Antioxidant Properties and Prediction of Bioactive Peptides Produced from Flixweed (sophia, Descurainis sophia L.) and Camelina (Camelina sativa (L.) Crantz) Seed Meal: Integrated In Vitro and In Silico Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. ABTS and DPPH Radical Scavenging Activities
2.2. Oxygen Radical Absorbance Capacity (ORAC) and Hydroxyl Radical Scavenging Activity
2.3. Metal Chelation Activity
2.4. Inhibition against Copper-Induced LDL-Cholesterol Oxidation
2.5. Inhibition of Peroxyl and Hydroxyl Radical-Induced Supercoiled DNA Strand Scission
2.6. Amino Acid Composition
2.7. Peptide Ranker Analysis
2.8. In Silico Predictions of Potential Bioactive Peptides from Sophia/Camelina Protein Hydrolysate
2.9. In Silico Simulated Gastrointestinal (GI) Digestion of Sophia/Camelina Protein Hydrolysates
2.10. Toxicity and Allergenicity Prediction of Sophia-Derived Bioactive Peptide Fractions after In Silico Digestion
2.11. In Silico Evaluation of Drug-Likeness Bioactive Peptides Derived from Protein Hydrolysates
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of Sophia/Camelina Protein Isolatess
3.2.2. Preparation of Sophia/Camelina Protein Hydrolysates
3.2.3. DPPH Radical Scavenging Assay
3.2.4. ABTS Radical Cation Scavenging Assay
3.2.5. Hydroxyl Radical Scavenging Activity
3.2.6. Oxygen Radical Absorbance Capacity (ORAC)
3.2.7. Metal Chelation Activity
3.2.8. Cupric Ion-Induced Human Low-Density Lipoprotein (LDL) Peroxidation
3.2.9. Supercoiled DNA Strand Scission Inhibition
3.2.10. Amino Acid Composition
3.2.11. Simulated Gastrointestinal Digestion
LC-MS/MS Analysis
Peptide Ranking
Prediction of Potential Biological Activity Profile
Prediction of the Bioactivities of the Released Peptides after Simulated Digestion
Toxicity and Allergenicity Prediction of Camelina/Sophia Bioactive Peptides Released after Simulated Digestion
In Silico Physicochemical Properties and Drug-Likeness of Released Peptides after Simulated Digestion
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Y.; Huang, L.; Zhang, C.; Xie, P.; Cheng, J.; Wang, X.; Li, S. Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chem. 2019, 283, 539–548. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Aluko, R.E. Food protein-derived bioactive peptides: Production, processing, and potential health benefits. J. Food Sci. 2012, 77, R11–R24. [Google Scholar] [CrossRef]
- Samtiya, M.; Acharya, S.; Pandey, K.K.; Aluko, R.E.; Udenigwe, C.C.; Dhewa, T. Production, Purification, and Potential Health Applications of Edible Seeds’ Bioactive Peptides: A Concise Review. Foods 2021, 10, 2696. [Google Scholar] [CrossRef] [PubMed]
- Russo, R.; Reggiani, R. Seed Protein in Camelina sativa (L.) Crantz var. Calena. Int. J. Plant Soil. Sci. 2015, 8, 1–6. [Google Scholar] [CrossRef]
- Ngo, N.T.T.; Shahidi, F. Functional properties of protein isolates from camelina (Camelina sativa (L.) Crantz) and flixweed (sophia, Descurainis sophia L.) seed meals. Food Prod. Process. Nutr. 2021, 3, 31. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Al-Khalifa, A.S.; Shahidi, F. Antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of date seed protein hydrolysates prepared using Alcalase, Flavourzyme and Thermolysin. J. Funct. Foods 2015, 18, 1125–1137. [Google Scholar] [CrossRef]
- Tavano, O.L.; Berenguer-Murcia, A.; Secundo, F.; Fernandez-Lafuente, R. Biotechnological Applications of Proteases in Food Technology. Compr. Rev. Food Sci. Food Saf. 2018, 17, 412–436. [Google Scholar] [CrossRef] [PubMed]
- Mune Mune, M.A.; Minka, S.R.; Henle, T. Investigation on antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activity of Bambara bean protein hydrolysates. Food Chem. 2018, 250, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Langyan, S.; Khan, F.N.; Yadava, P.; Alhazmi, A.; Mahmoud, S.F.; Saleh, D.I.; Zuan, A.T.K.; Kumar, A. In silico proteolysis and analysis of bioactive peptides from sequences of fatty acid desaturase 3 (FAD3) of flaxseed protein. Saudi J. Biol. Sci. 2021, 28, 5480–5489. [Google Scholar] [CrossRef]
