Effects of Solar Radiation on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation
Abstract
:1. Introduction
2. Results
2.1. Insolation Rate in Three-Layers Cultivation System
2.2. Productivities of Sweet Potatoes in Three-Layer Cultivation Systems
2.3. Photosynthetic Efficiency in Three-Layers Cultivation
3. Discussion
4. Materials and Methods
4.1. Three-Layer Cultivation System
4.2. Solar Radiation Rates in a Three-Layer Cultivation System
4.3. Photosynthetic Efficiency in Three-Layer Cultivation
4.4. Statical Analysis
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petsakos, A.; Prager, S.D.; Gonzalez, C.E.; Gama, A.C.; Sulser, T.B.; Gbegbelegbe, S.; Kikulwe, E.M.; Hareau, G. Understanding the consequences of changes in the production frontiers for roots, tubers and bananas. Glob. Food Secur. 2019, 20, 180–188. [Google Scholar] [CrossRef]
- Woolfe, J. Sweet Potato: An Untapped Food Resource, 1st ed.; Cambridge University Press: New York, NY, USA, 1992; p. 643. [Google Scholar]
- Pimentel, D.; Doughty, R.; Carothers, C.; Lamberson, S.; Bora, N.; Lee, K. Energy inputs in crop production in developing and developed countries. In Food Security and Environmental Quality in the Developing World; CRC Press: Boca Raton, FL, USA, 2002; pp. 129–151. [Google Scholar]
- Koçar, G.; Civas, N. An overview of biofuels from energy crops: Current status and future prospects. Renew. Sustain. Energy Rev. 2013, 28, 900–916. [Google Scholar] [CrossRef]
- Lareo, C.; Ferrari, M.D. Sweet potato as a bioenergy crop for fuel ethanol production. Perspectives and Challenges. In Bioethanol Production from Food Crops; Academic Press: New York, NY, USA, 2019; pp. 115–147. [Google Scholar] [CrossRef]
- Crop Survey (Rice, Barley, Beans, Sweet Potatoes, Forage Crops and Industrial Crops), Annual Statistics on Agriculture, Forestry and Fisheries FY2021 (in Japanese), Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan, 2022. Available online: https://www.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_kome/index.html#y17 (accessed on 30 November 2022).
- Eguchi, T.; Moriyama, S.; Miyama, I.; Yoshida, S.; Chikushi, J. A hydroponic method suitable for tops production of a sweetpotato cultivar ‘Suioh’. J. Sci. High Technol. Agric. 2007, 19, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Montoro, S.B.; Lucas Jr, J.; Santos, D.F.L.; Costa, M.S.S.M. Anaerobic co-digestion of sweet potato and dairy cattle manure: A technical and economic evaluation for energy and biofertilizer production. J. Clean. Prod. 2019, 226, 1082–1091. [Google Scholar] [CrossRef]
- Catherine, C.; Twizerimana, M. Biogas production from thermochemically pretreated sweet potato root waste. Heliyon 2022, 8, e10376. [Google Scholar] [CrossRef] [PubMed]
- Annual Report on Forest and Forestry in Japan FY 2021, Forestry Agency, Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan, 2022. Available online: https://www.rinya.maff.go.jp/j/kikaku/hakusyo/r3hakusyo/attach/pdf/index-2.pdf (accessed on 30 November 2022).
- Overview of Japan’s energy balance flow (in Japanese). In Energy White Paper; Agency for Natural Resource and Energy: okyo, Japan, 2022; p. 73. Available online: https://www.enecho.meti.go.jp/about/whitepaper/2022/pdf/2_1.pdf (accessed on 30 November 2022).
