Book: A Gardener’s Guide to Choosing, Growing, Preserving, and Cooking; Timber Press: Portland, OR, USA, 2009; 336p. [Google Scholar]
- Rezende-Naves, E.; de Ávila Silva, L.; Sulpice, R.; Araújo, W.L.; Nunes-Nesi, A.; Peres, L.E.P.; Zsögön, A. Capsaicinoids: Pungency beyond Capsicum. Trends Plant Sci. 2019, 24, 109–120. [Google Scholar] [CrossRef]
- Kollmannsberger, H.; Rodríguez-Burruezo, A.; Nitz, S.; Nuez, F. Volatile and capsaicinoid composition of ají (Capsicum baccatum) and rocoto (C. pubescens), two Andean species of chile peppers. J. Sci. Food Agric. 2011, 91, 1598–1611. [Google Scholar] [CrossRef] [PubMed]
- Zamljen, T.; Medič, A.; Veberič, R.; Hudina, M.; Jakopič, J.; Slatnar, A. Metabolic variation among fruits of different chili cultivars (Capsicum spp.) using HPLC/MS. Plants 2021, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Yoo, E.; Shin, J.H.; Lee, J.; Hwang, H.S.; Kim, B.D. Non-pungent Capsicum contains a deletion in the capsaicinoid synthetase gene, which allows early detection of pungency with SCAR markers. Mol. Cells 2005, 19, 262–267. [Google Scholar]
- Bae, H.; Jayaprakasha, G.K.; Crosby, K.; Yoo, K.S.; Leskovar, D.I.; Jifon, J.; Patil, B.S. Ascorbic acid, capsaicinoid, and flavonoid aglycone concentrations as a function of fruit maturity stage in greenhouse-grown peppers. J. Food Comp. Anal. 2014, 33, 195–202. [Google Scholar] [CrossRef]
- Islam, M.A.; Sharma, S.S.; Sinha, P.; Negi, M.S.; Neog, B.; Tripathi, S.B. Variability in capsaicinoid content in different landraces of Capsicum cultivated in north-eastern India. Sci. Hortic. 2015, 183, 66–71. [Google Scholar] [CrossRef]
- Muñoz-Ramírez, L.S.; Peña-Yam, L.P.; Avilóes-Viñas, S.A.; Canto-Flick, A.; Guzmán-Antonio, A.A.; Santana-Buzzy, N. Behavior of the hottest chili peppers in the world cultivated in Yucatan, Mexico. HortScience 2018, 53, 1772–1775. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, A.; Atasoy, A.F.; Hayaloglu, A.A. Changes in volatile compounds, sugars and organic acids of different spices of peppers (Capsicum annuum L.) during storage. Food Chem. 2020, 311, 125910. [Google Scholar] [CrossRef]
- Moreno-Peris, E.; Fita, A.; Gonzalez-Más, M.C.; Rodríguez-Burruezo, A. HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Sci. Hortic. 2012, 135, 87–97. [Google Scholar] [CrossRef]
- Moreno-Peris, E.; Cortés-Olmos, C.; Díez-Díaz, M.; González-Más, M.C.; de Luis-Margarit, A.; Fita, A.; Rodríguez-Burruezo, A. Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: Effect of parent combination and fruit tissue. Agronomy 2020, 10, 751. [Google Scholar] [CrossRef]
- Rodríguez-Burruezo, A.; Kollmannsberger, H.; González-Más, M.C.; Nitz, S.; Nuez, F. HS-SPME comparative analysis of genotypic diversity in volatile fraction and aroma contributing compounds of Capsicum fruits from the annuum-chinense-frutescens complex. J. Agric. Food Chem. 2010, 58, 4388–4400. [Google Scholar] [CrossRef] [PubMed]