- Mudgil, P.; Kilari, B.P.; Kamal, H.; Olalere, O.A.; FitzGerald, R.J.; Gan, C.-Y.; Maqsood, S. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. J. Cereal Sci. 2020, 96, 103130. [Google Scholar] [CrossRef]
- Udenigwe, C.C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol. 2014, 36, 137–143. [Google Scholar] [CrossRef]
- Chass, G.A.; Lovas, S.; Murphy, R.F.; Csizmadia, I.G. The role of enhanced aromatic -electron donating aptitude of the tyrosyl sidechain with respect to that of phenylalanyl in intramolecular interactions. Eur. Phys. J. D 2002, 20, 481–497. [Google Scholar] [CrossRef]
- Chass, G.A.; Marai, C.N.J.; Setiadi, D.H.; Csizmadia, I.G.; Harrison, A.G. A Hartree–Fock, MP2 and DFT computational study of the structures and energies of ″b2 ions derived from deprotonated peptides. A comparison of method and basis set used on relative product stabilities. J. Mol. Struct. THEOCHEM 2004, 675, 149–162. [Google Scholar] [CrossRef]
- Panjaitan, F.C.A.; Gomez, H.L.R.; Chang, Y.W. In silico Analysis of Bioactive Peptides Released from Giant Grouper (Epinephelus lanceolatus) Roe Proteins Identified by Proteomics Approach. Molecules 2018, 23, 2910. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Tsopmo, A.; Udenigwe, C.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem. 2018, 410, 3463–3472. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Inhibitory activities of soluble and bound millet seed phenolics on free radicals and reactive oxygen species. J. Agric. Food Chem. 2011, 59, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Udenigwe, C.C.; Aluko, R.E. Chemometric analysis of the amino acid requirements of antioxidant food protein hydrolysates. Int. J. Mol. Sci. 2011, 12, 3148–3161. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Girgih, A.T.; Malomo, S.A.; Ju, X.; Aluko, R.E. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J. Funct. Foods 2013, 5, 219–227. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Senadheera, T.R.L.; Dave, D.; Shahidi, F. Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa). Food Prod. Process. Nutr. 2021, 3, 3. [Google Scholar] [CrossRef]
- Ngo, N.T.T.; Shahidi, F. Antioxidant properties of camelina (Camelina sativa (L.) Crantz) protein hydrolysates. J. Food Bioact. 2021, 16, 75–82. [Google Scholar] [CrossRef]
- Girgih, A.T.; Udenigwe, C.C.; Aluko, R.E. In vitro Antioxidant Properties of Hemp Seed (Cannabis sativa L.) Protein Hydrolysate Fractions. J. Am. Oil Chem. Soc. 2011, 88, 381–389. [Google Scholar] [CrossRef]
- Hu, R.; Chen, G.; Li, Y. Production and Characterization of Antioxidative Hydrolysates and Peptides from Corn Gluten Meal Using Papain, Ficin, and Bromelain. Molecules 2020, 25, 4091. [Google Scholar] [CrossRef] [PubMed]
- Alashi, A.M.; Blanchard, C.L.; Mailer, R.J.; Agboola, S.O.; Mawson, A.J.; He, R.; Girgih, A.; Aluko, R.E. Antioxidant properties of Australian canola meal protein hydrolysates. Food Chem. 2014, 146, 500–506. [Google Scholar] [CrossRef]
- Udenigwe, C.C.; Udechukwu, M.C.; Yiridoe, C.; Gibson, A.; Gong, M. Antioxidant mechanism of potato protein hydrolysates against in vitro oxidation of reduced glutathione. J. Funct. Foods 2016, 20, 195–203. [Google Scholar] [CrossRef]
- Pan, M.; Huo, Y.; Wang, C.; Zhang, Y.; Dai, Z.; Li, B. Positively charged peptides from casein hydrolysate show strong inhibitory effects on LDL oxidation and cellular lipid accumulation in Raw264.7 cells. Int. Dairy J. 2019, 91, 119–128. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Shahidi, F. Antioxidant potential of date (Phoenix dactylifera L.) seed protein hydrolysates and carnosine in food and biological systems. J. Agric. Food Chem. 2015, 63, 864–871. [Google Scholar] [CrossRef]
- Mohamed, N.H.; Mahrous, A.E. Chemical Constituents of Descurainia sophia L. and its Biological Activity. Acad. Chem. Globe Publ. 2009, 3, 58–67. [Google Scholar]
