Modeling Study of the Effects of Ageratum conyzoides on the Transmission and Control of Citrus Huanglongbing
Abstract
:1. Introduction
2. Methods
2.1. Model Formulation
2.2. Model Parameters
3. Analytical Results
3.1. Some Results for Linear Switching System
3.2. Basic Reproduction Number for General Periodic Switching System
- (i)
- If has a positive solution then is an eigenvalue of L, and so .
- (ii)
- If , then is the unique solution of .
- (iii)
- if and only if for all .
- (i)
- if and only if .
- (ii)
- if and only if .
- (iii)
- if and only if .
3.3. Dynamics of Switching Model (3) and (4)
3.3.1. Non-Negativity and Boundedness
3.3.2. Threshold Dynamics
4. Numerical Simulation
4.1. Theory Verification
4.2. Sensitive Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Validity of Assumptions (H1) to (H6) for System (3) and (4)
Appendix B. Proof of Theorem 1
References
- Bové, J. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Richardson, M.L.; Hall, D.G.; Halbert, S.E.; Ammar, E. Asian citrus psyllid, diaphorina citri, vector of citrus huanglongbing disease. Entomol. Exp. Appl. 2013, 146, 207–223. [Google Scholar]
- Marutani-Hert, M.; Hunter, W.B.; Hall, D.G. Establishment of asian citrus psyllid (diaphorina citri) primary cultures. In Vitro Cell. Dev. Biol. Anim. 2009, 45, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Wang, N. The citrus huanglongbing crisis and potential solutions. Mol. Plant 2019, 12, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.G.; Zhang, Q.; Zhang, N.; Li, W.; Chang, C.Y.; Xiang, Y.; Xia, C.X.; Jiang, T.Y.; He, W.; Luo, J.; et al. Repellency of forty-one aromatic plant species to the asian citrus psyllid, vector of the bacterium associated with huanglongbing. Ecol. Evol. 2020, 10, 12940–12948. [Google Scholar] [CrossRef]
- Miranda, M.P.; Dos Santos, F.L.; Bassanezi, R.B.; Montesino, L.H.; Barbosa, J.C.; Sétamou, M. Monitoring methods for diaphorina citri kuwayama (hemiptera: Liviidae) on citrus groves with different insecticide application programmes. J. Appl. Entomol. 2018, 142, 89–96. [Google Scholar] [CrossRef]
- Yao, T.S.; Zhou, Y.; Zhou, C.Y. Advances in researches on the occurrence and control of asia citrus psyllid. J. Fruit Sci. 2018, 35, 1413–1421. [Google Scholar]
- Zhang, R.M.; He, S.Y.; Wu, W.; Huang, Y.J.; Zhu, C.Y.; Xiao, F.; Liu, Z.Y. Survival and lifespan of Diaphorina citri on non-host plants at various temperatures. Crop Prot. 2019, 124, 104841. [Google Scholar] [CrossRef]
- Lu, H.L.; Fang, X.D.; Wu, F.N.; Ouyang, G.C. Adaptability and ’candidatus liberibacter asiaticus’ titres of diaphorina citri adults on three weed species in china. Pest Manag. Sci. 2021, 77, 3216–3223. [Google Scholar] [CrossRef]
- Lu, H.L.; Sun, X.Y.; Fang, X.D.; Meng, X.; Hou, B.H.; Ouyang, G.C. Effect of ageratum conyzoides and eupatorium catarium on the population of diaphorina citri kuwayama. J. Environ. Entomol. 2017, 39, 1214–1218. [Google Scholar]
- Justin, G.; Ramdas, K.; El-Desouky, A.; Itze, C.; Markle, L.T.; Patt, J.M.; Stelinski, L.L. Feeding behavior of asian citrus psyllid Diaphorina citri [(hemiptera:liviidae)] nymphs and adults on common weeds occurring in cultivated citrus described using electrical penetration graph recordings. Insects 2020, 11, 48. [Google Scholar]
- Chiyaka, C.; Singer, B.H.; Halbert, S.E.; Morris, J.G.; VanBruggen, A.H.C. Modeling huanglongbing transmission within a citrus tree. Proc. Natl. Acad. Sci. USA 2012, 109, 12213–12218. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.S.; Abodayeh, K.; Nawaz, Y. A Reliable Computational Scheme for Stochastic Reaction–CDiffusion Nonlinear Chemical Model. Axioms 2023, 12, 460. [Google Scholar] [CrossRef]
