Foliar Pectins and Physiology of Diploid and Autotetraploid Mango Genotypes under Water Stress
Abstract
:1. Introduction
2. Results
2.1. Abiotic Variables
2.2. Fruit Production
2.3. Leaf Water Potential and Stomatal Conductance
2.4. Cell Wall Biochemistry in Mango Leaves
3. Discussion
3.1. Cell Wall Biochemistry in Leaves of Diploid and Tetraploid Mango Genotypes
3.2. Tetraploid Leaves of ‘Kensington Pride’ Mango Display a Higher Efficiency Than Diploids under Soil Water Deficit
4. Materials and Methods
4.1. Plant Material
4.2. Environmental Variables and Physiological Measurements
4.3. Histochemistry and Immunolocalization of Pectin Polysaccharides
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altendorf, S. Major Tropical Fruits Market Review 2018; FAO: Rome, Italy, 2019. [Google Scholar]
- Aguilera, E.; Díaz-Gaona, C.; García-Laureano, R.; Reyes-Palomo, C.; Guzmán, G.I.; Ortolani, L.; Sánchez-Rodríguez, M.; Rodríguez-Estévez, V. Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agric. Sys. 2020, 181, 102809. [Google Scholar] [CrossRef]
- Zaharah, S.S.; Razi, I.M. Growth, stomata aperture, biochemical changes and branch anatomy in mango (Mangifera indica) cv. Chokanan in response to root restriction and water stress. Sci. Hortic. 2009, 123, 58–67. [Google Scholar] [CrossRef]
- Galán-Saúco, V.; Grajal-Martín, M.J.; Fernández-Galván, D.; Coello-Torres, A.; Juárez, J.; Navarro, L. Occurrence of spontaneous tetraploid nucellar mango plants. Hortic. Sci. 2001, 36, 755–757. [Google Scholar] [CrossRef]
- Barceló-Anguiano, M.; Holbrook, N.M.; Hormaza, J.I.; Losada, J.M. Changes in ploidy affect vascular allometry and hydraulic function in Mangifera indica trees. Plant J. 2001, 108, 541–554. [Google Scholar] [CrossRef]
- Perera-Castro, A.V.; Hernández, B.; Grajal-Martín, M.J.; González-Rodríguez, A.M. Assessment of drought stress tolerance of Mangifera indica L. autotetraploids. Agronomy 2023, 13, 277. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Huang, Z.; Yao, P.; Li, Y.; Kang, X. Impact of the leaf cut callus development stages of Populus on the tetraploid production rate by colchicine treatment. J. Plant Growth Regul. 2018, 37, 635–644. [Google Scholar] [CrossRef]
- Li, W.L.; Berlyn, G.P.; Ashton, P.M.S. Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). Am. J. Bot. 1996, 83, 15–20. [Google Scholar] [CrossRef]
- Li, W.D.; Biswas, D.K.; Xu, H.; Xu, C.Q.; Wang, X.Z.; Liu, J.K.; Jiang, G.-M. Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct. Plant Biol. 2009, 36, 783–792. [Google Scholar] [CrossRef]
- De Baerdemaeker, N.J.; Hias, N.; Van den Bulcke, J.; Keulemans, W.; Steppe, K. The effect of polyploidization on tree hydraulic functioning. Am. J. Bot. 2018, 105, 161–171. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, H.; Lu, X.; Zhang, B.; Wang, F.; Ma, Y.; Zhang, Z. Autotetraploidization enhances drought stress tolerance in two apple cultivars. Trees 2015, 29, 1773–1780. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Z.; Wang, L.; Deng, W.; Wei, H.; Liu, P.; Liu, M. Morphological, cytological and nutritional changes of autotetraploid compared to its diploid counterpart in Chinese jujube (Ziziphus jujuba Mill.). Sci. Hortic. 2019, 249, 263–270. [Google Scholar] [CrossRef]
- Lourkisti, R.; Oustric, J.; Quilichini, Y.; Froelicher, Y.; Herbette, S.; Morillon, R.; Berti, L.; Santini, J. Improved response of triploid citrus varieties to water deficit is related to anatomical and cytological properties. Plant Phys. Biochem. 2021, 162, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Romero-Aranda, R.; Bondada, B.R.; Syvertsen, J.P.; Grosser, J.W. Leaf characteristics and net gas exchange of diploid and autotetraploid citrus. Ann. Bot. 1997, 79, 153–160. [Google Scholar] [CrossRef]
- MacDougall, A.J.; Ring, S.G. The hydration behaviour of pectin networks and plant cell walls. In Advances in Pectin and Pectinase Research; Springer: Dordrecht, The Netherlands, 2003; Volume 873, pp. 123–135. [Google Scholar] [CrossRef]