- Mooney, C.; Haslam, N.J.; Pollastri, G.; Shields, D.C. Towards the improved discovery and design of functional peptides: Common features of diverse classes permit generalized prediction of bioactivity. PLoS ONE 2012, 7, e45012. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Apostolopoulos, V.; Nurgali, K.; Mishra, V.K. Evaluation of in silico approach for prediction of presence of opioid peptides in wheat. J. Funct. Foods 2018, 41, 34–40. [Google Scholar] [CrossRef]
- Pooja, K.; Rani, S.; Prakash, B. In silico approaches towards the exploration of rice bran proteins-derived angiotensin-I-converting enzyme inhibitory peptides. Int. J. Food Prop. 2017, 20, 2178–2191. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef]
- Chi, C.F.; Wang, B.; Wang, Y.M.; Zhang, B.; Deng, S.G. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J. Funct. Foods 2015, 12, 1–10. [Google Scholar] [CrossRef]
- Harvian, Z.A.; Ningrum, A.; Anggrahini, S.; Setyaningsih, W. In silico Approach in Evaluation of Jack Bean (Canavalia ensiformis) Canavalin Protein as Precursors of Bioactive Peptides with Dual Antioxidant and Angiotensin I-Converting Enzyme Inhibitor. Mater. Sci. Forum 2019, 948, 85–94. [Google Scholar] [CrossRef]
- Acquah, C.; Stefano, E.D.; Udenigwe, C.C. Role of hydrophobicity in food peptide functionality and bioactivity. J. Food Bioact. 2018, 4, 88–98. [Google Scholar] [CrossRef]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The Structure-Activity Relationship of the Antioxidant Peptides from Natural Proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants. Nutrients 2017, 9, 316. [Google Scholar] [CrossRef]
- Kartal, C.; Kaplan Türköz, B.; Otles, S. Prediction, identification and evaluation of bioactive peptides from tomato seed proteins using in silico approach. J. Food Meas. Charact. 2020, 14, 1865–1883. [Google Scholar] [CrossRef]
- Ding, L.; Ma, R.; You, H.; Li, J.; Ge, Q.; Yu, Z.; Wang, L. Identification and characterization of dipeptidyl peptidase IV inhibitory peptides from wheat gluten proteins. J. Cereal Sci. 2022, 103, 103396. [Google Scholar] [CrossRef]
- Dugardin, C.; Cudennec, B.; Tourret, M.; Caron, J.; Guerin-Deremaux, L.; Behra-Miellet, J.; Lefranc-Millot, C.; Ravallec, R. Explorative Screening of Bioactivities Generated by Plant-Based Proteins after In vitro Static Gastrointestinal Digestion. Nutrients 2020, 12, 3746. [Google Scholar] [CrossRef]
- Wu, J.; Aluko, R.E.; Nakai, S. Structural Requirements of Angiotensin I-Converting Enzyme Inhibitory Peptides: Quantitative Structure−Activity Relationship Study of Di- and Tripeptides. J. Agric. Food Chem. 2006, 54, 732–738. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Pliszka, M.; Mogut, D.; Darewicz, M. Characteristics of Biopeptides Released In silico from Collagens Using Quantitative Parameters. Foods 2020, 9, 965. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chen, X.; Wu, J.; Zhou, Y.; Qian, Y.; Fang, M.; Xie, J.; Wei, D. Dipeptidyl peptidase IV inhibitory peptides from Chlorella vulgaris: In silico gastrointestinal hydrolysis and molecular mechanism. Eur. Food Res. Technol. 2017, 243, 1739–1748. [Google Scholar] [CrossRef]
- Cermeno, M.; Stack, J.; Tobin, P.R.; O’Keeffe, M.B.; Harnedy, P.A.; Stengel, D.B.; FitzGerald, R.J. Peptide identification from a Porphyra dioica protein hydrolysate with antioxidant, angiotensin converting enzyme and dipeptidyl peptidase IV inhibitory activities. Food Funct. 2019, 10, 3421–3429. [Google Scholar] [CrossRef]
- Ji, D.; Udenigwe, C.C.; Agyei, D. Antioxidant peptides encrypted in flaxseed proteome: An in silico assessment. Food Sci. Hum. Wellness 2019, 8, 306–314. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Open Source Drug Discovery, C.; Raghava, G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73957. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P. Peptide toxicity prediction. Methods Mol. Biol. 2015, 1268, 143–157. [Google Scholar] [CrossRef]