- Arif, M.S.; Abodayeh, K.; Ejaz, A. Stability Analysis of Fractional-Order Predator-Prey System with Consuming Food Resource. Axioms 2023, 12, 64. [Google Scholar] [CrossRef]
- Arif, M.S.; Abodayeh, K.; Ejaz, A. Computational Modeling of Reaction-Diffusion COVID-19 Model Having Isolated Compartment. CMES 2023, 135, 1720–1743. [Google Scholar]
- Zhang, F.M.; Qiu, Z.P.; Huang, A.J.; Zhao, X. Optimal control and cost-effectiveness analysis of a huanglongbing model with comprehensive interventions. Appl. Math. Model. 2021, 90, 719–741. [Google Scholar] [CrossRef]
- Jacobsen, K.; Stupiansky, J.; Pilyugin, S.S. Mathematical modeling of citrus groves infected by huanglongbing. Math. Biosci. Eng. 2013, 10, 705–728. [Google Scholar] [PubMed]
- Vilamiu, R.G.; Ternes, S.; Braga, G.A.; Laranjeira, F.F. A model for huanglongbing spread between citrus plants including delay times and human intervention. AIP Conf. Proc. 2012, 1479, 2315–2319. [Google Scholar]
- Liu, Y.J.; Gao, S.J.; Liao, Z.Z.; Chen, D. Dynamical behavior of a stage-structured huanglongbing model with time delays and optimal control. Chaos Solitons Fractals 2022, 156, 111830. [Google Scholar] [CrossRef]
- Gao, S.J.; Guo, J.; Xu, Y.; Tu, Y.B.; Zhu, H.P. Modeling and dynamics of physiological and behavioral resistance of asian citrus psyllid. Math Biosci. 2021, 340, 108674. [Google Scholar] [CrossRef]
- Taylor, R.A.; Mordecai, E.A.; Gilligan, C.; Rohr, J.R.; Johnson, L.R. Mathematical models are a powerful method to understand and control the spread of huanglongbing. Peer J. 2016, 4, e2642. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.J.; Luo, L.; Yan, S.X.; Meng, X.Z. Dynamical behavior of a novel impulsive switching model for hlb with seasonal fluctuations. Complexity 2018, 2018, 2953623. [Google Scholar] [CrossRef]
- Che, S.Q.; Xue, Y.K.; Ma, L.K. The Stability of Highly Pathogenic Avian Influenza Epidemic Model with Saturated Contact Rate. Appl. Math. 2014, 5, 3365–3371. [Google Scholar] [CrossRef]
- Ejaz, A.; Nawaz, Y.; Arif, M.S.; Mashat, D.S.; Abodayeh, K. Stability Analysis of Predator-Prey System with Consuming Resource and Disease in Predator Species. CMES 2022, 132, 490–505. [Google Scholar] [CrossRef]
- Luo, L.; Gao, S.J.; Yangqiu, G.; Luo, Y.Q. Transmission dynamics of a huanglongbing model with cross protection. Adv. Differ. Equ. 2017, 2017, 355. [Google Scholar] [CrossRef]
- Tu, Y.B.; Gao, S.J.; Liu, Y.J.; Chen, D.; Xu, Y. Transmission dynamics and optimal control of stage-structured hlb model. Math. Biosci. Eng. 2019, 16, 5180–5205. [Google Scholar] [PubMed]
- Deng, M.X. Forming process and basis and technological points of the theory emphasis on control citrus psylla for integrated control huanglongbing. Chin. Agric. Sci. Bull. 2009, 25, 358–363. [Google Scholar]
- Zhou, Y.L. Morphological character of Eupatorium catarium Veldkamp, an Invasive Alien Species and Comparative Study on Aqeratum conyzoides L. and E.catarium Veldkamp. For. Environ. Sci. 2012, 28, 69–71. [Google Scholar]
- Zhang, L.J.; Gao, S.J.; Xie, D.H.; Zhang, F.M. Varying pulse control schemes for citrus huanglongbing epidemic model with general incidence. Commun. Math. Biol. Neurosci. 2016, 2016, 7. [Google Scholar]
- Deng, X.M.; Chen, G.F. The newly process of huanglongbing in citrus. Guangxi Horticult. 2006, 17, 49–51. [Google Scholar]