- McCubbin, T.J.; Braun, D.M. Phloem anatomy and function as shaped by the cell wall. J. Plant Phys. 2021, 266, 153526. [Google Scholar] [CrossRef]
- Torode, T.A.; O’Neill, R.; Marcus, S.E.; Cornuault, V.; Pose, S.; Lauder, R.P.; Kracun, S.K.; Rydahl, M.G.; Andersen, M.C.F.; Willats, W.G.T.; et al. Branched pectic galactan in phloem-sieve-element cell walls: Implications for cell mechanics. Plant Physiol. 2018, 176, 1547–1558. [Google Scholar] [CrossRef]
- Ray, D.M.; Savage, J.A. Immunodetection of cell wall pectin galactan opens up new avenues for phloem research. Plant Phys. 2020, 183, 1435–1437. [Google Scholar] [CrossRef]
- Losada, J.M.; He, Z.; Holbrook, N.M. Sieve tube structural variation in Austrobaileya scandens and its significance for lianescence. Plant Cell Environ. 2022, 45, 2460–2475. [Google Scholar] [CrossRef]
- Berry, Z.C.; Emery, N.C.; Gotsch, S.G.; Goldsmith, G.R. Foliar water uptake: Processes, pathways, and integration into plant water budgets. Plant Cell Environ. 2019, 42, 410–423. [Google Scholar] [CrossRef]
- Carriquí, M.; Nadal, M.; Clemente-Moreno, M.J.; Gago, J.; Miedes, E.; Flexas, J. Cell wall composition strongly influences mesophyll conductance in gymnosperms. Plant J. 2020, 103, 1372–1385. [Google Scholar] [CrossRef]
- Roig-Oliver, M.; Bresta, P.; Nadal, M.; Liakopoulos, G.; Nikolopoulos, D.; Karabourniotis, G.; Bota, J.; Flexas, J. Cell wall composition and thickness affect mesophyll conductance to CO2 diffusion in Helianthus annuus under water deprivation. J. Exp. Bot. 2020, 71, 7198–7209. [Google Scholar] [CrossRef]
- Losada, J.M.; Diaz, M.; Holbrook, N.M. Idioblasts and peltate hairs as distribution networks for water absorbed by the leaves of Capparis odoratissima. Plant Cell Environ. 2021, 44, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Schreel, J.D.; Leroux, O.; Goossens, W.; Brodersen, C.; Rubinstein, A.; Steppe, K. Identifying the pathways for foliar water uptake in beech (Fagus sylvatica L.): A major role for trichomes. Plant J. 2020, 103, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Delgado, P.; Laca, E.; Zwieniecki, M.A. Unravelling foliar water uptake pathways: The contribution of stomata and the cuticle. Plant Cell Environ. 2021, 44, 1728–1740. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R. Mesophyll conductance: Walls, membranes and spatial complexity. New Phytol. 2021, 229, 1864–1876. [Google Scholar] [CrossRef]
- Andersen, M.C.F.; Boos, I.; Marcus, S.E.; Kračun, S.K.; Willats, W.G.T.; Knox, J.P.; Clausen, M.H. Characterization of the LM5 pectic galactan epitope with synthetic analogues of β-1,4-D-galactotetraose. Carbohydr. Res. 2016, 436, 36–40. [Google Scholar] [CrossRef]
- McCartney, L.; Ormerod, A.P.; Gidley, M.J.; Knox, J.P. Temporal and spatial regulation of pectic (1→4)-β-D-galactan in cell walls of developing pea cotyledons: Implications for mechanical properties. Plant J. 2000, 22, 105–113. [Google Scholar] [CrossRef]
- Lee, K.J.D.; Dekkers, B.J.W.; Steinbrecher, T.; Walsh, C.T.; Bacic, A.; Bentsink, L.; Leubner-Metzger, G.; Knox, J.P. Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae. Plant Physiol. 2012, 160, 1551–1566. [Google Scholar] [CrossRef]
- Corneillie, S.; De Storme, N.; Van Acker, R.; Fangel, J.U.; De Bruyne, M.; De Rycke, R.; Geelen, D.; Willats, W.G.T.; Vanholme, B.; Boerjan, W. Polyploidy affects plant growth and alters cell wall composition. Plant Physiol. 2019, 179, 74–87. [Google Scholar] [CrossRef]
- Martín, C.; Viruel, M.; Lora, J.; Hormaza, J.I. Polyploidy in fruit tree crops of the genus Annona (Annonaceae). Front. Plant Sci. 2019, 10, 99. [Google Scholar] [CrossRef]
- Hughes, J.; Hepworth, C.; Dutton, C.; Dunn, J.A.; Hunt, L.; Stephens, J.; Waugh, R.; Cameron, D.D.; Gray, J.E. Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiol. 2017, 174, 776–787. [Google Scholar] [CrossRef]