- Gao, J.; Li, T.; Chen, D.; Gu, H.; Mao, X. Identification and molecular docking of antioxidant peptides from hemp seed protein hydrolysates. LWT 2021, 147, 111453. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Bester, M.J.; Neitz, A.W.; Gaspar, A.R.M. Tuber Storage Proteins as Potential Precursors of Bioactive Peptides: An In silico Analysis. Int. J. Pept. Res. Ther. 2018, 25, 437–446. [Google Scholar] [CrossRef]
- Peredo-Lovillo, A.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Romero-Luna, H.E. Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem. X 2022, 13, 100183. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Acquah, C.; Aluko, R.E.; Udenigwe, C.C. Considering food matrix and gastrointestinal effects in enhancing bioactive peptide absorption and bioavailability. J. Funct. Foods 2020, 64, 103680. [Google Scholar] [CrossRef]
- Ji, D.; Xu, M.; Udenigwe, C.C.; Agyei, D. Physicochemical characterisation, molecular docking, and drug-likeness evaluation of hypotensive peptides encrypted in flaxseed proteome. Curr. Res. Food Sci. 2020, 3, 41–50. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Aluko, R.E.; Monu, E. Functional and Bioactive Properties of Quinoa Seed Protein Hydrolysates. J. Food Sci. 2003, 68, 1254–1258. [Google Scholar] [CrossRef]
- Mohan, A.; Udenigwe, C.C. Towards the design of hypolipidaemic peptides: Deoxycholate binding affinity of hydrophobic peptide aggregates of casein plastein. J. Funct. Foods 2015, 18, 129–136. [Google Scholar] [CrossRef]
- Dimitrov, I.; Bangov, I.; Flower, D.R.; Doytchinova, I. AllerTOP v.2—A server for in silico prediction of allergens. J. Mol. Model. 2014, 20, 2278. [Google Scholar] [CrossRef]
Samples | Protein Hydrolysates | Hydroxyl Radical Scavenging Activity | Oxygen Radical Absorbance Capacity |
---|---|---|---|
(µm of Histidine/mg Protein) | (µm of Trolox/mg Protein) | ||
Camelina | Alcalase | 3.21 ± 0.03 a | 1.13 ± 0.05 a |
Flavourzyme | 2.50 ± 0.05 b | 0.62 ± 0.04 b | |
Alcalase + Flavourzyme | 2.71 ± 0.16 c | 0.93 ± 0.03 c | |
Sophia | Alcalase | 3.13 ± 0.08 a | 1.03 ± 0.05 a |
Flavourzyme | 1.91 ± 0.05 b | 0.51 ± 0.01 b | |
Alcalase + Flavourzyme | 2.63 ± 0.16 c | 0.93 ± 0.04 c |
Protein Hydrolysates | LDL Oxidation Inhibition (%) | |
---|---|---|
Sophia | Camelina | |
Carnosine | 78.59 ± 0.11 a | 78.59 ± 0.11 a |
Alcalase | 73.66 ± 1.19 b | 79.97 ± 0.29 b |
Flavourzyme | 39.04 ± 0.28 c | 45.94 ± 0.44 c |
Alcalase + Flavourzyme | 72.39 ± 0.59 b | 62.68 ± 0.87 d |
Samples | Protein Hydrolysates | DNA Scission Inhibition (%) | |
---|---|---|---|
Hydroxyl Radical | Peroxyl Radical | ||
Sophia | Carnosine | 30.44 ± 1.36 d | 22.63 ± 1.15 d |
Alcalase | 53.01 ± 0.50 a | 87.10 ± 2.35 a | |
Flavourzyme | 19.85 ± 0.87 b | 62.83 ± 1.37 b | |
Alcalase + Flavourzyme | 46.35 ± 0.39 c | 86.52 ± 0.32 a | |
Camelina | Alcalase | 59.62 ± 2.21 a | 88.77 ± 0.75 a |
Flavourzyme | 28.25 ± 0.73 b | 75.82 ± 1.55 b | |
Alcalase + Flavourzyme | 47.02 ± 0.35 c | 80.07 ± 1.36 c |
Amino Acid | Sophia Hydrolysates | Camelina Hydrolyses [9] | WHO/FAO |
---|---|---|---|
Essential amino acid (EAA) | |||
Histidine (His) | 0.9 | 2.1 | 1.6 |
Isoleucine (Ile) | 1.4 | 2.9 | 1.3 |
Leucine (Leu) | 2.2 | 4.9 | 1.9 |
Lysine (Lys) | 1.4 | 2.3 | 1.6 |
Methionine (Met) | 0.6 | 1.5 | 1.7 |
Phenylalanine (Phe) | 1.5 | 3.2 | |
Threonine (Thr) | 1.3 | 2.8 | 0.9 |
Tryptophan (Trp) | 2.1 | 1.3 | 0.5 |
Valine (Val) | 1.6 | 3.8 | 1.3 |
Non-EAA (NEEA) | |||
Alanine (Ala) | 1.1 | 2.8 | |
Arginine (Arg) | 2.8 | 7.0 | |
Aspartic acid +Asparagine (Asp + Asn) | 3.0 | 6.4 | |
Cystine (Cys) | 0.8 | 1.4 | |
Glutamic acid + Glutamine (Glu + Gln) | 5.8 | 12.7 | |
Glycine (Gly) | 1.8 | 3.2 | |
Proline (Pro) | 1.5 | 3.4 | |
Serine (Ser) | 1.3 | 3.0 | |
Tyrosine (Tyr) | 1.2 | 2.4 | |
Phenylalanine + Tyrosine (Phe + Tyr) | 2.7 | 3.3 | 1.9 |
Samples | PepRank | Peptide Sequence |
---|---|---|
Sophia hydrolysates | 0.96 | FGFGPGL |
0.89 | SSTSGPAFNAGRSIWLPGWL | |
0.85 | CAYDVAPGGLL | |
0.85 | SLCGIPPL | |
0.83 | PMITGFM | |
0.82 | FVPVTGLWM | |
0.82 | WYTICICIL | |
0.82 | RAPWLEPL | |
0.81 | LGMLPGL | |
Camelina hydrolysates | 0.96 | GPPSGGGGGGGGGGGGGK |
0.94 | IDLFFVFL | |
0.94 | AAMGGFPGGGGGAHALGVL | |
0.92 | LNPCFTGGPLM | |