- Eggink, P.M.; Maliepaard, C.; Tikunov, Y.; Haanstra, J.P.W.; Bovy, A.G.; Visser, R.G.F. A taste of sweet pepper: Volatile and non-volatile chemical composition of fresh sweet pepper (Capsicum annuum) in relation to sensory evaluation of taste. Food Chem. 2012, 132, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Speranza, G.; Lo Scalzo, R.; Morelli, C.F.; Rabuffetti, M.; Bianchi, G. Influence of drying techniques and growing location on the chemical composition of sweet pepper (Capsicum annuum L., var. Senise). J. Food Biochem. 2019, 43, e13031. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.M.; Flores, P.; Garrido, C.; Martinez, V. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 2006, 96, 66–73. [Google Scholar] [CrossRef]
- Lo Scalzo, R.; Campanelli, G.; Dario, P.; Fibiani, M.; Bianchi, G. Influence of organic cultivation and sampling year on quality indexes of sweet pepper during 3 years of production. Eur. Food Res. Technol. 2020, 246, 1325–1339. [Google Scholar] [CrossRef]
- Zamljen, T.; Jakopic, J.; Hudina, M.; Veberic, R.; Slatnar, A. Influence of intra and inter species variation in chilies (Capsicum spp.) on metabolite composition of three fruit segments. Sci. Rep. 2021, 11, 4932. [Google Scholar] [CrossRef]
- Eggink, P.M.; Maliepaard, C.; Tikunov, Y.; Haanstra, J.P.W.; Pohu-Flament, L.M.M.; De Wit-Maljaars, S.C.; Willeboordse-Vos, F.; Bos, S.; Waard, C.B.-D.; Leeuwen, P.J.D.G.-V.; et al. Prediction of sweet pepper (Capsicum annuum) flavor over different harvests. Euphytica 2012, 187, 117–131. [Google Scholar] [CrossRef]
- Baldwin, E.A.; Goodner, K.; Plotto, A. Interaction of volatiles, sugars, and acids on perception of tomato aroma and flavor descriptors. J. Food Sci. 2008, 73, S294–S307. [Google Scholar] [CrossRef]
- Gurung, T.; Techawongstien, S.; Suriharn, B.; Techawongstien, S. Stability analysis of yield and capsaicinoids content in chili (Capsicum spp.) grown across six environments. Euphytica 2012, 187, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Ribes-Moya, A.; Raigón, M.D.; Moreno-Peris, E.; Fita, A.; Rodriguez-Burruezo, A. Response to organic cultivation of heirloom Capsicum peppers: Variation in the level of bioactive compounds and effect of ripening. PloS ONE 2018, 13, e0207888. [Google Scholar] [CrossRef] [PubMed]
- Ribes-Moya, A.M.; Adalid, A.M.; Raigón, M.D.; Hellín, P.; Fita, A.; Rodríguez-Burruezo, A. Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: Effect of the genotype, ripening stage, and growing system. J. Sci. Food Agric. 2020, 100, 2208–2223. [Google Scholar] [CrossRef] [PubMed]
- Perla, V.; Nimmakayala, P.; Nadimi, M.; Alaparthi, S.; Hankins, G.R.; Ebert, A.W.; Reddy, U.K. Vitamin C and reducing sugars in the world collection of Capsicum baccatum L. genotypes. Food Chem. 2016, 202, 189–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayos, O.; Ochoa-Alejo, N.; Martínez de la Vega, O.; Savirón, M.; Orduna, J.; Mallor, C.; Barbero, G.F.; Garcés-Claver, A. Assessment of capsaicinoid and capsinoid accumulation patterns during fruit development in three chili pepper genotypes (Capsicum spp.) carrying Pun1 and pAMT alleles related to pungency. J. Agric. Food Chem. 2019, 67, 12219–12227. [Google Scholar] [CrossRef]