- Harrison, E.L.; Arce Cubas, L.; Gray, J.E.; Hepworth, C. The influence of stomatal morphology and distribution on photosynthetic gas exchange. Plant J. 2020, 101, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Greer, B.T.; Still, C.; Cullinan, G.L.; Brooks, J.R.; Meinzer, F.C. Polyploidy influences plant–environment interactions in quaking aspen (Populus tremuloides Michx.). Tree Physiol. 2018, 38, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.J.; Fradera-Soler, M.; Summers, R.; Sturrock, C.J.; Fleming, A.J. Ploidy influences wheat mesophyll cell geometry, packing and leaf function. Plant Direct 2021, 5, e00314. [Google Scholar] [CrossRef]
- Jordan, G.J.; Carpenter, R.J.; Koutoulis, A.; Price, A.; Brodribb, T.J. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytol. 2015, 205, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Wang, Y.; Xu, C.P.; Li, Y.; Kang, X.Y. Adaptive photosynthetic and physiological responses to drought and rewatering in triploid Populus populations. Photosynthetica 2018, 56, 578–590. [Google Scholar] [CrossRef]
- Losada, J.M.; Blanco-Moure, N.; Fonollá, A.; Martínez-Ferrí, E.; Hormaza, J.I. Hydraulic trade-offs underlie enhanced performance of polyploid trees under soil water deficit. Plant Physiol. 2023, 192, 1821–1835. [Google Scholar] [CrossRef]
- Caine, R.S.; Yin, X.; Sloan, J.; Harrison, E.L.; Mohammed, U.; Fulton, T.; Biswal, A.K.; Dionora, J.; Chater, C.C.; Coe, R.A.; et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol. 2018, 221, 371–384. [Google Scholar] [CrossRef]
- Khalid, M.F.; Vincent, C.; Morillon, R.; Anjum, M.A.; Ahmad, S.; Hussain, S. Different strategies lead to a common outcome: Different water-deficit scenarios highlight physiological and biochemical strategies of water-deficit tolerance in diploid versus tetraploid Volkamer lemon. Tree Physiol. 2021, 41, 2359–2374. [Google Scholar] [CrossRef]
- Hussain, S.; Sohail, H.; Noor, I.; Ahmad, S.; Ejaz, S.; Ali, M.A.; Haider, S.T.A.; Sohail, M.; Jaffer, H.; Ercisli, S.; et al. Physiological and biochemical determinants of drought tolerance in tetraploid vs diploid sour orange citrus rootstock. J. Hortic. Sci. Biotechnol. 2023, 98, 772. [Google Scholar] [CrossRef]
- Maherali, H.; Walden, A.E.; Husband, B.C. Genome duplication and the evolution of physiological responses to water stress. New Phytol. 2009, 184, 721–731. [Google Scholar] [CrossRef]
- Buckley, T.N. How do stomata respond to water status? New Phytol. 2019, 224, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Talbot, M.J.; White, R.G. Methanol fixation of plant tissue for Scanning Electron Microscopy improves preservation of tissue morphology and dimensions. Plant Methods 2013, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.L.; Husband, B.C. Whole genome duplication affects evolvability of flowering time in an autotetraploid plant. PLoS ONE 2012, 7, e44784. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.A.; Husband, B.C.; Maherali, H. No influence of water limitation on the outcome of competition between diploid and tetraploid Chamerion angustifolium (Onagraceae). J. Ecol. 2015, 103, 733–741. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonollá, A.; Hormaza, J.I.; Losada, J.M. Foliar Pectins and Physiology of Diploid and Autotetraploid Mango Genotypes under Water Stress. Plants 2023, 12, 3738. https://doi.org/10.3390/plants12213738
Fonollá A, Hormaza JI, Losada JM. Foliar Pectins and Physiology of Diploid and Autotetraploid Mango Genotypes under Water Stress. Plants. 2023; 12(21):3738. https://doi.org/10.3390/plants12213738
Chicago/Turabian StyleFonollá, Andrés, José I. Hormaza, and Juan M. Losada. 2023. "Foliar Pectins and Physiology of Diploid and Autotetraploid Mango Genotypes under Water Stress" Plants 12, no. 21: 3738. https://doi.org/10.3390/plants12213738
APA StyleFonollá, A., Hormaza, J. I., & Losada, J. M. (2023). Foliar Pectins and Physiology of Diploid and Autotetraploid Mango Genotypes under Water Stress. Plants, 12(21), 3738. https://doi.org/10.3390/plants12213738