- Yanagida, T.; Yoshida, T.; Kuboyama, H.; Jinkawa, M. Relationship between feedstock price and break-even point of woody biomass power generation under FIT program. J. Jpn. Inst. Energy 2015, 94, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Daniel-Gromke, J.; Rensberg, N.; Denysenko, V.; Stinner, W.; Schmalfuß, T.; Scheftelowitz, M.; Nelles, M.; Liebetrau, J. Current Developments in Production and Utilization of Biogas and Biomethane in Germany. Chem. Ing. Tech. 2018, 90, 17–35. [Google Scholar] [CrossRef]
- Sakamoto, M.; Suzuki, T. Effect of pot volume on the growth of sweetpotato cultivated in the new hydroponics system. Sustain. Agric. Res. 2018, 7, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.; Suzuki, T. Effect of nutrient solution concentration on the growth of hydroponic sweetpotato. Agronomy 2020, 10, 1708. [Google Scholar] [CrossRef]
- Oliveira, A.; Dinis, L.T.; Santos, A.A.; Fontes, P.; Carnelossi, M.; Fagundes, J.; Oliveira-Júnior, L. Particle film improves the physiology and productivity of sweet potato without affecting tuber’s physicochemical parameters. Agriculture 2022, 12, 558. [Google Scholar] [CrossRef]
- Li, G.L.; Lin, Z.M.; Xu, Y.Q.; Liu, Z.H.; Li, H.W.; Ji, R.C.; Luo, W.B.; Tang, H.; Qiu, S.X.; Qiu, Y.X. Photosynthesis-light response models for varieties of sweet potato. Fujian J. Agric. Sci. 2018, 33, 687–690. [Google Scholar]
- Wu, H.Y.; Guo, Q.L.; Wang, J.Q.; Li, H.; Liu, Q. Effects of water supply on photosynthesis and fluorescence characteristics of sweet potato [Ipomoea batatas (L.) Lam.] leaves and comparison of light response models. Chin. J. Eco-Agric. 2019, 27, 908–918. [Google Scholar]
- Oliveira, A.P.; Dinis, L.T.R.; Barbosa, N.T.B.; Mattos, E.C.; Fontes, P.T.N.; Carnelossi, M.A.G.; Fagundes, J.L.; Silva, E.C.; de Oliveira Junior, L.F.G. Calcium particle films promote a photoprotection on sweet potato crops and increase its productivity. Theor. Exp. Plant Physiol. 2021, 33, 29–41. [Google Scholar] [CrossRef]
- He, D.; Yan, Z.; Sun, X.; Yang, P. Leaf development and energy yield of hydroponic sweetpotato seedlings using single-node cutting as influenced by light intensity and LED spectrum. J. Plant Physiol. 2020, 254, 15327. [Google Scholar] [CrossRef]
- Chan, C.F.; Lien, C.Y.; Lai, Y.C.; Huang, C.L.; Liao, W.C. Influence of purple sweet potato extracts on the UV absorption properties of a cosmetic cream. J. Cosmet. Sci. 2010, 61, 333–341. [Google Scholar] [PubMed]
- Li, M.; Jang, G.Y.; Lee, S.H.; Kim, M.Y.; Hwang, S.G.; Sin, H.M.; Kim, H.S.; Lee, J.; Jeong, H.S. Comparison of functional components in various sweet potato leaves and stalks. Food Sci. Biotechnol. 2017, 26, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, P.; Bheemanahalli, R.; Meyers, S.L.; Shankle, M.W.; Reddy, K.R. Drought, low nitrogen stress, and ultraviolet-B radiation effects on growth, development, and physiology of sweetpotato cultivars during early season. Genes 2022, 13, 156. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, A.; Li, H.; Tang, Z.; Chen, X. Growth and physiological response to nitrogen deficiency and re-supply in leaf-vegetable sweetpotato (Ipomoea batatas Lam). HortScience 2015, 5, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.H.; Chao, P.Y.; Yang, C.M.; Chen, W.C.; Lo, H.F.; Chang, T.R. The effects of flooding and drought stresses on the anti-oxidant constituents in sweet potato leaves. Bot. Stud. 2006, 47, 417–426. [Google Scholar]
- Laksmini, N.P.L.; Paramita, N.L.P.V.; Wirasuta, I.M.A.G. In vitro and silico antioxidant activity of purified fractions from purple sweet potato ethanolic extract. Int. J. Pharm. Pharm. Sci. 2016, 8, 177–181. [Google Scholar]