- Topuz, A.; Ozdemir, F. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J. Food Comp. Anal. 2007, 20, 596–602. [Google Scholar] [CrossRef]
- Kantar, M.B.; Anderson, J.E.; Lucht, S.A.; Mercer, K.; Bernau, V.; Case, K.A.; Le, N.C.; Frederiksen, M.K.; DeKeyser, H.C.; Wong, Z.Z.; et al. Vitamin variation in Capsicum Spp. provides opportunities to improve nutritional value of human diets. PLoS ONE 2016, 11, e0161464. [Google Scholar] [CrossRef]
- Gisbert-Mullor, R.; Ceccanti, C.; Padilla, Y.G.; López-Galarza, S.; Calatayud, A.; Conte, G.; Guidi, L. Effect of grafting on the production, physico-chemical characteristics and nutritional quality of fruit from pepper landraces. Antioxidants 2020, 9, 501. [Google Scholar] [CrossRef]
- Somos, A. The Paprika; Akadémiai Kiadó: Budapest, Hungary, 1984; p. 302. [Google Scholar]
- Rodríguez-Burruezo, A.; Pereira-Dias, L.; Fita, A. Pimiento. In Las Variedades Locales en la Mejora Genética de Plantas; Ruiz de Galarreta, J.I., Prohens, J., Tierno, R., Eds.; Servicio Central de Publicaciones del Gobierno Vasco: Vitoria-Gasteiz, Spain, 2016; pp. 405–426. (In Spanish) [Google Scholar]
- Bosland, P.W.; Votava, E.J. Peppers: Vegetable and Spice Capsicums, 2nd ed.; CABI: Wallinford, UK, 2012; 248p. [Google Scholar]
- Jarret, R.L.; Berke, T.; Baldwin, E.A.; Antonious, G. Variability for free sugars and organic acids in Capsicum chinense. Chem. Biodivers. 2009, 6, 138–145. [Google Scholar] [CrossRef]
- Todd, P.H.; Bensinger, M.G.; Biftu, T. Determination of pungency due to Capsicum by gas-liquid chromatography. J. Food Sci. 1977, 42, 660–665. [Google Scholar] [CrossRef]
- Sweat, K.G.; Broatch, J.; Borror, C.; Hagan, K.; Cahill, T.M. Variability in capsaicinoid content and Scoville heat ratings of commercially grown Jalapeño, Habanero and Bhut Jolokia peppers. Food Chem. 2016, 210, 606–612. [Google Scholar] [CrossRef]
- Villaseñor-Aguilar, M.J.; Bravo-Sánchez, M.G.; Padilla-Medina, J.A.; Vázquez-Vera, J.L.; Guevara-González, R.G.; García-Rodríguez, F.J.; Barranco-Gutiérrez, A.I. A maturity estimation of bell pepper (Capsicum annuum L.) by artificial vision system for quality control. Appl. Sci. 2020, 10, 5097. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Jung, B.D.; Baek, H.Y.; Lee, Y.S. Ripening-dependent changes in phytonutrients and antioxidant activity of red pepper (Capsicum annuum L.) fruits cultivated under open-field conditions. HortScience 2013, 48, 1275–1282. [Google Scholar] [CrossRef] [Green Version]
- Cisternas-Jamet, J.; Salvatierra-Martínez, R.; Vega-Gálvez, A.; Stoll, A.; Uribe, E.; Goñi, M.G. Biochemical composition as a function of fruit maturity stage of bell pepper (Capsicum annuum) inoculated with Bacillus amyloliquefaciens. Sci. Hortic. 2020, 263, 109107. [Google Scholar] [CrossRef]