0.92 | NGGGGGGGGGGGPPKMVL | |
0.91 | PPPPGAL | |
0.9 | GGGGGGGFGGGAGGGLGGGGGL | |
0.9 | GGSPGIGGGL | |
0.89 | DIPPPRGPL | |
0.89 | GGGIGGGGGGGGGFGGGSGSGGGAGGGAGGGL | |
0.89 | LLGNGIGSGGGHGGKGGRVCY | |
0.88 | FGGGNLPAFVL | |
0.88 | AWPDKNPFFPSDPY | |
0.88 | FVPPFNPY | |
0.86 | DFSIFSPL | |
0.85 | FGGGNIPAFVL | |
0.84 | GGGGGGGGPPAMSM | |
0.84 | GLDPPDLPM | |
0.83 | VIGPGLGRDPFLL | |
0.83 | GGGAGGGGGL | |
0.83 | VFGSGLLGAFL | |
0.83 | FNAPIYL | |
0.83 | GPFGVIRPPL | |
0.82 | IHPIPPL | |
0.82 | AGAATGGFL | |
0.82 | NSGGGGGGWKGGGGQGGGWKGGGGQ | |
0.81 | QFQWIEFK | |
0.81 | FHWDLPQ | |
0.81 | FGGYAPGILSPSPAML | |
0.81 | FSFSPTVFDMILK | |
0.81 | FGWDKDL | |
0.8 | SFPLPEL |
Samples | Peptide Sequence | Bioactive Segment Sequence | ||
---|---|---|---|---|
Antioxidative | ACE-Inhibitory Peptides | DPP IV-Inhibitory Peptides | ||
Peptides | ||||
Sophia hydrolysates | FGFGPGL | GFGPGL | PGL, GP, GF, GL, FG, PG | GP, GL, GF, PG |
SSTSGPAFNAGRSIWLPGWL | - | GPA, LPG, P, IW, GW, AF, AG, GR, SG, PG, WL, SGP, ST, LP | GP, PA, LP, GPA, WL, AF, AG, FN, GW, IW, NA, PG, SI, TS | |
CAYDVAPGGLL | AY | VAP, AY, AP, GL, GG, PG | VA, AP, LL, APG, GL, AY, GG, PG, YD | |
SLCGIPPL | - | IPP, PL, IP, GI, PP, PPL | PP, IP, SL, PL, PPL, GI | |
PMITGFM | - | GF, TG | GF, MI, PM, TG | |
FVPVTGLWM | LWM, LW | LW, VP, GL, TG | VP, GL, WM, LW, PV, TG, VT | |
WYTICICIL | WY, WYT | FVP, WM | WY, YT, IL, TI | |
RAPWLEPL | PWL, PW | PL, AP, RA, WL | AP, RA, WP, PL, WL, PW | |
LGMLPGL | - | PGL, LPG, GM, GL, LG, PG, LP | LP, GL, ML, PG | |
Camelina hydrolysates | GPPSGGGGGGGGGGGGGK | GPP | GP, GK, GG, SG, GPP, PP | GP, PP, GG, PS |
IDLFFVFL | - | VF, LF, FF | FL, VF, FF | |
AAMGGFPGGGGGAHALGVL | AH, GAH | FP, AA, GF, GA, GV, MG, GG, LG, | HA, FP, GA, AL, AA, AH, GF, GG, | |
PG, AH, LGV | GV, MG, PG | |||
LNPCFTGGPLM | - | LNP, GPL, GP, PL, GG, TG, CF, LN | GP, NP, PL, GG, LM, LN, TG | |
NGGGGGGGGGGGPPKMVL | GPP | GP, GG, NG, PPK, GPP, PP | GP, PP, GG, MV, NG, PK, VL | |
PPPPGAL | - | GA, PG, PP, PPP | PPPP, PP, GA, AL, PPG, PG | |
GGGGGGGFGGGAGGGLGGGGGL | - | GF, GA, GL, AG, FG, GG, LG, FGG | GA, GL, AG, GF, GG | |
GGSPGIGGGL | - | IG, GI, GL, GS, GG, PG | SP, GL, GG, GI, PG | |
DIPPPRGPL | - | IPP, PR, GPL, GP, PL, IP, PP, PPP, RG | GP, PP, IP, PL, RG | |
GGGIGGGGGGGGGFGGGSGS | - | GF, IG, GA, GL, AG, FG, GS, | GA, GL, AG, GF, GG, GI | |
-GGGAGGGAGGGL | GG, SG, FGG | |||
LLGNGIGSGGGHGGKGGRVCY | - | IG, GI, GH, GR, KG, GS, GK, HG, GG, | LL, GG, GH, GI, KG, NG | |
SG, LG, NG, GHG | ||||
FGGGNLPAFVL | - | AF, FG, GG, FGG, LP | PA, LP, AF, GG, NL, VL | |
AWPDKNPFFPSDPY | AW | FP, AW, FF | WP, FP, NP, AW, DP, PF, PS, PY, FF | |
FVPPFNPY | - | VPP, VP, PP, FVP | PP, VP, NP, FN, PF, PY | |
DFSIFSPL | - | PL, IF, DF | SP, PL, SI | |
FGGGNIPAFVL | - | IPA, IP, AF, FG, GG, FGG | PA, IPA, IP, AF, GG, VL | |
GGGGGGGGPPAMSM | GPP | GP, GG, GPP, PP | GP, PP, PA, GG | |
GLDPPDLPM | LPM | DLP, GL, PP, LP | PP, LP, GL, DP, PM | |
VIGPGLGRDPFLL | - | PGL, GP, IG, GL, GR, LG, PG | GP, LL, FL, GL, DP, PF, PG, VI | |
VFGSGLLGAFL | - | VF, AF, GA, GL, FG, GS, SG, LG, AFL | GA, GL, AG, GG | |
FNAPIYL | IY | IY, YL, AP | AP, FN, NA, PI, YL | |
GPFGVIRPPL | IR | GP, PL, IRP, RP, FG, GV, PP, RPP | GP, PP, RP, PL, PPL, GV, IR, PF, VI | |
IHPIPPL | - | IPP, PL, IP, PP, HP, PPL | PP, IP, HP, PL, PPL, IH, PI | |
AGAATGGFL | GAA | AA, GF, GA, AG, GG, TG | GA, FL, AA, AG, AT, GF, GG, TG | |
NSGGGGGGWKGGGGQGG | - | GW, KG, GQ, GG, QG, SG | WK, GG, GW, KG, QG | |
-GWKGGGGQ | ||||
QFQWIEFK | - | IE, FQ, EF | WI, FQ, QF, QW | |
FHWDLPQ | - | DLP, PQ, LP | LP, HW, PQ, WD, LPQ | |
FGGYAPGILSPSPAML | - | GGY, GY, LSP, AP, YA, GI, FG, GG, | AP, PA, APG, SP, GG, GI, GY, IL, ML, | |
PG, IL, FGG | PG, PS, YA | |||
FSFSPTVFDMILK | LK | VF, SF, PT, DM, IP | SP, IL, MI, PT, SF, TV, VF | |
FGWDKDL | KD | GW, FG | GW, WD | |
SFPLPEL | EL, PEL | PLP, FP, PL, SF, LP | LP, FP, PL, SF | |
SGLGGGQGIGGGSGTGM | - | IG, GI, GM, GL, GS, GQ, GT, GG, QG, | GL, GG, GI, QG, TG | |
SG, LG, TG, GTG |