- Degefa, D.S.; Makinde, O.D.; Temesgen, D.T. Modeling potato virus y disease dynamics in a mixed cropping system. Int. J. Simul. Model. 2022, 42, 370–387. [Google Scholar] [CrossRef]
- Stella, M.; Ghosh, I.R. Modeling plant disease with biological control of insect pests. Stoch. Anal. Appl. 2019, 37, 1133–1154. [Google Scholar] [CrossRef]
- Zhang, T.Q.; Meng, X.Z.; Zhang, T.H. Global dynamics of a virus dynamical model with cell-to-cell transmission and cure rate. Comput. Math. Methods Med. 2015, 2015, 110286. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.L.; Wang, L.; Teng, Z.D. Global dynamics for a class of discrete seirs epidemic models with general nonlinear incidence. Adv. Differ. Equ. 2016, 123, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Dreessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 2002, 180, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.D.; Zhao, X.Q. Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 2008, 20, 699–717. [Google Scholar] [CrossRef]
- Yang, Y.P.; Xiao, Y.N. Threshold dynamics for compartmental epidemic models with impulses. Nonlinear Anal. Real World Appl. 2012, 13, 224–234. [Google Scholar] [CrossRef]
- Oliva-Maza, J. Spectral mapping theorems for essential spectra and regularized functional calculi. arXiv 2023, arXiv:2206.13955. [Google Scholar]
- Niu, J.Z.; HullSanders, H.; Zhang, Y.X.; Lin, J.Z.; Dou, W.; Wang, J.J. Biological control of arthropod pests in citrus orchards in china. Biol. Control 2014, 68, 15–22. [Google Scholar] [CrossRef]
- Thieme, H.R. Convergence results and a poincarW-bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 1992, 30, 755–763. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
Probability that a susceptible citrus tree becomes infected from contact with ACPs infected virus | |
Probability that a susceptible ACP becomes infected from contact with an infected citrus tree | |
Constant recruitment rate for A. conyzoides | |
Constant recruitment rate of ACPs | |
Natural mortality of citrus trees | |
Mortality rate of A. conyzoides | |
Rouging rate of infected trees | |
Natural mortality of ACPs in citrus tree | |
Natural mortality of ACPs in weeds | |
Diffusion rate of ACPs | |
Bias parameter of ACPs from tree to A. conyzoides in the duration of effectiveness | |
Bias parameter of ACPs from A. conyzoides to tree in the duration of non-effectiveness | |
Bias parameter of ACPs from tree to A. conyzoides in the duration of effectiveness | |
Bias parameter of ACPs from A. conyzoides to tree in the duration of non-effectiveness | |
Growth rate parameter of A. conyzoides population | |
Saturation effect parameter | |
Killing rate of pesticide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gao, S.; Liu, Y.; Zhu, H. Modeling Study of the Effects of Ageratum conyzoides on the Transmission and Control of Citrus Huanglongbing. Plants 2023, 12, 3659. https://doi.org/10.3390/plants12203659
Wang Y, Gao S, Liu Y, Zhu H. Modeling Study of the Effects of Ageratum conyzoides on the Transmission and Control of Citrus Huanglongbing. Plants. 2023; 12(20):3659. https://doi.org/10.3390/plants12203659
Chicago/Turabian StyleWang, Ying, Shujing Gao, Yujiang Liu, and Huaiping Zhu. 2023. "Modeling Study of the Effects of Ageratum conyzoides on the Transmission and Control of Citrus Huanglongbing" Plants 12, no. 20: 3659. https://doi.org/10.3390/plants12203659
APA StyleWang, Y., Gao, S., Liu, Y., & Zhu, H. (2023). Modeling Study of the Effects of Ageratum conyzoides on the Transmission and Control of Citrus Huanglongbing. Plants, 12(20), 3659. https://doi.org/10.3390/plants12203659