- Nielsen, T.H.; Skjaerbaek, H.C.; Karlsen, P. Carbohydrate metabolism during fruit development in sweet pepper (Capsicum annuum) plants. Physiol. Plant. 1991, 82, 311–319. [Google Scholar] [CrossRef]
- Barberó, G.F.; Ruiz, A.G.; Liazid, A.; Palma, M.; Vera, J.C.; Barroso, C.G. Evolution of total and individual capsaicinoids in peppers during ripening of the Cayenne pepper plant (Capsicum annuum L.). Food Chem. 2014, 153, 200–206. [Google Scholar] [CrossRef]
- Fayos, O.; De Aguiar, A.C.; Jiménez-Cantizano, A.; Ferreiro-González, M.; Garcés-Claver, A.; Martínez, J.; Mallor, C.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G.; et al. Ontogenetic variation of individual and total capsaicinoids in malagueta peppers (Capsicum frutescens) during fruit maturation. Molecules 2017, 22, 736. [Google Scholar] [CrossRef]
- Olguín-Rojas, J.A.; Fayos, O.; Vázquez-León, L.A.; Ferreiro-González, M.; Rodríguez-Jimenes, G.D.C.; Palma, M.; Garcés-Claver, A.; Barbero, G.F. Progression of the total and individual capsaicinoids content in the fruits of three different cultivars of Capsicum chinense Jacq. Agronomy 2019, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Padilla, M.; Yahia, E.M. Changes in capsaicinoids during development, Maturation, and senescence of chile peppers and relation with peroxidase activity. J. Agric. Food Chem. 1998, 46, 2075–2079. [Google Scholar] [CrossRef]
- Barberó, G.F.; de Aguiar, A.C.; Carrera, C.; Olachea, Á.; Ferreiro-González, M.; Martínez, J.; Palma, M.; Barroso, C.G. Evolution of capsaicinoids in Peter Pepper (Capsicum annuum var. annuum) during fruit ripening. Chem. Biodivers. 2016, 13, 1068–1075. [Google Scholar] [CrossRef]
- Tanaka, Y.; Nakashima, F.; Kirii, E.; Goto, T.; Yoshida, Y.; Yasuba, K.I. Difference in capsaicinoid biosynthesis gene expression in the pericarp reveals elevation of capsaicinoid contents in chili peppers (Capsicum chinense). Plant Cell Rep. 2017, 36, 267–279. [Google Scholar] [CrossRef]
- Moreiras, O.; Carbajal, A. Tablas de Composición de Alimentos: Guía de Prácticas, 19th ed.; Ediciones Pirámide: Madrid, Spain, 2018; 496p. [Google Scholar]
- Flores, P.; Hellín, P.; Lacasa, A.; López, A.; Fenoll, J. Pepper antioxidant composition as affected by organic, low-input and soilless cultivation. J. Sci. Food Agric. 2009, 89, 2267–2274. [Google Scholar] [CrossRef]
- Rosa-Martínez, E.; García-Martínez, M.D.; Adalid-Martínez, A.M.; Pereira-Dias, L.; Casanova, C.; Soler, E.; Figàs, M.R.; Raigón, M.D.; Plazas, M.; Soler, S.; et al. Fruit composition profile of pepper, tomato and eggplant varieties grown under uniform conditions. Food Res. Int. 2021, 147, 110531. [Google Scholar] [CrossRef] [PubMed]