Sample | Peptide | Results of Enzyme Action | Location of Released Peptides | Active Fragment Sequence | Location | Bioactivity of Identified Peptide |
---|---|---|---|---|---|---|
Sophia hydrolysates | FGFGPGL | F-GF-GPGL | [1-1], [2-3], [4-7] | GF | [2-3] | ACE inhibitor, DPP IV inhibitor |
SSTSGPAFNAGRSIWLPGWL | SSTSGPAF-N-AGR- SIW-L-PGW-L | [1-8], [9-9], [10-12], [13-15], [16-16], [17-19], [20-20] | - | - | - | |
CAYDVAPGGLL | CAY-DVAPGGL-L | [1-3], [4-10], [11-11] | - | - | - | |
SLCGIPPL | SL-CGIPPL | [1-2], [3-8] | SL | [1-2] | DPP IV inhibitor | |
PMITGFM | PM-ITGF-M | [1-2], [3-6], [7-7] | PM | [1-2] | DPP IV inhibitor | |
FVPVTGLWM | F-VPVTGL-W-M | [1-1], [2-7], [8-8], [9-9] | - | - | - | |
WYTICICIL | W-Y-TICICIL | [1-1], [2-2], [3-9] | - | - | - | |
RAPWLEPL | R-APW-L-EPL | [1-1], [2-4], [5-5], [6-8] | - | - | - | |
LGMLPGL | L-GM-L-PGL | [1-1], [2-3], [4-4], [5-7] | PGL | [5-7] | ACE inhibitor | |
GM | [2-3] | ACE inhibitor | ||||
Camelina hydrolysates | GPPSGGGGGGGGGGGGGK | - | - | - | - | - |
IDLFFVFL | IDL-F-F-VF-L | [1-3], [4-4], [5-5], [6-7], [8-8] | VF | [6-7] | ACE inhibitor; DPP IV inhibitor | |
AAMGGFPGGGGGAHALGVL | AAM-GGF-PGGGGGAH-AL-GVL | [1-3], [4-6], [7-14], [15-16], [17-19] | AL | [15-16] | DPP IV inhibitor | |
LNPCFTGGPLM | L-N-PCF-TGGPL-M | [1-1], [2-2], [3-5], [6-10], [11-11] | - | - | - | |
NGGGGGGGGGGGPPKMVL | N-GGGGGGGGGGGPPK -M-VL | [1-1], [2-15], [16-16], [17-18] | VL | [17-18] | DPP IV inhibitor | |
PPPPGAL | - | - | - | - | - | |
GGGGGGGFGGGAGG-GLGGGGGL | GGGGGGGF-GGGAGGGL -GGGGGL | [1-8], [9-16], [17-22] | - | - | - | |
GGSPGIGGGL | - | - | - | - | - | |
DIPPPRGPL | DIPPPR-GPL | [1-6], [7-9] | GPL | [7-9] | ACE inhibitor | |
GGGIGGGGGGGGGFGGGSG-SGGGAGGGAGGGL | GGGIGGGGGGGGGF -GGGSGSGGGAGGGAGGGL | [1-14], [15-32] | - | - | - | |
LLGNGIGSGGGHGGKGGRVCY | L-L-GN-GIGSGGGH -GGK-GGR-VCY | [1-1], [2-2], [3-4], [5-12], | - | - | - | |
FGGGNLPAFVL | F-GGGN-L-PAF-VL | [1-1], [2-5], [6-6], [7-9], [10-11] | VL | [10-11] | DPP IV inhibitor | |
AWPDKNPFFPSDPY | AW-PDK-N-PF -F-PSDPY | [1-2], [3-5], [6-6], [7-8], [9-9], [10-14] | AW | [1-2] | ACE inhibitor; DPP IV inhibitor; antioxidative | |
PF | [7-8] | DPP IV inhibitor | ||||
FVPPFNPY | F-VPPF-N-PY | [1-1], [2-5], [6-6], [7-8] | PY | [7-8] | DPP IV inhibitor | |
DFSIFSPL | DF-SIF-SPL | [1-2], [3-5], [6-8] | DF | [1-2] | ACE inhibitor | |
FGGGNIPAFVL | F-GGGN-IPAF-VL | [1-1], [2-5], [6-9], [10-11] | VL | [10-11] | DPP IV inhibitor | |
GGGGGGGGPPAMSM | GGGGGGGGPPAM-SM | [1-12], [13-14] | - | - | - | |
GLDPPDLPM | GL-DPPDL-PM | [1-2], [3-7], [8-9] | GL | [1-2] | ACE inhibitor; DPP IV inhibitor | |
PM | [8-9] | DPP IV inhibitor | ||||
VIGPGLGRDPFLL | VIGPGL-GR-DPF-L-L | [1-6], [7-8], [9-11], [12-12], [13-13] | GR | [7-8] | ACE inhibitor | |
GGGAGGGGGL | - | - | - | - | - | |
VFGSGLLGAFL | VF-GSGL-L-GAF-L | [1-2], [3-6], [7-7], [8-10], [11-11] | VF | [1-2] | ACE inhibitor; DPP IV inhibitor | |
FNAPIYL | F-N-APIY-L | 1-1], [2-2], [3-6], [7-7] | - | - | - | |
GPFGVIRPPL | GPF-GVIR-PPL | [1-3], [4-7], [8-10] | PPL | [8-10] | ACE inhibitor; DPP IV inhibitor | |
IHPIPPL | IH-PIPPL | [1-2], [3-7] | IH | [1-2] | DPP IV inhibitor | |
AGAATGGFL | AGAATGGF-L | [1-8], [9-9] | - | - | - | |
NSGGGGGGWKGGGGQGG-GWKGGGGQ | N- SGGGGGGW-K -GGGGQGGGW-K-GGGGQ | [1-1], [2-9], [10-10], [11-19], [20-20], [21-25] | - | - | - | |
QFQWIEFK | QF-QW-IEF-K | [1-2], [3-4], [5-7], [8-8] | QF | [1-2] | DPP IV inhibitor | |
QW | [3-4] | DPP IV inhibitor | ||||
FHWDLPQ | F-H-W-DL-PQ | [1-1], [2-2], [3-3], [4-5], [6-7] | PQ | [6-7] | ACE inhibitor; DPP IV inhibitor | |
FGGYAPGILSPSPAML | F-GGY-APGIL-SPSPAM-L | [1-1], [2-4], [5-9], [10-15], [16-16] | GGY | [2-4] | ACE inhibitor | |
FSFSPTVFDMILK | F-SF-SPTVF-DM-IL-K | 1-1], [2-3], [4-8], [9-10], [11-12], [13-13] | SF | [2-3] | ACE inhibitor; DPP IV inhibitor | |
DM | [9-10] | ACE inhibitor | ||||
IL | [11-12] | ACE inhibitor; DPP IV inhibitor | ||||
FGWDKDL | F-GW-DK-DL | [1-1], [2-3], [4-5], [6-7] | GW | [2-3] | ACE inhibitor; DPP IV inhibitor | |
SFPLPEL | SF-PL-PEL | [1-2], [3-4], [5-7] | SF | [1-2] | ACE inhibitor; DPP IV inhibitor | |