- Tan, B.C.; Cline, K.; McCarty, D.R. Localization and targeting of the VP14 epoxy-carotenoid dioxygenase to chloroplast membranes. Plant J. 2001, 27, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.H.; Lin, K.H.; Jiang, J.Y.; Wang, C.W.; Chen, C.I.; Huang, M.Y.; Weng, J.H. Comparisons between yellow and green leaves of sweet potato cultivars in chlorophyll fluorescence during various temperature regimes under high light intensities. Sci. Hortic. 2021, 288, 110335. [Google Scholar] [CrossRef]
- Alemu, S.T.; Roro, A.G. Effect of solar ultraviolet-B plus end of day light and its exclusion on growth performance and dry weight accumulation of two sweet potato cultivars (Ipomoea batatas L.) on different altitudes. Int. J. Hortic. Sci. Technol. 2020, 7, 1–11. [Google Scholar]
- Chen, Z.; Gao, W.; Reddy, K.R.; Chen, M.; Taduri, S.; Meyers, S.L.; Shankle, M.W. Ultraviolet (UV) B effects on growth and yield of three contrasting sweet potato cultivars. Photosynthetica 2020, 58, 37–44. [Google Scholar] [CrossRef]
- Dom, M.; Ayalew, W. Effect of replacing 50% of a commercial grower feed with sweet potato silage on the performance of crossbred pigs in Papua New Guinea. J. South Pac. Agric. 2010, 14, 29–37. [Google Scholar]
- Sardoei, S.A. Evaluation chlorophyll contents assessment on Spathiphyllum wallisii Regel with plant growth regulators. Int. J. Biol. Sci. 2014, 1, 35–39. [Google Scholar]
- Sakamoto, M.; Wada, M.; Suzuki, T. Effect of partial excision of early taproots on growth and components of hydroponic carrots. Horticulturae 2020, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.; Komatsu, Y.; Suzuki, T. Nutrient deficiency affects the growth and nitrate concentration of hydroponic radish. Horticulturae 2021, 7, 525. [Google Scholar] [CrossRef]
Tuberous Roots | Leaves and Stems | Total Biomass | |||||
---|---|---|---|---|---|---|---|
Fresh biomass | SK | BH | SK | BH | SK | BH | |
Top | g-fm/pot | 893 | 859 | 303 | 264 | 1196 | 1122 |
Min | g-fm/pot | 786 | 659 | 338 | 303 | 1124 | 962 |
Bin | g-fm/pot | 663 | 453 | 391 | 303 | 1054 | 756 |
Total yield * | kg-fm/25 pots | 19.0 | 15.4 | 8.8 | 7.4 | 27.8 | 22.8 |
Productivity | kg-fm/m2 | 10.5 | 8.6 | 4.9 | 4.1 | 15.4 | 12.7 |
Dry biomass | SK | BH | SK | BH | SK | BH | |
Top | g-dm/pot | 259 | 249 | 36 | 32 | 295 | 281 |
Min | g-dm/pot | 228 | 191 | 41 | 36 | 269 | 228 |
Bin | g-dm/pot | 192 | 131 | 47 | 36 | 239 | 168 |
Total yield * | kg-dm/25 pots | 5.5 | 4.5 | 1.1 | 0.9 | 6.6 | 5.4 |
Energy yield | MJ-dm/MJ-solar | 2.1% | 1.7% | 0.4% | 0.3% | 2.5% | 2.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, T.; Sakamoto, M.; Kubo, H.; Miyabe, Y.; Hiroshima, D. Effects of Solar Radiation on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation. Plants 2023, 12, 287. https://doi.org/10.3390/plants12020287
Suzuki T, Sakamoto M, Kubo H, Miyabe Y, Hiroshima D. Effects of Solar Radiation on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation. Plants. 2023; 12(2):287. https://doi.org/10.3390/plants12020287
Chicago/Turabian StyleSuzuki, Takahiro, Masaru Sakamoto, Hiroshi Kubo, Yui Miyabe, and Daisuke Hiroshima. 2023. "Effects of Solar Radiation on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation" Plants 12, no. 2: 287. https://doi.org/10.3390/plants12020287
APA StyleSuzuki, T., Sakamoto, M., Kubo, H., Miyabe, Y., & Hiroshima, D. (2023). Effects of Solar Radiation on Leaf Development and Yield of Tuberous Roots in Multilayered Sweet Potato Cultivation. Plants, 12(2), 287. https://doi.org/10.3390/plants12020287