- Felföldi, Z.; Ranga, F.; Socaci, S.A.; Farcas, A.; Plazas, M.; Sestras, A.F.; Vodnar, D.C.; Prohens, J.; Sestras, R.E. Physico-chemical, nutritional, and sensory evaluation of two new commercial tomato hybrids and their parental lines. Plants 2021, 10, 2480. [Google Scholar] [CrossRef]
- Giuffrida, D.; Dugo, P.; Torre, G.; Bignardi, C.; Cavazza, A.; Corradini, C.; Dugo, G. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem. 2013, 140, 794–802. [Google Scholar] [CrossRef]
- Sarpras, M.; Ahmad, I.; Rawoof, A.; Ramchiary, N. Comparative analysis of developmental changes of fruit metabolites, antioxidant activities and mineral elements content in Bhut jolokia and other Capsicum species. LWT 2019, 105, 363–370. [Google Scholar] [CrossRef]
- Al Othman, Z.A.; Ahmed, Y.B.H.; Habila, M.A.; Ghafar, A.A. Determination of capsaicin and dihydrocapsaicin in Capsicum fruit samples using high performance liquid chromatography. Molecules 2011, 16, 8919–8929. [Google Scholar] [CrossRef] [Green Version]
- De Aguiar, A.C.; Coutinho, J.P.; Barbero, G.F.; Godoy, H.T.; Martínez, J. Comparative study of capsaicinoid composition in Capsicum peppers grown in Brazil. Int. J. Food Prop. 2016, 19, 1292–1302. [Google Scholar] [CrossRef] [Green Version]
- Denev, P.; Todorova, V.; Ognyanov, M.; Georgiev, Y.; Yanakieva, I.; Tringovska, I.; Grozeva, S.; Kostova, D. Phytochemical composition and antioxidant activity of 63 Balkan pepper (Capsicum annuum L.) accessions. J. Food Meas. Charact. 2019, 13, 2510–2520. [Google Scholar] [CrossRef]
- Kim, E.-H.; Lee, S.-Y.; Baek, D.-Y.; Park, S.-Y.; Lee, S.-G.; Ryu, T.-H.; Lee, S.-K.; Kang, H.-J.; Kwon, O.-H.; Kil, M.; et al. A comparison of the nutrient composition and statistical profile in red pepper fruits (Capsicum annuum L.) based on genetic and environmental factors. Appl. Biol. Chem. 2019, 62, 48. [Google Scholar] [CrossRef] [Green Version]
- Tripodi, P.; Francese, G.; Onofaro-Sanajà, V.; Di Cesare, C.; Festa, G.; D’Alessandro, A.; Mennella, G.A. Multi-methodological approach to study genomic footprints and environmental influence on agronomic and metabolic profiles in a panel of Italian traditional sweet pepper varieties. J. Food Comp. Anal. 2021, 103, 104116. [Google Scholar] [CrossRef]
- Tripodi, P.; Ficcadenti, N.; Rotino, G.L.; Festa, G.; Bertone, A.; Pepe, A.; Caramanico, R.; Migliori, C.A.; Spadafora, D.; Schiavi, M.; et al. Genotypic and environmental effects on the agronomic, health-related compounds and antioxidant properties of chilli peppers for diverse market destinations. J. Sci. Food Agric. 2019, 99, 4550–4560. [Google Scholar] [CrossRef]
- Sganzerla, M.; Coutinho, J.P.; de Melo, A.M.T.; Godoy, H.T. Fast method for capsaicinoids analysis from Capsicum chinense fruits. Food Res. Int. 2014, 64, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Barberó, G.F.; Liazid, A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of capsaicinoids from peppers. Talanta 2008, 75, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