PL | [3-4] | ACE inhibitor; DPP IV inhibitor | ||||
PEL | [5-7] | antioxidative |
Sample | Peptide | Active Fragment Sequence | DHt (%) | AE | W | Activity |
---|---|---|---|---|---|---|
Sophia hydrolysates | FGFGPGL | GF | 33.33 | 0.14 | 0.14 | ACE inhibitor |
0.14 | 0.25 | DPP IV inhibitor | ||||
SLCGIPPL | SL | 14.29 | 0.13 | 0.17 | DPP IV inhibitor | |
PMITGFM | PM | 33.33 | 0.14 | 0.25 | DPP IV inhibitor | |
LGMLPGL | PGL, GM | 50 | 0.29 | 0.29 | ACE inhibitor | |
Camelina hydrolysates | IDLFFVFL | VF | 57.14 | 0.13 | 0.33 | ACE inhibitor |
0.13 | 0.33 | DPP IV inhibitor | ||||
AAMGGFPGGGGGAHALGVL | AL | 22.22 | 0.05 | 0.06 | DPP IV inhibitor | |
NGGGGGGGGGGGPPKMVL | VL | 17.65 | 0.06 | 0.06 | DPP IV inhibitor | |
DIPPPRGPL | GPL | 12.5 | 0.11 | 0.1 | ACE inhibitor | |
FGGGNLPAFVL | VL | 40 | 0.09 | 0.14 | DPP IV inhibitor | |
AWPDKNPFFPSDPY | AW, PF | 38.46 | 0.07 | 0.33 | ACE inhibitor | |
0.14 | 0.22 | DPP IV inhibitor | ||||
0.07 | 1 | Antioxidative | ||||
FVPPFNPY | PY | 42.85 | 0.13 | 0.17 | DPP IV inhibitor | |
DFSIFSPL | DF | 28.57 | 0.13 | 0.33 | ACE inhibitor | |
FGGGNIPAFVL | VL | 30 | 0.09 | 0.14 | DPP IV inhibitor | |
GLDPPDLPM | GL, PM | 25 | 0.11 | 0.25 | ACE inhibitor | |
0.22 | 0.4 | DPP IV inhibitor | ||||
VIGPGLGRDPFLL | GR | 33.33 | 0.08 | 0.14 | ACE inhibitor | |
VFGSGLLGAFL | VF | 40 | 0.09 | 0.11 | ACE inhibitor | |
0.09 | 0.17 | DPP IV inhibitor | ||||
GPFGVIRPPL | PPL | 22.22 | 0.1 | 0.1 | ACE inhibitor | |
0.1 | 0.11 | DPP IV inhibitor | ||||
IHPIPPL | IH | 16.67 | 0.14 | 0.14 | DPP IV inhibitor | |
QFQWIEFK | QF, QW | 42.86 | 0.25 | 0.5 | DPP IV inhibitor | |
FHWDLPQ | PQ | 66.67 | 0.14 | 0.33 | ACE inhibitor | |
0.14 | 0.2 | DPP IV inhibitor | ||||
FGGYAPGILSPSPAML | GGY | 26.67 | 0.06 | 0.09 | ACE inhibitor | |
FSFSPTVFDMILK | SF, DM, IL | 41.67 | 0.23 | 0.6 | ACE inhibitor | |
0.15 | 0.29 | DPP IV inhibitor | ||||
FGWDKDL | GW | 50 | 0.14 | 0.5 | ACE inhibitor | |
0.14 | 0.5 | DPP IV inhibitor | ||||
SFPLPEL | PL, SF, PEL | 33.33 | 0.29 | 0.4 | ACE inhibitor | |
0.29 | 0.5 | DPP IV inhibitor | ||||
0.14 | 0.5 | Antioxidative |
Samples | Active Fragment | Hydrophobicity | Hydrophilicity | Charge | pI | Molecular | Toxin | Allergenicity |
---|---|---|---|---|---|---|---|---|
Sequence | Weight (Da) | Prediction | Prediction | |||||
Sophia hydrolysates | GF | 0.39 | −1.25 | 0 | 5.88 | 222.26 | Non-Toxin | Probable allergen |
SL | 0.14 | −0.75 | 0 | 5.88 | 218.27 | Non-Toxin | Probable non-allergen | |
PM | 0.1 | −0.65 | 0 | 5.88 | 246.34 | Non-Toxin | Probable non-allergen | |
GM | 0.21 | −0.65 | 0 | 5.88 | 206.28 | Non-Toxin | Probable non-allergen | |
PGL | 0.21 | −0.6 | 0 | 5.88 | 285.38 | Non-Toxin | Probable non-allergen | |
Camelina hydrolysates | VF | 0.57 | −2 | 0 | 5.88 | 264.34 | Non-Toxin | Non-allergen |
AL | 0.39 | −1.15 | 0 | 5.88 | 202.27 | Non-Toxin | Probable allergen | |
VL | 0.54 | −1.65 | 0 | 5.88 | 230.33 | Non-Toxin | Probable non-allergen | |
GPL | 0.21 | −0.6 | 0 | 5.88 | 285.38 | Non-Toxin | Probable allergen | |
AW | 0.31 | −1.95 | 0 | 5.88 | 275.32 | Non-Toxin | Probable allergen | |
PF | 0.27 | −1.25 | 0 | 5.88 | 262.32 | Non-Toxin | Probable allergen | |
PY | −0.03 | −1.15 | 0 | 5.88 | 278.32 | Non-Toxin | Probable allergen | |
DF | −0.05 | 0.25 | −1 | 3.8 | 280.29 | Non-Toxin | Probable allergen | |
GL | 0.35 | −0.9 | 0 | 5.88 | 188.25 | Non-Toxin | Probable allergen | |
PM | 0.1 | −0.65 | 0 | 5.88 | 246.34 | Non-Toxin | Probable non-allergen | |
GR | −0.8 | 1.5 | 1 | 10.11 | 231.27 | Non-Toxin | Probable allergen | |
PPL | 0.13 | −0.6 | 0 | 5.88 | 325.44 | Non-Toxin | Probable allergen | |
IH | 0.16 | −1.15 | 0.5 | 7.1 | 268.34 | Non-Toxin | Probable allergen | |
QF | −0.04 | −1.15 | 0 | 5.88 | 293.34 | Non-Toxin | Probable allergen | |
QW | −0.16 | −1.6 | 0 | 5.88 | 332.38 | Non-Toxin | Probable allergen | |
PQ | −0.38 | 0.1 | 0 | 5.88 | 243.28 | Non-Toxin | Probable allergen | |
GGY | 0.11 | −0.77 | 0 | 5.88 | 295.33 | Non-Toxin | Probable non-allergen | |
SF | 0.17 | −1.1 | 0 | 5.88 | 252.28 | Non-Toxin | Probable non-allergen | |