Sugars | Capsaicinoids | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFFECT | df | Fructose | Glucose | Sucrose | Total | df | Caps | DHCaps | NDHCaps | Total | ||||||||
Genotype (G) | 9 | 14.65 | *** | 19.24 | *** | 15.07 | *** | 18.18 | *** | 6 | 83.01 | *** | 74.19 | *** | 65.65 | *** | 81.20 | *** |
Growing system (E) | 1 | 0.00 | ns | 0.10 | ns | 0.92 | *** | 0.17 | ns | 1 | 0.01 | ns | 0.01 | ns | 0.00 | ns | 0.00 | ns |
Ripening stage (R) | 1 | 45.81 | *** | 30.70 | *** | 31.74 | *** | 30.12 | *** | 1 | 1.17 | *** | 2.36 | *** | 3.16 | *** | 1.55 | *** |
Year (Y) | 1 | 4.84 | *** | 3.40 | *** | 0.02 | ns | 4.83 | *** | 1 | 0.65 | *** | 0.61 | *** | 0.29 | ** | 0.65 | *** |
Interactions | ||||||||||||||||||
G × E | 9 | 2.34 | *** | 3.09 | *** | 2.56 | *** | 4.19 | *** | 6 | 0.44 | ** | 0.64 | ** | 1.74 | *** | 0.47 | ** |
G × R | 9 | 4.11 | *** | 4.27 | *** | 15.10 | *** | 2.80 | *** | 6 | 4.42 | *** | 3.28 | *** | 1.43 | *** | 4.33 | *** |
G × Y | 9 | 7.91 | *** | 10.87 | *** | 1.34 | ns | 10.83 | *** | 6 | 4.17 | *** | 9.29 | *** | 17.97 | *** | 5.20 | *** |
E × R | 1 | 0.02 | ns | 0.03 | ns | 0.93 | *** | 0.06 | ns | 1 | 0.07 | ns | 0.03 | ns | 0.01 | ns | 0.07 | ns |
E × Y | 1 | 0.03 | ns | 0.10 | ns | 0.09 | ns | 0.11 | ns | 1 | 0.07 | ns | 0.20 | * | 0.18 | * | 0.11 | * |
R × Y | 1 | 2.30 | *** | 2.96 | *** | 0.02 | ns | 3.22 | *** | 1 | 0.18 | ** | 0.42 | *** | 0.39 | ** | 0.24 | ** |
Residual | 18.00 | 25.23 | 33.49 | 25.50 | 5.79 | 8.98 | 9.18 | 6.18 |
Sugars | Capsaicinoids | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EFFECT | df | Fructose | Glucose | Sucrose | Total | df | Caps | DHCaps | NDHCaps | Total | ||||||||
Green-ripe stage | ||||||||||||||||||
Genotype (G) | 9 | 69.92 | *** | 51.01 | *** | 43.52 | *** | 41.07 | *** | 6 | 50.18 | *** | 82.03 | *** | 77.38 | *** | 88.97 | *** |
Growing system (E) | 1 | 0.13 | ns | 0.64 | ns | 2.49 | ** | 1.04 | * | 1 | 0.37 | ns | 0.11 | ns | 0.01 | ns | 0.08 | ns |
Year (Y) | 1 | 1.70 | *** | 0.02 | ns | 0.04 | ns | 0.44 | ns | 1 | 1.57 | ** | 0.03 | ns | 1.38 | *** | 0.18 | * |
Interactions | ||||||||||||||||||
G × E | 9 | 2.55 | * | 6.26 | *** | 7.66 | ** | 9.81 | *** | 6 | 0.30 | ns | 0.64 | ns | 0.60 | * | 0.13 | ns |
G × Y | 9 | 6.37 | *** | 9.34 | *** | 4.06 | ns | 9.53 | * | 6 | 21.71 | *** | 10.81 | *** | 16.00 | *** | 5.61 | *** |
E × Y | 1 | 0.11 | ns | 0.49 | ns | 0.30 | ns | 0.65 | ns | 1 | 0.26 | ns | 0.24 | * | 0.15 | ns | 0.09 | ns |
Residual | 19.20 | 32.24 | 41.92 | 37.46 | 25.61 | 6.13 | 4.48 | 4.94 | ||||||||||
Fully ripe stage | ||||||||||||||||||
Genotype (G) | 9 | 25.07 | *** | 29.55 | *** | ND | 27.10 | *** | 6 | 88.03 | *** | 78.34 | *** | 61.04 | *** | 86.57 | *** | |
Growing system (E) | 1 | 0.04 | ns | 0.02 | ns | ND | 0.03 | ns | 1 | 0.07 | ns | 0.00 | ns | 0.01 | ns | 0.06 | ns | |
Year (Y) | 1 | 16.60 | *** | 11.71 | *** | ND | 14.67 | *** | 1 | 0.99 | *** | 1.56 | *** | 0.01 | ns | 1.12 | *** | |
Interactions | ||||||||||||||||||
G × E | 9 | 8.18 | *** | 7.73 | *** | ND | 7.97 | *** | 6 | 1.34 | *** | 2.56 | *** | 5.01 | *** | 1.54 | *** | |
G × Y | 9 | 29.16 | *** | 30.40 | *** | ND | 29.66 | *** | 6 | 4.71 | *** | 9.57 | *** | 21.78 | *** | 5.53 | *** | |
E × Y | 1 | 0.07 | ns | 0.11 | ns | ND | 0.09 | ns | 1 | 0.09 | ns | 0.19 | ns | 0.23 | ns | 0.12 | ns | |
Residual | 20.88 | 20.49 | 20.48 | 4.76 | 7.78 | 11.92 | 5.07 |
Accession | Origin | Color | Mesocarp | Shape (Pochard’s) | Length/Width (mm) | Weight (g) |
---|---|---|---|---|---|---|
C. annuum | ||||||
BGV10582 | COMAV, Valencia, Spain | Red | Thick, fleshy | Bell elongated (B1) | 162/73 | >250 |
Bola | PDO Pimenton de Murcia, Totana, Spain | Deep red | Thin, high, and dry matter | Round (N) | 35/41 | 10–25 |
Espelette | F. Jourdan. INRA Geves, France | Deep red | Thin, high, and dry matter | Elongated (C3) | 138/29 | 25–50 |
Gernika | Neiker, Euskadi, Spain | Deep red | Thin, high, and dry matter | Elongated (C2) | 84/32 | 25–50 |
Guindilla | Neiker, Euskadi, Spain | Red | Thin, high, and dry matter | Very elongated (C1) | 139/11 | <10 |
Jalapeño | USA. Reimer Seeds | Deep red | Thick, fleshy | Elongated (B4) | 65/31 | 10–25 |
Piquillo | PDO Piquillo, Navarra, Spain | Deep red | Medium | Triangular (C4) | 94/48 | 50–100 |
Serrano | Mexico. Reimer’s Seeds Co. | Red | Medium | Elongated (B4) | 35/16 | <10 |
C. baccatum | ||||||
BOL58 | Cochabamba (Bolivia) | Deep red | Thin, high, and dry matter | Elongated | 70/15 | 5–10 |
C. chinense | ||||||
ECU994 | Archidona, Napo (Ecuador) | Red | Thin, high, and dry matter | Triangular | 42/15 | 5–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guijarro-Real, C.; Adalid-Martínez, A.M.; Pires, C.K.; Ribes-Moya, A.M.; Fita, A.; Rodríguez-Burruezo, A. The Effect of the Varietal Type, Ripening Stage, and Growing Conditions on the Content and Profile of Sugars and Capsaicinoids in Capsicum Peppers. Plants 2023, 12, 231. https://doi.org/10.3390/plants12020231
Guijarro-Real C, Adalid-Martínez AM, Pires CK, Ribes-Moya AM, Fita A, Rodríguez-Burruezo A. The Effect of the Varietal Type, Ripening Stage, and Growing Conditions on the Content and Profile of Sugars and Capsaicinoids in Capsicum Peppers. Plants. 2023; 12(2):231. https://doi.org/10.3390/plants12020231
Chicago/Turabian StyleGuijarro-Real, Carla, Ana M. Adalid-Martínez, Cherrine K. Pires, Ana M. Ribes-Moya, Ana Fita, and Adrián Rodríguez-Burruezo. 2023. "The Effect of the Varietal Type, Ripening Stage, and Growing Conditions on the Content and Profile of Sugars and Capsaicinoids in Capsicum Peppers" Plants 12, no. 2: 231. https://doi.org/10.3390/plants12020231
APA StyleGuijarro-Real, C., Adalid-Martínez, A. M., Pires, C. K., Ribes-Moya, A. M., Fita, A., & Rodríguez-Burruezo, A. (2023). The Effect of the Varietal Type, Ripening Stage, and Growing Conditions on the Content and Profile of Sugars and Capsaicinoids in Capsicum Peppers. Plants, 12(2), 231. https://doi.org/10.3390/plants12020231