DM | −0.23 | 0.85 | −1 | 3.8 | 264.31 | Non-Toxin | Probable allergen | |
IL | 0.63 | −1.8 | 0 | 5.88 | 244.36 | Non-Toxin | Probable non-allergen | |
GW | 0.27 | −1.7 | 0 | 5.88 | 261.3 | Non-Toxin | Probable non-allergen | |
PL | 0.23 | −0.9 | 0 | 5.88 | 228.31 | Non-Toxin | Probable allergen | |
PEL | −0.05 | 0.4 | −1 | 4 | 357.44 | Non-Toxin | Probable allergen |
Samples | Active Fragment Sequence | Physicochemical Properties | Lipophilicity | Drug Likeliness | Pharmacokinetics | |||||
---|---|---|---|---|---|---|---|---|---|---|
ROTB | HBA | HBD | TPSA (Ų) | ESOL | C LogP | Lipinski Filter | Bioavailability Score | GI Absorption | ||
Sophia hydrolysates | Captopril | 4 | 3 | 1 | 96.41 | −1.14 | 0.62 | Yes (0) | 0.56 | High |
GF | 6 | 4 | 3 | 92.42 | 0.32 | −0.24 | Yes (0) | 0.55 | High | |
SL | 7 | 5 | 4 | 112.65 | 0.84 | −0.86 | Yes (0) | 0.55 | High | |
PM | 7 | 4 | 3 | 103.73 | 1.04 | −0.32 | Yes (0) | 0.55 | High | |
GM | 7 | 4 | 3 | 117.72 | 1.32 | −0.82 | Yes (0) | 0.55 | High | |
PGL | 9 | 5 | 4 | 107.53 | 0.91 | −0.51 | Yes (0) | 0.55 | High | |
Camelina hydrolysates | VF | 7 | 4 | 3 | 92.42 | 0.11 | 0.6 | Yes (0) | 0.55 | High |
AL | 6 | 4 | 3 | 92.42 | 1.05 | −0.41 | Yes (0) | 0.55 | High | |
VL | 7 | 4 | 3 | 92.42 | 0.5 | 0.27 | Yes (0) | 0.55 | High | |
GPL | 8 | 5 | 3 | 112.73 | 0.99 | −0.6 | Yes (0) | 0.55 | High | |
AW | 6 | 4 | 4 | 108.21 | −0.09 | 0.11 | Yes (0) | 0.55 | High | |
PF | 6 | 4 | 3 | 78.43 | 0 | 0.33 | Yes (0) | 0.55 | High | |
PY | 6 | 5 | 4 | 98.66 | 0.14 | 0 | Yes (0) | 0.55 | High | |
DF | 8 | 6 | 4 | 129.72 | 0.83 | −0.59 | Yes (0) | 0.56 | High | |
GL | 6 | 4 | 3 | 92.42 | 0.86 | −0.49 | Yes (0) | 0.55 | High | |
PM | 7 | 4 | 3 | 103.73 | 1.04 | −0.32 | Yes (0) | 0.55 | High | |
GR | 8 | 5 | 5 | 156.82 | 2.31 | −2.16 | Yes (0) | 0.55 | Low | |
PPL | 8 | 5 | 3 | 98.74 | 0.09 | 0.06 | Yes (0) | 0.55 | High | |
IH | 8 | 5 | 4 | 121.1 | 0.2 | −0.33 | Yes (0) | 0.55 | High | |
QF | 9 | 5 | 4 | 134.51 | 1.01 | −0.68 | Yes (0) | 0.55 | High | |
QW | 9 | 5 | 3 | 151.3 | 0.49 | −0.48 | Yes (0) | 0.55 | Low | |
PQ | 7 | 5 | 4 | 121.52 | 2.19 | −1.6 | Yes (0) | 0.55 | Low | |
GGY | 9 | 6 | 5 | 141.75 | 1.14 | −1.22 | Yes (0) | 0.55 | Low | |
SF | 7 | 5 | 4 | 112.65 | 1.03 | −0.77 | Yes (0) | 0.55 | High | |
DM | 9 | 6 | 4 | 155.02 | 1.67 | −1.2 | Yes (0) | 0.11 | Low | |
IL | 8 | 4 | 3 | 92.42 | 0.25 | 0.63 | Yes (0) | 0.55 | High | |
GW | 6 | 4 | 4 | 108.21 | 0.23 | −0.21 | Yes (0) | 0.55 | High | |
PL | 6 | 4 | 3 | 78.43 | 0.66 | 0.04 | Yes (0) | 0.55 | High | |
PEL | 12 | 7 | 5 | 144.83 | 0.92 | −0.52 | Yes (0) | 0.56 | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, N.T.T.; Senadheera, T.R.L.; Shahidi, F. Antioxidant Properties and Prediction of Bioactive Peptides Produced from Flixweed (sophia, Descurainis sophia L.) and Camelina (Camelina sativa (L.) Crantz) Seed Meal: Integrated In Vitro and In Silico Studies. Plants 2023, 12, 3575. https://doi.org/10.3390/plants12203575
Ngo NTT, Senadheera TRL, Shahidi F. Antioxidant Properties and Prediction of Bioactive Peptides Produced from Flixweed (sophia, Descurainis sophia L.) and Camelina (Camelina sativa (L.) Crantz) Seed Meal: Integrated In Vitro and In Silico Studies. Plants. 2023; 12(20):3575. https://doi.org/10.3390/plants12203575
Chicago/Turabian StyleNgo, Na Thi Ty, Tharindu R. L. Senadheera, and Fereidoon Shahidi. 2023. "Antioxidant Properties and Prediction of Bioactive Peptides Produced from Flixweed (sophia, Descurainis sophia L.) and Camelina (Camelina sativa (L.) Crantz) Seed Meal: Integrated In Vitro and In Silico Studies" Plants 12, no. 20: 3575. https://doi.org/10.3390/plants12203575
APA StyleNgo, N. T. T., Senadheera, T. R. L., & Shahidi, F. (2023). Antioxidant Properties and Prediction of Bioactive Peptides Produced from Flixweed (sophia, Descurainis sophia L.) and Camelina (Camelina sativa (L.) Crantz) Seed Meal: Integrated In Vitro and In Silico Studies. Plants, 12(20), 3575. https://doi.org/10.3390/plants12203575